Introdução ao Projeto de Máquinas Elementos de Máquinas 1

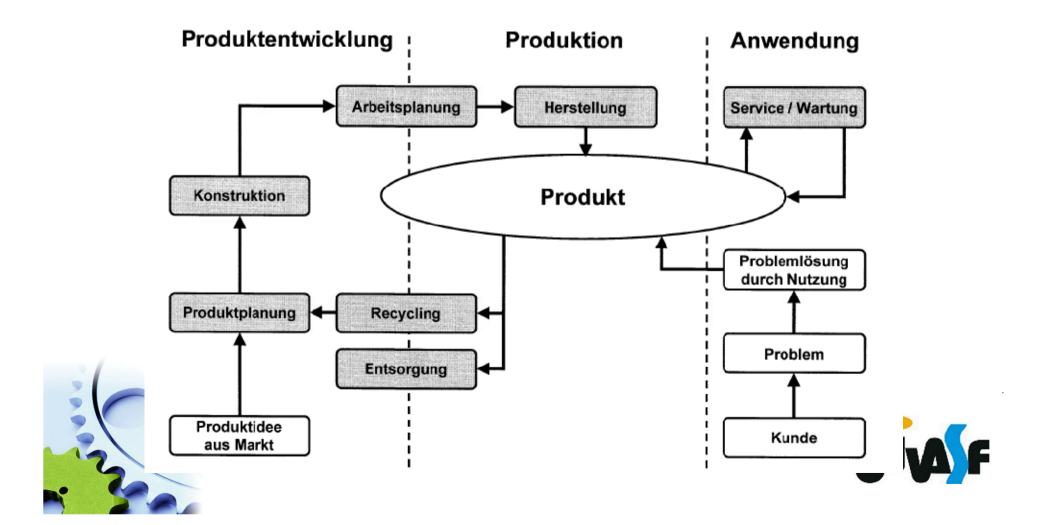
Prof. Alan Dantas

Colegiado de Engenharia Mecânica

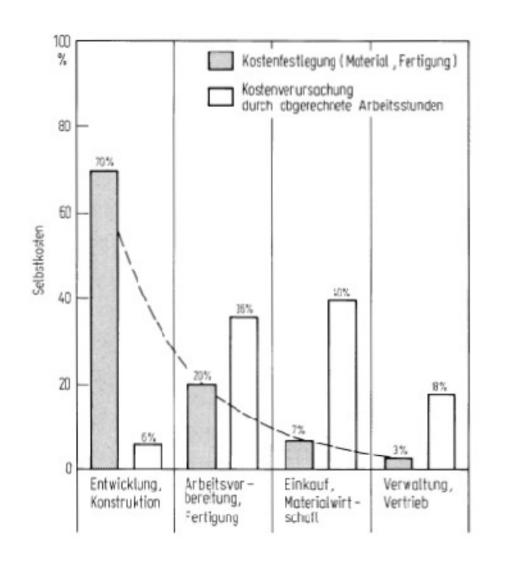
• "Ein Mann der konstruieren will, der schaue erst mal und denke"

Gustav Niemann

Aspectos de projeto

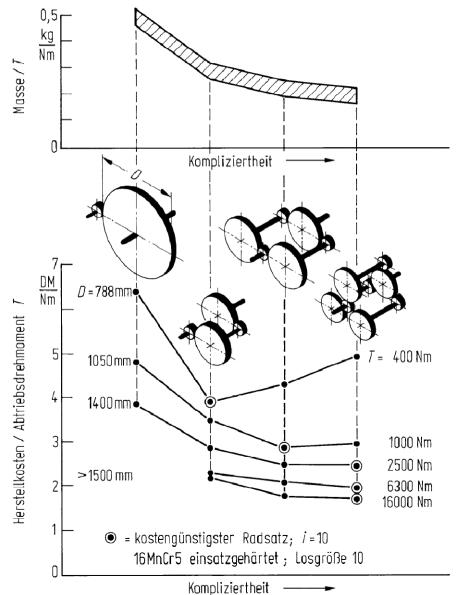

- Analisar Resultados;
- Fatores que possam influenciar antes, durante e depois da construção.
 - Exigências técnicas e funcionais
 - Ponto de vista econômico
 - Exigências trabalhistas.
 - Efeitos no meio ambiente

Passos do desenvolvimento do produto


Significado econômico da construção el consequencias

- Significa ca. 70% do custo do produto;
- Mas significa ca. 6% dos custos da empresa;

Relação entre custo do produto e gastos da empresa



Medidas para melhorar o processo de construção

- Não economizar no processo construtivo
 - Construção orientada nos gastos e custos;
 - Investir no melhoramento de pessoal e de métodos de prodcesso (CAD, FMEA, etc);
 - O construtor precisa ter noções de economia;
 - No projeto já observar se a geometria será um fator muito relevante nos custos(como);
 - Os custos de produção devem ser estimados ainda no processo de idealização e projeto.

