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RESUMO

Os primeiros anos do Século XXI foram marcados por um salto na capacidade de geração
de dados em escalas sem precedentes na História. Em virtude disso, avanços combinados
nas Tecnologias da Informação e Comunicação, na sociedade e na economia deram ori-
gem a um fenômeno comumente referenciado pelo termo Big Data. Nesse contexto, as
ferramentas tradicionais, baseadas em sistema computacionais centralizados, passaram
a não mais endereçar as necessidades de armazenamento, processamento e análise gera-
das pela complexidade oriunda de conjuntos de dados tão volumosos. Por consequência,
surgiram, então, paradigmas e ferramentas que passaram a tirar proveito da capacidade
computacional de poderosos clusters de máquinas distribuídas organizadas de forma a
comportar aumento horizontal escalável. Dentre as várias ferramentas que surgiram, o
Apache Spark tem sido bem adotado por indústria e academia. Porém, ainda que com
ferramentas adequadas, a análise Big Data é uma tarefa que demanda tempo. Assim,
os parâmetros de configuração do Spark afetam o tempo de execução, mas identificar
as configurações mais adequadas, torna-se uma tarefa bastante difícil, em especial pela
grande quantidade de fatores. Testar a influência de cada fator experimentalmente, e
a interação entre eles, pode ser muito custoso. Nesse contexto, esse estudo teve como
objetivo identificar os fatores mais relevantes para minimização do tempo de execução
em cluster de máquinas, bem como obter modelo matemático para auxílio na tomada de
decisão na configuração de plataformas para Big Data. Por isso, para análise do impacto
dos parâmetros de configuração no tempo de execução de tarefas Spark, foi utilizada a
técnica de delineamento fatorial fracionado e ajuste de modelo de regressão linear pelo
método da eliminação passo atrás. Como resultado, foi obtido modelo de regressão linear
significativo que selecionou os fatores mais importantes dentre os sete analisados.

Palavras-chave: big data, spark, delineamento experimental, delineamento fatorial fracio-
nado.



ABSTRACT

The first years of the 21st century were marked by a leap in the ability to generate
data on unprecedented scales in history. As a result, combined advances in Information
and Communication Technologies, society and the economy gave rise to a phenomenon
commonly referred to by the term Big Data. In this context, traditional tools, based on
centralized computational systems, no longer address the storage, processing and analysis
needs generated by the complexity arising from such voluminous datasets. Consequently,
paradigms and tools emerged that began to take advantage of the computational capacity
of powerful clusters of distributed machines organized in such a way as to support scalable
horizontal increase. Among the many tools that have emerged, Apache Spark has been well
adopted by industry and academia. However, even with adequate tools, Big Data analysis
is a time-consuming task. Thus, Spark configuration parameters affect the runtime, but
identifying the most suitable configurations becomes a very difficult task, especially due
to the large number of factors. Testing the influence of each factor experimentally, and the
interaction between them, can be very costly. In this context, this study aimed to identify
the most relevant factors for minimizing the execution time in a cluster of machines, as well
as to obtain a mathematical model to aid in decision making when configuring platforms
for Big Data. For this reason, to analyze the impact of the configuration parameters on
the execution time of Spark tasks, the fractional factorial design technique was used and
the linear regression model was adjusted using the backward elimination method. As a
result, a significant linear regression model was obtained that selected the most important
factors among the seven analyzed.

Key-words: big data, spark, design of experiments, factorial fractional design.
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1 INTRODUÇÃO

Os primeiros anos do Século XXI foram marcados por um salto na capacidade
de geração de dados em escalas sem precedentes na História. Avanços combinados nas
Tecnologias da Informação e Comunicação, na sociedade e na economia deram origem a
um grande volume de dados sendo gerados em alta velocidade (HASHEM et al., 2015).
Porém, esse fenômeno não se limita só à geração de dados, a análise deles também se
tornou importante para diversos setores como saúde, business intelligence, ciências, entre
outros (JIN; KIM, 2018; DASH et al., 2019; KAMBATLA et al., 2014).

Dessa maneira, as ferramentas tradicionais, baseadas em sistema computacionais
centralizados, passaram a não mais endereçar as necessidades de armazenamento, proces-
samento e análise geradas pela complexidade advinda do contexto Big Data (AMATO,
2017). Com isso, surgiram então paradigmas e ferramentas que passaram a tirar proveito
da capacidade computacional de poderosos clusters de máquinas distribuídas organizadas
de forma a comportar aumento horizontal escalável (RODRIGUES, 2020).

A exemplo disso, cita-se o sistema de arquivos distribuído GFS (GHEMAWAT;
GOBIOFF; LEUNG, 2003) e o modelo de programação MapReduce (DEAN; GHEMAWAT,
2008) que foram introduzidos pela empresa Google™ em resposta ao crescimento vertiginoso
do volume de dados de seus produtos para abstrair detalhes de paralelização, balanceamento
de carga e tolerância à falhas. Por conseguinte, Zaharia e outros (2012) apresentaram o
conceito de Resilient Distributed Datasets (RDD’s), uma abstração de memória distribuída
que permite computação em memória tolerante à falhas. Surgiu, então, o Spark, um
framework de código aberto para processamento paralelo muito utilizado para análise Big
Data.

Posto isso, observa-se um contexto de avanços contínuos para atender às crescentes
exigências de análise de dados da atualidade.

1.1 JUSTIFICATIVA

A respeito da otimização de recursos, o framework Spark possui diversos parâmetros
de configuração relacionados ao ambiente de execução, gerenciamento de memória, entre
outros (CHEN et al., 2016; SPARK, 2022b). Certas configurações impactam o tempo
de execução de uma tarefa e uma configuração inadequada pode levar a uma perda de
performance significativa, em termos de tempo (WANG; XU; HE, 2016).

Por exemplo, a importância em otimizar o tempo se torna evidente ao ser usado
o modelo de computação em nuvem. Esse modelo se tornou uma alternativa viável para
a análise Big Data justamente por suas características de flexibilidade, escalabilidade
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e alta disponibilidade, compatíveis com a computação distribuída. Todavia, o custo
financeiro de seu uso depende dos recursos provisionados e do tempo de execução das
tarefas. Normalmente, algoritmos com tempo de execução alto se tornam mais custosos
financeiramente frente àqueles com menor tempo de execução, fixados os parâmetros de
hardware. Por exemplo, uma instância de 4 vCPUs e 16GB de RAM custa em torno de
US$ 0,13 por hora. 1

Por isso, é importante otimizar o conjunto de parâmetros para tirar o melhor
proveito em relação ao contexto específico: tamanho do cluster, capacidade das máquinas,
tipo de algoritmo a ser executado, volume e natureza dos dados (RODRIGUES; VASCON-
CELOS; MACIEL, 2021; NGUYEN; KHAN; WANG, 2018). Testar a influência no tempo
de cada um dos fatores, se torna muito custoso, devido a sua quantidade, já que o Spark
tem mais de 180 parâmetros de configuração (WANG; XU; HE, 2016). Tomando-se, por
exemplo, doze parâmetros, seriam necessários 4096 experimentos para avaliar a influência
de cada um de seus fatores principais e de suas interações até a mais alta ordem. Conforme
Montgomery (2013), para minimizar a perturbação sobre a resposta devido a variáveis
de fundo, recomenda-se, ainda, que experimentos estatísticos sejam conduzidos com, no
mínimo, três replicações. Ou seja, a quantidade de unidades experimentais aumentaria
ainda mais.

Com isso, esse projeto se justifica por buscar desenvolver modelos para a tomada de
decisão sobre configuração de tarefas Spark no intuito de minimizar o tempo de execução
de cargas distribuídas e, consequentemente, diminuir outros custos associados.

1.2 OBJETIVOS GERAIS

Identificar entre os fatores analisados, os mais importantes fatores de configuração
de software do framework Apache Spark, sobre o tempo de execução de tarefas usando o
conjunto de dados Big Data PT7 Web (RODRIGUES; VASCONCELOS; MACIEL, 2020)
e gerar equação reduzida para a previsão da resposta de interesse (tempo de execução).

1.3 OBJETIVOS ESPECÍFICOS

• Coletar os tempos de execução para o experimento conduzido;

• Selecionar parâmetros de configuração mais relevantes;

• Obter modelo de regressão linear para estimar o tempo de execução de tarefas com
base nos fatores mais relevantes e auxiliar na tomada de decisão.

1 AWS Pricing Calculator e Google Cloud Pricing Calculator, acessado em maio de 2022.
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1.4 ORGANIZAÇÃO DO TRABALHO

O restante do trabalho se organiza da seguinte maneira: O Capítulo 2 contém
referencial teórico, o qual apresenta a fundamentação teórica acerca das ferramentas e
conceitos empregados. A seção de trabalhos relacionados está no Capítulo 3, ela apresenta
exemplos de caminhos trilhados por outros pesquisadores. A seção de materiais e métodos
é o Capítulo 4, nela se explica a metodologia aplicada na pesquisa. Os resultados obtidos
estão descritos e discutidos no Capítulo 5. E, por fim, as considerações finais são feitas no
Capítulo 6.
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2 REFERENCIAL TEÓRICO

Nesse capítulo são apresentados conceitos e fundamentos teóricos relacionados a
este trabalho. Primeiro, um estudo sobre computação distribuída e análise Big Data é
apresentado. Em seguida, discorre-se sobre pontos importantes acerca do funcionamento
e da arquitetura do framework Spark. Por fim, são detalhadas as bases estatísticas de
delineamentos experimentais, método escolhido para a condução da pesquisa.

2.1 BIG DATA

Projetos científicos2, a ampliação do uso de redes sociais, o advento da Internet
das Coisas, o largo emprego de comunicação multimídia; todos esses fenômenos geram
dados em quantidade e complexidade cuja análise torna-se desafiadora (HASHEM et al.,
2015; SIMONET; FEDAK; RIPEANU, 2015). O conceito seminal de Big Data se insere
justamente nesses cenários, através da caracterização baseadas nas suas três caracaterísticas
fundamentais, conhecidas coloquialmente como os 3 V’s de Big Data (LANEY, 2001).

A primeira delas o volume, denota conjuntos de dados em grandes quantidades e
com tendência de aumentar ainda mais, alcançando a magnitude de Petabytes (PB). Há
ainda a velocidade com que esses dados são produzidos, bem como a velocidade na qual
os dados devem ser analisados antes de se tornarem obsoletos (LANEY, 2001; AMATO,
2017). Por último, as muitas fontes de origem e diversos formatos dos dados caracterizam
sua variedade. Com o passar do tempo, mais V’s foram adicionados à definição de Big
Data como a variabilidade, valor e veracidade (HASHEM et al., 2015)

Tais características impõem desafios de manipulação quando empregadas técnicas
tradicionais de armazenamento e processamento baseadas em computação centralizada. Por
isso, a computação distribuída busca solucionar tais desafios através de clusters de máquinas
conectadas em uma rede de alta velocidade capazes de fornecer poder computacional e
capacidade de armazenamento adequados (AMATO, 2017). Assim, esse tipo de abordagem
facilita a solução de problemas de escalabilidade, promove redundância e dota as soluções
com a capacidade de tolerância à falhas (RODRIGUES, 2020).

É importante esclarecer sobre os tipos de escalabilidade: há a escalabilidade vertical,
a qual se refere à melhoria de performance de um sistema computacional por meio do
aumento do poder computacional, da banda de conexão ou da memória e armazenamento
desse sistema. Esse tipo de escalabilidade envolve a manutenção do número de instâncias
do sistema, apenas modificando o poder computacional dessas instâncias como mostra a
2 O LHC e o telescópio LSST são exemplos de instrumentos científicos que geram um grande volume de

dados.
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Figura 1a, onde M1, M2 e M3 representam sistemas computacionais diferentes com o poder
computacional estando na ordem M3 > M2 > M1. Além disso, existe a escalabilidade
horizontal, quando se adiciona mais recursos computacionais ao sistema em questão, nesse
caso, aumentando o número de instâncias computacionais semelhantes, como mostra a
Figura 1b (HUAI et al., 2011; SINGH; REDDY, 2014; TSAI et al., 2015).

Figura 1 – Tipos de escalabilidade

(a) Escalabilidade vertical (b) Escalabilidade horizontal

Fonte: A Autora (2023), adaptado de Tsai et al. (2015).

Dessa forma, com o tipo de arquitetura adequado, é possível extrair valor de grandes
conjuntos de dados utilizando de queries SQL, algoritmos de aprendizagem de máquina,
algoritmos de MapReduce, ferramentas para visualização desses dados por meio de grafos,
entre outros. Para tanto, é necessário que as ferramentas usadas para executar essas tarefas
façam uso adequado da arquitetura distribuída e consigam extrair dela todas as suas
vantagens. Nesse contexto, é possível citar o paradigma MapReduce, e as ferramentas
Hadoop e Spark como exemplos de tecnologias desenvolvidas e aprimoradas tendo como
base a computação distribuída (AMATO, 2017).

2.2 APACHE SPARK

Trata-se de um mecanismo de computação unificado e um conjunto de bibliotecas
para processamento paralelo de dados em clusters de computadores (SPARK, 2022b).

Conforme Salloum et al. (2015), ele se tornou uma ferramenta popular na indústria,
sendo usado por empresas como IBM que criou o SystemML, biblioteca de código aberto
para aprendizagem de máquina no Spark, Huawei que criou o Astro, um pacote que faz uso
do SparkSQL, Yahoo, que usa essa ferramenta para aprendizagem profunda, entre outros.

O Spark foi apresentado para a comunidade por Zaharia et al. (2010) no artigo
“Spark: Cluster Computing with Working Sets” (2010). Foi baseado no Hadoop MapReduce
que, na época, era o mecanismo de programação paralela mais popular. Desde então,
o projeto cresceu gradativamente com mais funcionalidades: ganhou a capacidade de
programação interativa e queries ad hoc, suporte para machine learning, streaming, SQL e
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análise de grafos, além de ganhar, também, interface de programação em Scala, Java e
Python (CHAMBERS; ZAHARIA, 2018).

2.2.1 Resilient Distributed Datasets (RDD)

O conceito de RDD, introduzido por Zaharia et al. (2012), é uma coleção particio-
nada de registros com permissão apenas para leitura. É possível obter um RDD a partir de
dados em armazenamento ou de outro RDD, essas modificações em datasets são chamadas
de transformações (ZAHARIA et al., 2012).

Essa abstração de dados é dita tolerante a falhas, isso se dá pelo conceito de
linhagem, o qual se refere às informações sobre como foi obtido aquele dataset desde o
conjunto de dados inicial. Com isso, o RDD é capaz de se reconstruir quando há ocorrências
de falhas. Além disso, operações nesse tipo de dataset podem ser executadas em paralelo
em todo o cluster, o que possibilita processamento rápido e escalável (SALLOUM et al.,
2015; CHAMBERS; ZAHARIA, 2018).

Esse tipo de dataset é associado, principalmente, a três características. Há, primeiro,
as dependências, essas informam ao Spark como reconstruir o dataset tendo como base o
dataset pai, aqui reside o conceito de linhagem. Existem também as partições, que são
partes atômicas do dataset, essa característica permite que o Spark paralelize a computação
nos nós executores. Há também uma função de computação que produz um Iterator[T] para
o dados que serão armazenados no RDD. Quando é necessário executar transformações e
ações em um RDD, o planejador (scheduler) criará um grafo acíclico dirigido de estágios
de execução (DAMJI et al., 2020; ZAHARIA et al., 2012).