Estimativa e Causa dos custos

Influência do numero de peças na falha

- Regra geral:
 - Os custos de produção aumentam com o cubo do aumento da dimenção
- Influência do número de peças a ser produzido:
 - Dissolução do custo de projeto;
 - Possibilidade de utilização de processos de fabricação mais apropriados
 - Redução dos custos de material (descontos devido a quantidade.

Efeito do material

- sendo o peso G e o custo do material K_V , logo o produto $G \cdot K_V$ precisa alcançar um valor mínimo.
 - O uso de materiais de alta tecnologia de peso baixo e alta resistência pode ser assim também vantajoso

Utilização de peças normatizadas

- Peças mais baratas;
- Possibilidade de compra de grande quantidade de peças;

Elementos do processo de desenvolvimento e construção

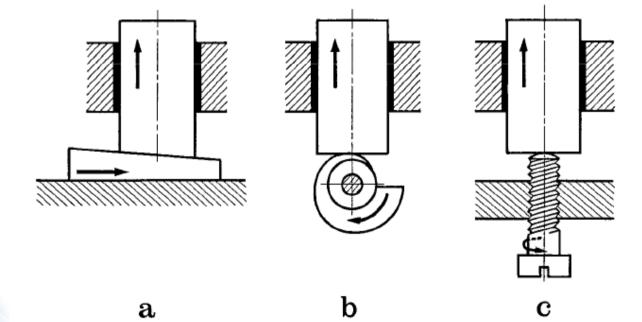

Planejamento

Concepção

Modelagem

Otimização

Construção em série


Caminhos para novas soluções

- Fazer e receber perguntas intensivas e cruciais sobre o funcionamento e mercado do produto a ser construido;
- Caminho básico:
 - Avaliar produtos existentes e fazer perguntas sobre melhoramentos, objetivos, defeitos e falhas presentes neles,
 - Ou avaliar produtos já existentes quanto a sua aplicação em outras áreas.

Exemplo

Metodos para avaliação de novas soluções

Análise de valor:

- Análise da função do produto como um todo, definindo todas as funções secundárias.
- Muito utilizado para encentrar melhoramentos construtivos
- Necessita de documentos detalhados sobre custos de produção.

Metodos para avaliação de soluções

• Análise de Pontos segundo Kesselring:

Nr.	Eigenschaft	Getriebeart				
		Zahnrad	Reibrad	Elektrisch	Hydraulisch	ldeal
1	Wirkungsgrad	4	3	2	2	4
2	Geräuscharmut	3	4	3	4	4
3	Schalterleichterung	2	3	4	4	4
4	Stufenlosigkeit	2	4	4	4	4
5	Betriebssicherheit	4	1	4	4	4
6	Lebensdauer	3	1	4	4	4
7	Überlastbarkeit	4	1	3	3	4
8	Frostempfindlichkeit	2	3	4	2	4
9	Raumbedarf	4	2	1	2	4
10	Gewicht	4	3	1	2	4
11	Rückwärtsgang	3	3	4	2	4
12	Freizügigkeit der Anordnung	3	2	4	2	4
13	Bereich der Übersetzung	3	2	4	4	4
14	Wartungsansprüche	3	3	3	4	4
	Summe	44	35	4 5	43	56
	Technischer Wert x = z/z _i ≦1	0,79	0,63	0,80	0,77	1
	Gestehungswert y = K/K _i ≧1	1,3	1,9	6,35	4,65	1
	Gesamtvergleichswert ("Stärke") s = x/y	0,608	0,332	0,126	0,166	1

Metodos para avaliação de soluções

- Análise de Pontos segundo Kesselring:
 - Vantagem:
 - Análise sistemática de várias propriedades do produto,
 - facilidade de encontrar os pontos fracos do conceito
 - Desvantagem:
 - Todas as propriedades do produto são igualmente comparadas sem indicar o índice de importancia.
 - Difícil de indicar os custos de produção.

- Análise do valor de uso:
 - Utiliza um método parecido com o de Kesselring, onde os pontos são dados agora de 0 a 10 e alem disso as propriedades recebem o valor de importância na construção do projeto.

Outros fatores importantes para avaliação da solução

- Conversar com outras pessoas que entendem do assunto;
- Esta precisa via de regra ser simples
- Precisa ter um fator de impacto claro, para que assim seja possível o ganho de mercado;
- Procurar reduzir os custos de material

Concepção do modelo escolhido

- Definição do protótipo:
 - Forma, localização, tamanho, área de ação, movimentos associados.
- Princípios que devem ser observados:
 - Clareza:
 - Peças, função, aplicação de cargas, material, fluxo de sinais, cálculo da previsibilidade através da estatística.

Concepção do modelo escolhido

– Simplicidade:

• perfil claro, princípio de trabalho, numero reduzido de peças (redução nas fontes de falha).

– Segurança:

- Bom dimensionamento das peças;
- Segurança ao operador devido a boa escolha do princípio de trabalho; e ao projeto das proteções.
- Proteção dos aspectos do meio.

- Observar qual o tipo de acabamento necessário;
- Durante o projeto das peças observar a interação com as peças ao redor para poder otimizar a tolerância.