2.2.2 Transformações e ações

No Spark, quando se deseja mudar uma estrutura de dados, um dataset, por exemplo,
é necessário fazer uma transformação. Com uma transformação, um novo dataset com as
mudanças desejadas é obtido, porém os dados originais não são alterados. Transformações
são feitas de modo preguiçoso (do inglês, lazy), ou seja, não são executadas imediatamente:
um plano de transformações é obtido e, só quando uma ação é chamada, esse plano
é verdadeiramente executado. Esse plano faz parte da linhagem de um dataset. Essa
abordagem permite que o Spark consiga otimizar essas transformações para uma execução
mais eficiente, além de registrar o histórico de mudanças para possibilitar a tolerância à
falhas (DAMJI et al., 2020; CHAMBERS; ZAHARIA, 2018; SALLOUM et al., 2015).

Transformações podem ser narrow (estreitas) ou wide (largas) como mostra a
Figura 2. Na narrow, uma partição de saída pode ser obtida de apenas uma partição de
entrada, um filtro é um exemplo de transformação narrow. Na wide, várias partições de
entrada contribuem para várias partições de saída, exemplo desse tipo de transformação é
a ordenação. Com isso, em transformações estreitas, o Spark executará uma operação de
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pipelining, isso significa que todas elas serão executadas em memória. Por outro lado, com
transformações wide, o Spark executará a operação de Shuffle, nesse caso os resultados
são escritos em disco. É esperado que a performance de transformações com Shuffle seja
inferior às de operação com pipeline, devido às operações de entrada e saída em disco
(DAMJI et al., 2020; CHAMBERS; ZAHARIA, 2018; SALLOUM et al., 2015).

As transformações com Shuffle podem ser configuradas de diversas maneiras, e uma
configuração adequada pode diminuir o impacto do gargalo que as operações de entrada e
saída em disco geram. Por exemplo, se pode citar alguns parâmetros de configuração que
afetam operações de Shuffle, são eles: spark.shuffle.file.buffer e spark.sql.shuffle.partitions
(DAMJI et al., 2020; CHAMBERS; ZAHARIA, 2018). Dessa forma, em uma aplicação
com um grande número de transformações largas, se faz necessário uma maior atenção
para esses parâmetros supracitados.

Figura 2 – Tipos de transformações do Spark

(a) Transformação do tipo
narrow

(b) Transformação do
tipo wide

Fonte: Chambers e Zaharia (2018)

2.2.3 Arquitetura

O Spark utiliza uma arquitetura master/worker. Existe o processo driver, que é
responsável pelo orquestramento das operações paralelas no cluster, e existe, também
os processos executors, esses são responsáveis por executar, de fato, o trabalho o qual
foram designados. Há também o gerente de cluster (cluster manager), responsável pelo
gerenciamento e alocação de recursos para o cluster de nós em que ele está. O Spark tem
seu cluster manager interno, porém também oferece suporte para o do Apache Hadoop,
YARN, Apache Mesos e Kubernetes (DAMJI et al., 2020; CHAMBERS; ZAHARIA, 2018;
SALLOUM et al., 2015).
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Figura 3 – Arquitetura Spark

Fonte: Damji et al. (2020)

O processo driver executa a função main(). Ele fica em um nó do cluster e é
responsável por manter informações sobre a aplicação, responder aos comandos do usuário
e, por fim, analisar, distribuir e planejar o trabalho através do restante dos nós. Para tanto,
ele se comunica com o cluster manager para alocação de recursos para os nós executores,
transforma as operações em grafos acíclicos dirigidos (estágios de execução) e os distribui
pelo cluster, comunicando-se com os nós executores para saber o estado da aplicação. Já
a função de um processo executor é de executar o código designado a ele pelo processo
driver. Além disso, ele reporta o estado da computação para o driver (DAMJI et al., 2020;
CHAMBERS; ZAHARIA, 2018; SALLOUM et al., 2015).

2.2.4 Parâmetros de configuração

As operações de pipeline e de Shuffle citadas, bem como a comunicação entre driver
e workers, a distribuição dos dados dentro do cluster e mais outras particularidades do
funcionamento do Spark podem ter seus comportamentos modificados e ajustados, uma
vez que, existem diversos parâmetros de configuração que mudam o funcionamento do
framework e podem ser configurados para o objetivo que se queira alcançar.

Normalmente, usar a ferramenta com sua configuração padrão é o suficiente para
fazer análises quaisquer de modo confiável, ou seja, é provável que um programa consiga
ser executado até o final com parâmetros nos seus valores padrões (GOUNARIS; TORRES,
2018). Porém, pode ser necessário uma execução mais rápida ou mais eficiente. Nesse caso,
é possível configurar a ferramenta de modo mais adequado para uma aplicação específica
(GOUNARIS; TORRES, 2018; NGUYEN; KHAN; WANG, 2018).
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É possível destacar algumas variáveis de configuração mais importantes. Por exem-
plo, as configurações destacadas por Damji et al. (2020) afetam, principalmente, o processo
driver, os executors e o serviço de Shuffle que é executado em um nó executor. Além disso,
autores como Petridis, Gounaris e Torres (2017), Ahmed et al. (2020), Wang, Xu e He
(2016), entre outros, atestaram a influência de certos fatores no tempo de execução de
aplicações Spark. Com base no trabalhos desses autores, se notabiliza a importância dos
fatores descritos abaixo:

O spark.shuffle.file.buffer é o tamanho do buffer na memória para cada fluxo de
saída de ums operação Shuffle. Isto é, dados intermediários são armazenados nesse buffer,
e só depois escritos em disco, quando o buffer fica cheio. Um grande espaço alocado para
esse parâmetro diminui a quantidade de escrita em disco, melhorando a performance dessas
operações. Porém, essa alocação também pode tirar memória das outras tarefas e assim,
prejudicar a performance (PETRIDIS; GOUNARIS; TORRES, 2017; DAMJI et al., 2020;
CHEN et al., 2016).

Por sua vez, o spark.io.compression.lz4.blockSize dita o tamanho do bloco usado
na compressão de dados feita pelo codec padrão do Spark. Nesse caso, aumentar esse
número pode melhorar as operações de Shuffle, mas a compressão e descompressão de
dados também compete por recursos (DAMJI et al., 2020; SPARK, 2022a).

O Spark processa dados em forma de partições no cluster de forma que cada
tarefa agendada processa uma partição diferente, dessa forma cada partição pode ser
vista como uma unidade atômica de paralelismo. O parâmetro que define o tamanho da
partição de dados a ser processada é spark.sql.files.maxPartitionBytes. Um número alto
para esse parâmetro pode comprometer o paralelismo do processo Spark, porém um número
baixo pode acarretar em muitas operações de entrada e saída, prejudicando, também a
performance (DAMJI et al., 2020).

As partições Shuffle são criadas nas transformações do tipo wide. Com isso, o
resultado dessas operações são escritas nos discos dos executores. O número de partições
criadas nesse processo é definida pelo parâmetro spark.sql.shuffle.partitions, esse número
pode ser ajustado para reduzir o número de partições pequenas que são enviadas pela rede
(DAMJI et al., 2020; ZAHARIA et al., 2010).

O parâmetro spark.reducer.maxSizeInFlight determina o tamanho máximo dos
blocos de saída de operações map a serem coletadas simultaneamente de operações de
reduce. Aumentar esse parâmetro acarreta em uma necessidade maior de memória, porque
cada tarefa de reduce buscaria um bloco de dado maior, que por sua vez seria armazenado
em buffer na memória (PETRIDIS; GOUNARIS; TORRES, 2017; GOUNARIS; TORRES,
2018; AHMED et al., 2020; WANG; XU; HE, 2016; NGUYEN; KHAN; WANG, 2018).

Já o spark.default.parallelism dita o número de partições de RDDs retornadas por
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operações como join e reduceByKey. Similar ao spark.sql.shuffle.partitions, esse parâmetro
também é relacionado ao paralelismo de operações de Shuffle e transformações wide, porém
voltado a RDDs (DAMJI et al., 2020; AHMED et al., 2020).

Além disso, existem as variáveis de broadcast que são armazenadas em cache,
mantidas em cada nó e que previnem que esses dados tenham que ser enviados como cópia
para os executores junto da tarefa. O Spark, automaticamente, transmite dados comuns
e reutilizáveis necessários para essas tarefas. Isto posto, o parâmetro de configuração
spark.broadcast.blockSize define o tamanho do bloco de broadcast. Aumentar esse fator
diminui o paralelismo, porém um número muito baixo pode prejudicar a performance do
gerenciador de bloco (BlockManager) (SPARK, 2022a; NGUYEN; KHAN; WANG, 2018).

Os parâmetros supracitados foram escolhidos como parâmetros de interesse para
execução dos experimentos desse trabalho e um resumo de suas descrições é mostrado na
tabela 1.

Tabela 1 – Resumo dos parâmetros de configuração investigados

Parâmetro Descrição
spark.shuffle.file.buffer Tamanho do buffer na saída do Shuffle
spark.io.compression.lz4.blockSize Tamanho do bloco de compressão
spark.sql.files.maxPartitionBytes Tamanho das partições dos arquivos
spark.sql.shuffle.partitions Número de partições Shuffle
spark.reducer.maxSizeInFlight Tamanho máximo de saídas map
spark.default.parallelism Partições retornadas (operações Shuffle)
spark.broadcast.blockSize Bloco da variável de broadcast

Fonte: A Autora (2023).

No Capítulo 3, é mostrado que diversos autores conseguem melhorar a performance
de tarefas Spark apenas mudando sua configuração. Pórem, apenas com os sete parâmetros
de interesse escolhidos, seriam necessários 27 = 128 experimentos, sem contar com replica-
ções, para analisar o impacto da mudança de seus valores em dois níveis e todas as suas
interações até a mais alta ordem, além disso a análise estatística dos dados coletados deve
ser conduzida de forma que haja confiabilidade nos resultados (MONTGOMERY, 2013).

2.3 DELINEAMENTOS EXPERIMENTAIS

Delineamento experimental ou DoE (do inglês: Design of Experiments) se refere ao
processo de planejamento de experimentos a fim de se coletar dados e analisá-los usando
métodos estatísticos para se chegar a conclusões válidas e objetivas (MONTGOMERY,
2013).

As bases conceituais de DoE:
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"...foram construídas por Ronald Fisher e John Wishart (1930) em es-
tudos nas áreas da Agricultura e Biologia, nos quais foram elaboradas
ferramentas estatísticas para organizar experimentos capazes de lidar com
a alta variação que torna confusa a compreensão de resultados observáveis
e as condições que os provocam. Refinamentos da metodologia foram pos-
teriormente desenvolvidos por estatísticos como George E. P. Box, Søren
Bisgaard, William G. Hunter, e Genichi Taguchi; sendo atualmente uma
das metodologias estatísticas mais utilizadas por engenheiros industriais
na otimização do desempenho de processos por meio de configurações
experimentais projetadas de maneira inteligente."
(RODRIGUES, 2020, p. 59-60)

Dentre as diversas áreas de conhecimento nas quais esse método é aplicado podem-
se citar a pesquisa farmacêutica (MISHRA et al., 2018; POLITIS et al., 2017); Engenharia
(GUECIOUER; YOUCEF; TAREK, 2022); Agronomia (CASLER, 2015), Física (AMIN;
KIANI, 2020), Inteligência Artificial (LUJAN-MORENO et al., 2018), dentre outras.

Uma estratégia para conduzir experimentos muito conhecida é a OFAT (One
Factor at a Time). Consiste em variar um fator por vez enquanto os demais são mantidos
constantes. A principal desvantagem reside no fato de que esse método não captura a
interação entre fatores. Com a metodologia introduzida por Fisher (1935) e aprimorada
por muitos outros autores, tais como Box e Meyer (1986) e Box e Wilson (1951), muitas
variáveis são testadas de uma vez. Dessa forma é possível analisar a interação entre elas.
Esta é a abordagem mais correta quando se lida com mais de um fator (MONTGOMERY,
2013; PACKIANATHER; DRAKE; ROWLANDS, 2000).

As técnicas de delineamento experimental (DoE) fornecem diretrizes e ferramentas
para o planejamento experimental, condução dos experimentos e análise dos resultados
com segurança científica. Possibilitam analisar a influência de cada fator em um projeto
experimental e suas combinações até a mais alta ordem. São capazes de identificar os
fatores mais relevantes, quantificando o impacto da variação de níveis destes sobre a
métrica de desempenho que se deseja investigar. Fornecem ferramentas para reduzir e
eliminar o impacto de variáveis de fundo (nuisance factors) no experimento. É possível,
ainda, reduzir o número de experimentos necessários para se testar uma hipótese e, ao
mesmo tempo, assegurar a confiabilidade dos resultados ao custo de negligenciar interações
de mais alta ordem. Por fim, de posse dos fatores mais relevantes é possível realizar um
processo de otimização da resposta de interesse (MONTGOMERY, 2013).

Alguns tipos de experimentos possíveis:

• Triagem de fatores: processo para entender quais fatores têm maior influência na
resposta de interesse.

• Otimização: serve para identificar valores para os fatores que resultam na resposta
desejada.
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• Confirmação: processo para verificar que um sistema se comporta como diz alguma
teoria ou experiência passada.

• Descoberta: nesse tipo de experimento, o experimentador que explorar novos materi-
ais, novos fatores ou novos valores para os fatores.

• Robustez: serve para testar em que condições um sistema degrada.

Para cada um dos objetivos, há técnicas mais adequadas para serem empregadas
(MYERS; MONTGOMERY; ANDERSON-COOK, 2016; RODRIGUES, 2020). Este tra-
balho tem como objetivo obter uma equação reduzida do tempo de execução em função
dos parâmetros de configuração importantes, para que seja possível a previsão da resposta
de interesse. Para isso serão utilizadas as técnica de delineamento 2k fatorial fracionado e
eliminação passo atrás. Esses conceitos são explicados nas subseções que se seguem.

2.3.1 Conceitos básicos

É importante esclarecer conceitos para compreensão das técnicas de delineamento
experimental:

• Efeito principal: Ou efeito médio de um fator, como a média na mudança na
resposta gerado pela mudança no nível de um fator calculado para os níveis de todos
os outros fatores.

• Experimento: É um teste no qual são feitas alterações propositais e controladas
nos valores das variáveis de um sistema para que se possa identificar as alterações
que podem ser observadas na resposta de saída.

• Interação: Ocorre quando a mudança na variável dependente, ao variar um nível de
um fator A, depende dos níveis de outros fatores.

• Randomização: é um conceito que faz com que a ordem das execuções individuais
dos experimentos seja aleatória, isso faz com que a influência de fatores externos e
variáveis de fundo seja minimizada.

• Replicação: significa repetir, independentemente, a execução de cada combinação
de fatores e níveis. Esse princípio permite estimar o valor do erro experimental e
permite, também, verificar que a diferença dos resultados observados é realmente
diferente estatisticamente, ou seja, se não é apenas uma manisfestação do erro.

• Variável dependente: É o resultado ou a variável de saída de um teste a qual se
deseja analisar.

• Variável independente: Elementos de um experimento que podem ser modificados
a fim de se obter uma mudança na variável dependente.
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2.3.2 Delineamento 2k fatorial

Projetos fatoriais são utilizados em experimentos nos quais existem vários fatores e
é preciso analisar o impacto dos efeitos principais e suas interações sobre a variável de
resposta. Para isso, em uma série de experimentos, todas as possíveis combinações dos
níveis de todos os fatores são testados medindo a resposta encontrada em cada situação
(MONTGOMERY, 2013; MYERS; MONTGOMERY; ANDERSON-COOK, 2016).

O projeto fatorial 2k é um caso específico de um projeto fatorial. Nesse caso, para
os k fatores analisados, seus valores são variados em dois níveis. Com isso, para cada
replicação do experimento, é necessário obter 2 ∗ 2 ∗ 2 ∗ ... ∗ 2 = 2k observações.