Tipos de construção

- Construção com princípio fixo:
 - Principio de trabalho e configuração permanecem fixos:
 - Dimensionamento de peças particulares;
 - Ex. mudar a distancia de um eixo em uma transmissão.

Tipos de construção

- Construção de variação;
 - Para um determinado princípio de trabalho a configuração precisa ser alterada.
 - Uma peça que era construída por fundição e passa a ser construída por soldagem de peças.

Tipos de construção

- Construção de ajuste:
 - é necessário encontrar novas soluções para realizar uma determinada função.
 - Repetição de parte das fases de concepção e modelagem.
 - Ex. mudança das partes móveis e fixas de um batedor.

- Nova construção:
 - Todas as fases do processo construtivo precisam ser realizadas para o desenvolvimento de um novo projeto com uma determinada função

_	

Konstru	Konstruktionsphasen				
	Konzipieren		Entwerfen	Ausarbeiten	
Gruppenbegriffe	gebräuchliche Begriffe der Praxis	Funktions- findung	Prinzip – erarbeitung	Gestaltung	Detaillierung
Neukonstruktion	Neukonstruktion Entwicklungskonstruktion Angebotskonstruktion	777777 7777777 1277			777777 772 3
Anpassungskonstruktion	Anpassungskonstruktion Angebotskonstruktion Fertigungskonstruktion Änderungskonstruktion				
Variantenkonstruktion	Variantenkonstruktion			7////	77777
Konstruktion mit festem Prinzip	Prinzipkonstruktion				

Tipos de construção (objetivo x contratante)

- Construção de desenvolvimento
 - Tem como objetivo a produção em série e é normalmente determinada por uma pesquisa de mercado.
- Constução por encomenda
 - Parecida com a construção de desenvolvimento mas deve ser realizada de acordo com o interesse do cliente e no prazo por ele definido;

Tipos de construção (objetivo x contratante)

- Construção por oferta
 - Pode ser desenvolvida por interesse do cliente ou para encontrar uma nova solução para um determinado produto.
 - Normalmente é feita até a fase de medida do potencial comercial e de calculo dos custos de produção de um produto.

Tipos de construção (objetivo x contratante)

- Construção de apoio a produção.
 - Desenvolvimento de máquinas, equipamentos e ferramentas que possibilitem a produção de um determinado produto desenvolvido.

Cálculo em construção

- Cálculos de dimensionamento
- Cálculos de otimização e de prova da resistência.
- Cálculos numéricos.

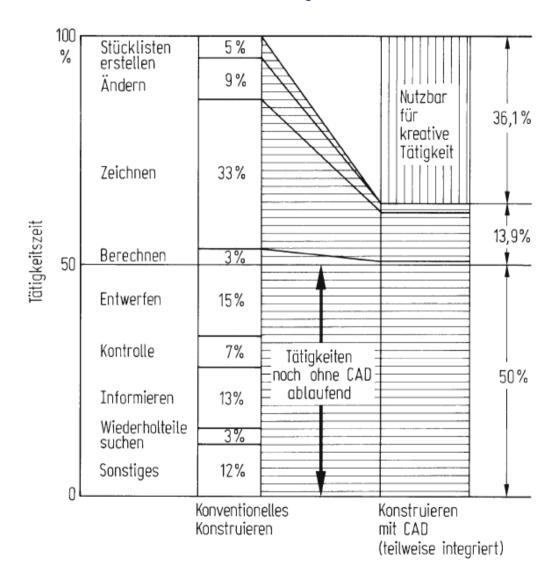
Cálculo da resistência

- Tipos de solicitação
 - Estático
 - Fadiga
 - Abrasão
 - Corrosão
 - Temperatura

Vantagens do CAD no processo construtivo

- Rápido possibilidade de alteração dos modelos;
- Facilidade de análise de regiões pequenas ou grandes;
- Possibilidade de utilização de ferramentas CAE e FEM;
- Fácil comparação da peça com relação ao encaixe

Vantagens do CAD no processo construtivo


- Partes normatizadas já pertencem ao banco de dados;
- Máquinas ferramentas computacionais podem utilizar os dados diretamente para manufatura (CAM);

Economia de tempo usando CAD

Desvantagem no uso do CAD

- Processo do pensar é diferente entre os processos de modelagem 2D e 3D.
- Bancos de dados antigos necessitam de grande trabalho de adaptação para uso em novas maquinas;
- Difícil conversão entre os softwares;

Modelo

- Possibilita a visibilidade dos problemas de construção e uso.
- Modelo de Função
 - De papel, madeira, acrílico, etc
 - Possibilita a análise de movimento
- Modelo de forma
 - Possibilita a análise da distribuição de peso e espaço.
 - Deve ser feito em escala ou tamanho natural

Modelo

- Modelo de Teste
 - Modelo idêntico ao projetado e com total funcionalidade.
 - Pode ser em escala ou não.
- Modelo de Volume CAD
 - Através de análise CAE pode se avaliar a aparência e funcionalidade de um modelo

Testes

- Laboratório
- Operação
- Resistência do produto
 - Tempo de vida útil
 - Determinação da garantia do produto