Para demonstrar os conceitos de efeito principal e interação, pode-se tomar uma
situação hipotética onde existem os fatores spark.shuffle.file.buffer e spark.sql.shuffle.partitions
e os níveis (-) e (+) para cada fator. A variável de resposta (tempo em segundos) para a
variação dos níveis das variáveis independentes é mostrada na Figura 4. Para se representar
o nível (+) do fator, utiliza-se seu nome e, quando os dois fatores estão em nível alto
simultaneamente, seus nomes em conjunto. O símbolo (1) é usado para representar quando
ambos os fatores estão em seu nível mais baixo. Para se calcular o efeito principal de
um parâmetros, faz-se a média da diferença da resposta da variação do fator em questão,
quando o outro está em nível alto somada à variação dos níveis de do fator em questão
quando o outro está em nível baixo.

A demonstração do cálculo para o efeito principal de spark.shuffle.file.buffer, repre-
sentado com a letra a pode ser vista na equação 2.1, já a equação 2.2 mostra o cálculo
para o efeito principal spark.sql.shuffle.partitions, representado pela letra b. Ainda, há a
equação 2.3 que mostra o cálculo da interação.

A = 1
2n

{[ab − b] + [a − (1)]}

= 1
2n

[ab + a − b − (1)]

= 1
2 × 4[290 + 287 − 261 − 273]

= 1
2 × 4 × 15 = 5, 375

(2.1)

Da mesma forma, para o efeito principal de B:
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Figura 4 – Design 22

Fonte: Autora (2023), adaptado de Myers, Montgomery e Anderson-Cook (2016).

B = 1
2n

{[ab − a] + [b − (1)]}

= 1
2n

[ab + b − a − (1)]

= 1
2 × 4[290 + 261 − 287 − 273]

= 1
2 × 4 × 19 = −1, 125

(2.2)

A interação AB é a média das respostas dos níveis altos e baixos de AB simultane-
amente menos a média das respostas dos níveis altos de A e B exclusivos. No gráfico, essa
relação se demonstra no ponto direito superior do quadro e no ponto esquerdo inferior:

AB = 1
2n

{[ab + 1)] − [a + b]}

= 1
2n

[ab + (1) − a − b]

= 1
2 × 4[290 + 273 − 261 − 287]

= 1
2 × 4 × 19 = 1, 875

(2.3)

Nessa situação hipotética, é possível ver que o fator principal de spark.shuffle.file.buffer
tem contribuição positiva para resposta, ou seja, quando ele aumenta, o tempo de execução
também aumenta. Para o fator principal de spark.sql.shuffle.partitions é possível ver uma
contribuição negativa, ou seja, quando ele aumenta, o tempo de execução diminui. A
interação, por sua vez, tem contribuição positiva.
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Outra maneira de se representar a variável dependente e seus fatores é por meio de
um modelo de regressão. Nesse caso, esse modelo pode ser usado para estimar a resposta
resultante para quaisquer valores das variáveis independentes. Tomando o exemplo acima
e usando de dois fatores, o modelo de regressão linear com interações obtido a partir deles
é mostrado na Equação 2.4

y = β0 + β1x1 + β2x2 + β12x1x2 + ϵ (2.4)

Sendo:

• y, resposta medida;

• β0, o intercepto da reta;

• β1, β2 e β12, os coeficientes parciais para os efeitos principais e interações;

• x1 e x2, os fatores que influenciam a resposta;

• x1x2, a interação entre os fatores;

• ϵ, o erro aleatório.

2.3.2.1 Delineamento 2k fatorial genérico

É possível, então, generalizar o projeto de experimento 2k fatorial completo. O
modelo de regressão canônico pode ser representado pela Equação 2.5.

y = β0 +
k∑

j=1
βjxj + β12x12 + ... + β12...kx12...k + ϵ (2.5)

Sendo:

• y, resposta medida;

• β0, o intercepto da reta;

• βj, β12...k, os coeficientes parciais para os efeitos principais e interações;

• xj, os fatores que influenciam a resposta;

• x12...k, a interação dos fatores analisados;

• e o ϵ, o erro aleatório.
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O número de efeitos pode ser calculado da seguinte forma: para efeitos principais,
faz-se

(
k
1

)
, para a interação entre dois fatores, faz-se

(
k
2

)
, entre três fatores, faz-se

(
k
3

)
e

assim sucessivamente. Generalizando, tem-se neff = Ck,i = k!
i!(k−i)! .

Como já dito, experimentos 2k fatoriais são compostos de 2k observações. Além disso,
há, ainda, de se considerar replicações, que por sua vez são necessárias para estimar o erro
aleatório e minimizar a interferência de varíaveis de fundo desconhecidas. Considerando
as replicações, o número total de observações ao serem feitas pode ser calculada por
nobs = nr × 2k. Com isso, é evidente que a se aumentar o número de fatores, o número
de observações necessárias para um experimento fatorial se torna muito grande e, nem
sempre, há recursos suficientes para tanto. Nesse caso, pode-se usar do delineamento
fatorial fracionado, descrito na Seção 2.3.3 para diminuir o número de observações.

Com o delineamento 2k fatorial é possível a obtenção de modelos que descrevem o
sistema. Por exemplo, a Equação 2.5 é chamada de modelo de primeira ordem. Para usar
esse modelo, assume-se que existe linearidade nos efeitos analisados. Porém, linearidade
perfeita não é necessária e esse modelo ainda pode ser usado mesmo se a relação entre
os efeitos e a resposta seja, apenas, aproximadamente linear. Além disso, a adição dos
efeitos de interação faz o gráfico da superfície de resposta apresentar uma certa curvatura.
Contudo, se a função de resposta não for aproximadamente linear, o modelo de primeira
ordem não é adequado, nesse caso é necessário fazer uso do modelo de segunda ordem
representado pela Equação 2.6.

y = β0 +
k∑

j=1
βjxj +

∑ ∑
i<j

βijxixj +
k∑

j=1
βjjx

2
j + ϵ (2.6)

2.3.3 Delineamento 2k fatorial fracionado

Com o aumento de fatores, o número de execuções necessárias para um experimento
fatorial completo pode superar os recursos disponíveis do experimentador. Por exemplo,
um experimento com seis fatores necessita de, no mínimo, 26 = 64 execuções, sem contar
com as replicações. Com o delineamento fatorial fracionado, é possível diminuir o número
de observações necessárias ao descartar as interações de alta ordem da análise.

Apesar dessa negligência, essa técnica permite manter a confiabilidade dos resulta-
dos. Uma das ideias em que se baseia o uso desse método é o princípio da esparsidade
de efeitos: quando há muitas variáveis, o desempenho medido do sistema provavelmente
será influenciado em sua maioria pelos efeitos principais e interações de baixa ordem
(MYERS; MONTGOMERY; ANDERSON-COOK, 2016).

Um projeto fatorial completo pode ser reduzido para um projeto 2k−p fatorial
fracionado. Um delineamento 2k−1 precisa de metade das execuções de um experimento
fatorial completo, 2k−2 precisa de um quarto, 2k−3 um oitavo, e assim sucessivamente.
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Apesar disso, há a desvantagem do confundimento de fatores, a depender da resolução
do delineamento.

O confundimento de fatores acontece quando não se pode diferenciar entre efeitos
principais e os de ordem maior. Nesse caso, quando há fatores confundidos, não é possível
identificar o efeito destes separadamente. A resolução de um delineamento descreve como
esse fatores estão associados:

• Resolução III: nessa resolução, os efeitos principais não se confundem entre si, mas
podem ser confundidos com efeitos de segunda ordem. Os efeitos de segunda ordem,
por sua vez, se confundem entre si;

• Resolução IV: os efeitos principais não se confundem entre si, nem com os efeitos de
segunda ordem. Os efeitos de segunda ordem ainda se confundem entre si;

• Resolução V: Os efeitos principais e as interações de segunda ordem não se confundem
com nenhum outro efeito principal ou de segunda ordem. Porém, os efeitos de segunda
ordem se confundem com os de terceira ordem;

Recomenda-se usar da maior resolução possível para planejar os experimentos
fracionados. Dessa forma, as suposições acerca de qual ordem de interações pode ser
negligenciadas se tornam menos restritivas.

2.4 SELEÇÃO DE VARIÁVEIS REGRESSORAS

Um modelo de regressão linear serve para descrever a relação entre as variáveis
independentes e assim, possibilitar a estimativa da variável de saída (KUTNER, 2005).
Nem todos os regressores, ou variáveis, são necessários para compor o modelo que descreve
a resposta de saída, além disso, um dos objetivos dessa pesquisa é destacar quais os fatores
de maior importância na variável dependente. Com isso, é importante selecionar as variáveis
regressoras que serão incorporadas ao modelo (CHARNET REINALDO; FREIRE, 1999;
MONTGOMERY; RUNGER, 2003).

Nesse contexto, há técnicas diferentes que podem ser empregadas. A técnica
escolhida da pesquisa é o método da eliminação passo atrás (backward elimination). Esse
método se caracteriza por incorporar inicialmente todas as variáveis independentes e,
passo a passo, retirar uma variável por vez até que seja obtido o modelo de regressão
final com os regressores mais importantes. Para tanto, a cada etapa o modelo completo é
comparado com o modelo reduzido, este obtido pela retirada de uma determinada variável
(CHARNET REINALDO; FREIRE, 1999; MONTGOMERY; RUNGER, 2003). Para fazer
essa comparação, é observada a soma de quadrados de regressão extra e a estatística do
teste de sua contribuição, dada pela Equação 2.7
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SQRc
eg − SQRr

eg

σ̂2
(2.7)

Sendo SQRc
eg a soma de quadrados de regressão do modelo completo, SQRr

eg a
soma de quadrados de regressão do modelo reduzido e σ̂2 o estimador de σ2 correspondente
ao ajuste do modelo completo. Cada etapa do procedimento tem os passos abaixo:

1. Ajustar modelo com todas as variáveis (modelo completo) e obter SQRc
eg e σ̂2

2. Para cada variável presente, ajustar modelo com a retirada dessa variável e calcular
SQRr

eg e a estatística com base na Equação 2.7

3. Identificar quais dos modelos reduzidos tem o valor mínimo (Fmin) calculado no
passo 2.

4. Comparar este valor com o quantil especificado da distribuição F (Fout). Se Fmin <

Fout, retira-se a variável correspondente ao valor de Fmin e o processo todo se repete.
Caso contrário, interrompe-se o processo e opta-se pelo modelo considerado nesta
etapa.

Após obtenção do modelo final, é necessária a análise de resíduos que é essencial
na avaliação do ajuste de modelo de regressão linear, além de contribuir para avaliar a
importância das variáveis regressoras (CHARNET REINALDO; FREIRE, 1999).

2.4.1 Análise de resíduos

Para que um modelo de regressão linear seja considerado adequado, é necessário
que os erros experimentais (resíduos) sejam Normais, Independentes e Identicamente
Distribuídos (NIID), com média µ = 0 e variância σ2. Ou seja, variáveis randômicas, não
relacionadas, aproximadas de uma distribuição Normal, apresentando independência em
todos os níveis para os fatores (RODRIGUES, 2020). A verificação da aderência a estes
requisitos pode ser dada tanto através da análise dos gráficos de pontos discrepantes e
de distribuição dos erros quanto por testes estatísticos formais de normalidade e homoge-
neidade de variância (BROWN; FORSYTHE, 1974; MASSEY, 1951; SHAPIRO; WILK,
1965).

O gráfico quantil-quantil da distribuição dos resíduos compara quantis
teóricos de distribuição Normal com os quantis dos resíduos dos experimentos. Com ele, é
possível verificar se as amostras do estudo seguem ou se aproximam de uma distribuição
Normal. A Figura 5 exemplifica esta ferramenta. Na Figura 5a é possível ver que os resíduos
seguem a linha dos quantis teóricos, ou seja, apresentam distribuição Normal, enquanto
na Figura 5b não se observa o mesmo fenômeno.



31

Figura 5 – Exemplos de gráficos quantil-quantil

(a) Distribuição Normal
(b) Não há aderência à distribuição Nor-

mal

Fonte: Rodrigues (2020)

O gráfico de pontos discrepantes pode ser usado para verificar a propriedade da
independência de resíduos. Nessa análise, deve-se verificar se os pontos dos resíduos estão
distribuídos homogeneamente pelo gráfico, como o caso da Figura 6a, se não for o caso
então existem indícios que a variância dos erros é uma função da variável de resposta
e, nesse caso, os resíduos variam de forma heterogênea (como é o caso da Figura 6b)
(RODRIGUES, 2020).

Figura 6 – Exemplo de gráfico de pontos discrepantes

(a) Homogeneidade de variância. (b) Heterogeneidade de variância.

Fonte: Rodrigues (2020)

Para verificar a distribuição idêntica dos erros, pode-se usar do gráfico de Resíduos
por Variável Regressora. Aqui, espera-se que os resíduos se apresentem igualmente distri-
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Figura 7 – Resíduos por Variável Regressora

(a) Homogeneidade de variância. (b) Variação divergente entre níveis.

Fonte: Rodrigues (2020)

buídos formando linhas ortogonais ao eixo da abcissas de forma semelhante para os dois
níveis de determinado fator, como mostra a Figura 7a. Outro tipo de distribuição, como a
forma cônica presente na Figura 7b, indica ausência de distribuição idêntica.

Quando há divergência quanto a esses requisitos, uma solução possível de ser empre-
gada é a transformação de dados. Para isso, Box e Cox 1964 propuseram a transformação
de potência, que consiste em aplicar uma transformação yλ nos dados inadequados. Após
isso, a análise gráfica deve ser executada novamente.

2.5 SÍNTESE

Nessa seção foi definido o conceito de Big Data, bem como foram descritas as ferra-
mentas para análise desse tipo de conjunto de dados. Após isso, foram descritos conceitos,
funcionamento e arquitetura do framework Spark. Em seguida, foram apresentados os
conceitos teóricos do delineamento experimental, método que servirá para a condução dos
experimentos e análise dos resultados coletados.
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3 TRABALHOS RELACIONADOS

Nesse capítulo são descritos, em termos gerais, trabalhos que se relacionam com o
tema desse estudo. Os artigos e teses aqui mencionados propõem métodos para medir a
influência de parâmetros Spark na sua performance além de também propor um método
para configurar o framework para obter melhor eficiência (em termos de tempo). Entretanto,
nenhum deles usa do delinamento experimental com essa finalidade. Há, porém, autores
que usam do DoE, nesse caso, com a finalidade de analisar a influência de parâmetros de
hardware e hiperparâmetros de algoritmos de aprendizagem de máquina.

3.1 OTIMIZAÇÃO DE PERFORMANCE DO SPARK COM AJUSTE DE PARÂME-
TROS DE CONFIGURAÇÃO

3.1.1 Método da tentativa e erro

Petridis, Gounaris e Torres (2017), por exemplo, desenvolveram uma metodologia
com base na tentativa e falha para testar a performance de 12 parâmetros Spark, escolhidos
entre mais de 150 com base no conhecimento e experiências dos autores. Nessa metodologia,
os parâmetros estudados são testados individualmente para três tipos de aplicação: sort-by-
key, shuffling e K-Means. O impacto no tempo de execução para cada teste foi analisado e
foi obtida uma metodologia sequencial para ajuste de parâmetros. Então, essa metodologia
foi testada para três diferentes tipos de aplicação, comparando o tempo de execução
da tarefa com a configuração padrão e com a configuração obtida com o ajuste. Para
a aplicação de sort-by-key, foi observado uma melhora de 44% na performance (de 218
segundos para 120 segundos). Para os testes de K-Means, foi observado uma melhora de
91% (654 segundos para 54 segundos). E, por fim, para os testes de aggregate-by-key, a
melhora foi de 21%. No geral, conseguiu-se diminiuir o tempo de execução em mais de 10
vezes.

Gounaris e Torres (2018) aperfeiçoaram tal metodologia ao medir, também, o
impacto de pares de parâmetros, além de aumentar a paralelização com a qual os testes
podem ser conduzidos. A metodologia de ajuste de parâmetros proposta aqui conseguiu
diminuir o tempo de execução em pelo menos 20%.

Usando também da metodologia de tentativa e erro, Ahmed et al. (2020) conduziram
uma análise de 18 valores de parâmetros diferentes usando duas cargas de trabalho:
WordCount e TeraSort. O trabalho mostra que a depender do tipo de aplicação e do
tamanho da massa de dados, o ajuste de parâmetros pode levar a uma melhor performance.
Por exemplo, para a carga de trabalho WordCount, o melhor valor para o parâmetro de
paralelismo, com um aumento de performance de 3% é 300, e isso é evidenciado com
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tamanho dos dados maior que 400GB.

3.1.2 Uso de aprendizagem de máquina

Alguns autores usaram algoritmos de machine learning em suas metodologias.
Wang, Xu e He (2016) obtiveram um método usando modelos preditivos para estimar
com qual configuração usando 13 parâmetros Spark pode se obter melhor performance. Os
algoritmos utilizados para a predição foram o Árvore de Decisão, Regressão Logística, SVM
e ANN. As cargas de trabalho analisadas foram WordCount, Sort, Grep e Naïve Bayes. O
algoritmo de árvore de decisão se mostrou o melhor algoritmo para a escolha e ajustes dos
parâmetros. Com isso, para validar a metodologia proposta, para cada benchmark foram
comparados os tempos de execução com a configuração padrão Spark e aquela obtida
com auxílio do modelo de aprendizagem de máquina. Por fim, foi possível observar que
a metodologia proposta conseguiu melhorar a performance em até 55% e essa melhora é
evidenciada a crescer do tamanho de dados de entrada.

Também usando algoritmos de aprendizagem de máquina, Nguyen, Khan e Wang
(2018) estimaram o tempo de execução de jobs Spark para diferentes parâmetros e valores,
os quais foram escolhidos com base em algoritmos de feature selection. Usando um cluster
com 6 nós, 12 núcleos de CPU, 32GB de RAM e 1.8TB de disco rígido cada nó e utilizando
9 aplicações diferentes, dentre elas o WordCount e TeraSort, foram gerados dados com
base nas combinações obtidas com o algoritmo de feature selection e, então, os algoritmos
de aprendizagem de dados foram treinados com base nesses dados. Para avaliação da
metodologia proposta, foi comparado a performance do sistema com configuração padrão e
aquela obtida com o ajuste. Dessa forma, foi vista uma melhora de até 40% na performance
em termos de tempo. Esse trabalho evidencia, mais uma vez, a diferença no ajuste de
parâmetros a depender da aplicação em questão.

3.1.3 Uso de simulador

Chen et al. (2016) obteve um simulador na ferramenta Intel®CoFluent™Studio,
usado para simular um cluster Spark e medir o tempo de execução com o dimensionamento
de 33 parâmetros de software e 5 grupos de parâmetros de hardware diferentes. Porém,
esse método exigiu conhecimento profundo da arquitetura de um cluster Spark para
construção do simulador. Com base no simulador obtido, foi possível ajustar os parâmetros
de configuração para melhora de 71% na performance de tarefas PageRank em comparação
com os parâmetros padrões do Spark.
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3.2 USO DE DELINEAMENTO EXPERIMENTAL

3.2.1 Aplicação de delineamento experimental e eliminação passo atrás

Para analisar os efeitos de fatores na qualidade de impressões 3D, Mohamed et
al. (2016) usaram o delineamento fatorial para planejamento experimental, bem como da
técnica de eliminação passo atrás para obtenção de modelos de regressão linear. Com essa
metodologia, os autores conseguiram destacar parâmetros de maior impacto e, além disso,
com os modelos de regressão, conseguiram determinar as condições ideais do processo para
evitar problemas na qualidade do material.

Outro exemplo de emprego de tais técnicas pode ser visto no trabalho de Beltramino
et al. (2016). Aplicando o método do delineamento fatorial completo para condução dos
experimentos e o método da eliminação passo atrás para a obtenção de modelos de regressão
linear, os autores conseguiram otimizar o processo de obtenção de nanocelulose levando
em conta os fatores da quantidade de celulase, tempo de hidrólise ácida e temperatura de
hidrólise ácida.

3.2.2 Delineamento experimental na computação

No trabalho de Lujan-Moreno et al. (2018), foi possível identificar os hiper-
parâmetros de maior impacto do algoritmo de Floresta Aleatória do software R. Os
autores empregaram o delineamento fatorial fracionado para triagem dos fatores mais
importantes e, depois, o fatorial completo para o ajuste de um modelo de segunda ordem
usando técnicas de Response-Surface Methodology (RSM), técnica que também faz parte
da metodologia de delineamento experimental. Aqui, a métrica de performance considerada
foi a de acurácia balanceada. Com isso, o processo de otimização levou a uma melhora na
performance do algoritmo, saindo de um valor de 0,6367 com a configuração padrão para
0,811 para a configuração obtida com a metodologia.

No contexto Spark, Rodrigues (2020) usou do delineamento experimental, mais
precisamente o delineamento 2k fatorial completo e fracionado, para investigar e ranquear
parâmetros de hardware na execução em cluster de algoritmos de aprendizagem de máquina
sobre um conjunto de dados Big Data. O tamanho do conjunto de dados também foi
considerado na análise. Neste trabalho, evidenciou-se que o número de nós do cluster, tem
um grande impacto no tempo de execução e, além disso, uma vez fornecida a quantidade
mínima de memória para executar o algoritmo, sua mudança não afetou o tempo. Ademais,
o autor obteve modelos de regressão linear para estimar o tempo e custo na execução
desses algoritmos com base nos fatores em questão.

Este trabalho difere dos demais ao aplicar o delineamento experimental para analisar
o impacto de parâmetros de software do framework Spark, obtendo um modelo de regressão
linear com uso da eliminação passo atrás. Essa abordagem tem o intuito de auxiliar a
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tomada de decisão testando as configurações de software, deixando as configurações de
hardware fixas.
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4 MATERIAIS E MÉTODOS

Esse capítulo tem como objetivo descrever os materiais utilizados no experimento,
bem como os procedimentos seguidos no trabalho.

4.1 PLATAFORMA EXPERIMENTAL

4.1.1 Hardware

Para a primeira parte da pesquisa, foi simulado um cluster com 1 nó mestre e
3 trabalhadores em uma máquina com processador Intel®Core™i7-4790 3.6GHz com 8
núcleos, 16GB de RAM e um HD de 1TB. Para construção do cluster virtualizado, foi
utilizada a plataforma Docker3, e cada nó do cluster tem seus recursos compartilhados
com os outros nós.

A segunda parte do trabalho usou clusters provisionados pelo serviço Google Cloud4,
mais precisamente o serviço Dataproc5. O cluster usado também foi criado com 1 mestre e
3 nós trabalhadores, cada nó contendo 2 vCPUs e 8GB de RAM. Para o armazenamento,
o mestre tem 100GB e cada trabalhador tem 200GB.

4.1.2 Software

A versão do Apache Spark utilizada foi a 3.3.0 junto com o Hadoop, para uso de suas
bibliotecas de cliente para o HDFS e YARN. O treinamento do algoritmo de aprendizagem
de máquina foi conduzido, sendo utilizado a biblioteca MLlib do Spark. Para a análise
estatística, o software SAS6 foi utilizado, além dele, o software7 R e foi utilizado junto
com a biblioteca FrF2 (GRöMPING, 2022) para geração do plano experimental usando da
técnica de delineamento fatorial fracionado.

4.2 ESTUDO DE CASO

O experimento foi conduzido alterando os parâmetros de configuração Spark na
execução de um algoritmo de multiclassificação sobre o conjunto de dados PT7 Web.
3 https://www.docker.com/
4 https://cloud.google.com/
5 https://console.cloud.google.com/dataproc
6 https://www.sas.com/pt_br/home.html
7 https://www.r-project.org/



38

4.2.1 Conjunto de dados

O PT7 Web é um corpus anotado em língua portuguesa composto por amostras
coletadas de setembro de 2018 a março de 2020. Essas amostras foram coletadas de sete
países de língua portuguesa: Angola, Brasil, Portugal, Cabo Verde, Guiné-Bissau, Macau
e Moçambique. Os dados vieram do Common Crawl, que é um conjunto de dados de
domínio público de páginas Web de vários idiomas, nesse caso, eles foram filtrados para os
idiomas das nacionalidades citadas (RODRIGUES; VASCONCELOS; MACIEL, 2020). Os
dados estão dispostos em tabelas em 200 arquivos no formato .parquet. As tabelas estão
estruturadas da seguinte forma:

• label, do tipo string. Seus valores podem ser 1 para documentos brasileiros e 0 para
aqueles que não são;

• url, do tipo string. Contém a fonte do documento original;

• digest, do tipo string. É uma função de hash do conteúdo da página;

• raw, do tipo string. É o documento no formato original em HTML puro;

• token, do tipo vetor. Se trata do documento dividido em palavras;

• filtered, do tipo vetor. Os tokens processados, stopwords.

Para esse trabalho, utilizou-se 95 arquivos no formato .parquet somando 68,36GB
em estado bruto. Após pré-processamento, os dados usados para treinamento de modelo
de aprendizagem de máquina teve tamanho de 14,88GB. Além disso, a coluna da classe
(label) deixa de ser binária e passa a ter valores multiclasse.

4.2.2 Algoritmo de aprendizagem de máquina para classificação multiclasse

Foi utilizado o algoritmo de Naïve Bayes para multiclasse treinado sobre o conjunto
de dados supracitado.

4.2.2.1 Naïve Baiyes

Este algoritmo é baseado no teorema de Bayes (1763), que pode ser formulado
pela equação 4.1. Ele tem suma importância na estatística inferencial e trabalha com
probabilidade condicional (BERRAR, 2019). Além disso, considera que os eventos são
independentes, cuja suposição é simplista quando considerado o mundo real. Mesmo assim,
o classificador Naïve Bayes se mostra eficiente quando testado em dados reais (WITTEN;
FRANK; HALL, 2011).

Supondo um conjunto de dados, onde cada instância é descrita por um conjunto
de atributos e pertence a apenas uma classe:
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P (c|x) = P (x|c)P (c)
P (x) (4.1)

P (c|x) é a probabilidade a posteriori da classe c dado os atributos x. P (x|c) é a
probabilidade dos atributos, dado a classe. E, por fim, P (c) e P (x) são as probabilidades
a priori da classe c e dos atributos x.

A classificação se baseia em:

1. Calcular as probabilidades a priori para cada atributo

2. Calcular P (x|c) com base nas probabilidades a priori calculadas

3. Para cada classe, calcular P (c|x) com base na equação 4.1

4. A classe com maior probabilidade é o resultado da classificação

O modelo foi treinado para classificar os documentos do conjunto de dados e decidir
sua nacionalidade de origem. Esse procedimento foi repetido diversas vezes, para diferentes
parâmetros Spark, seguindo o plano experimental fornecido pelo delineamento fatorial
fracionado.

Ressalta-se, porém, que a otimização da performance do algoritmo de aprendizagem
de máquina não está no escopo da pesquisa, tampouco a análise de suas métricas. Seu
treinamento serve, aqui, como meio para análise da performance do job Spark.

4.2.3 Parâmetros de configuração

Na Tabela 2 podem ser encontrados os parâmetros escolhidos, bem como seus
níveis. Eles foram escolhidos baseados nas fontes descritas na Seção 2.2.4. Nesse caso,
os parâmetros envolvendo configurações de hardware (exemplo: spark.executor.memory,
spark.executor.cores e spark.driver.memory) foram deixados de fora da análise, além deles,
também foram retirados da análise os parâmetros que dependem da definição de outros, a
exemplo do spark.dynamicAllocation.enabled.

Para a definição dos valores, foi necessário escolher um intervalo que viabilizasse
a condução dos experimentos e que também possibilitasse a observação de diferença
na resposta de interesse analisada, o tempo de execução. Para essa definição, foram
consideradas as limitações de hardware, bem como os valores recomendados pela literatura.
Todos os valores dados em unidade de medida de informação (bytes) foram descritos em
KB, para padronização.

Para os valores spark.shuffle.file.buffer e spark.io.compression.lz4.blockSize, cujos
valores padrões é 32KB, a recomendação é aumentar esse valor para mais de 512KB, então
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Tabela 2 – Parâmetros de configuração investigados

Parâmetro Níveis
spark.shuffle.file.buffer 16KB e 2000KB
spark.io.compression.lz4.blockSize 16KB e 2000KB
spark.sql.files.maxPartitionBytes 16.000KB e 1.000.000KB
spark.sql.shuffle.partitions 8 e 200
spark.reducer.maxSizeInFlight 24.000KB e 96.000KB
spark.default.parallelism 2 e 6
spark.broadcast.blockSize 16KB e 4000KB

Fonte: A Autora (2023).

os limites inferiores foram escolhidos para abaixo de 32KB e o limite superior foi escolhido
para mais que o dobro de 512KB. Com isso, foi definido o intervalo de 16KB a 2000KB
(DAMJI et al., 2020).

Para os valores de spark.sql.shuffle.partitions e spark.broadcast.blockSize, foi reco-
mendado que os valores sejam baixos a depender das limitações do cluster. Nesse caso, o
limite superior foi definido com o valor padrão e o limite inferior foi definido com um valor
mais distante do superior (DAMJI et al., 2020; NGUYEN; KHAN; WANG, 2018). Para o
spark.default.parallelism, Damji et al. (2020) recomenda um valor de no máximo 10 para a
maioria dos clusters, então levando em conta a limitação do cluster usado no trabalho, os
limites foram definidos como 2 a 6.

O spark.sql.files.maxPartitionBytes se mostrou flexível, podendo ter seu limite
inferior sendo definido como quase dez vezes menor que seu padrão, e o limite superior
sendo quase dez vezes maior. Já o spark.reducer.maxSizeInFlight teve seus limites definidos
com base no trabalho de Nguyen, Khan e Wang (2018), Ahmed et al. (2020).

4.3 PROCEDIMENTO

Foi conduzida uma investigação exploratória a fim de se obter conhecimento das
limitações associadas à plataforma experimental. Além disso, essa etapa também serviu
para a seleção dos parâmetros de configuração considerados no experimento, bem como
desenvolver habilidades no manejo das ferramentas utilizadas. Ela consistiu do treinamento
do algoritmo de aprendizagem de máquina escolhido, sob diferentes configurações. Aqui,
servindo de testes de viabilidade e para confirmação da escolha do algoritmo de aprendiza-
gem de máquina, foram treinados os algoritmos de Regressão Logística multiclasse bem
como o de Árvore de Decisão, além do algoritmo Naïve Bayes já mencionado. Essa etapa
foi conduzida no ambiente Docker e usou planos fatoriais fracionados com três, seis e doze
replicações. Os parâmetros spark.executor.memory e spark.driver.memory foram deixados
de fora da análise, mas tiveram que ser estudados e definidos de modo que possibilitassem
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a condução dos experimentos.

Partiu-se então para os experimentos conduzidos no serviço Google Dataproc. Nessa
etapa, clusters foram criados com as especificações descritas na Subseção 4.1.1. As tarefas
submetidas ao cluster consiste no treinamento e teste de algoritmo Naïve Bayes. O plano
experimental utilizado foi o fatorial fracionado randomizado de resolução V e número de
replicações igual a três (Anexo A). Com a execução dos experimentos seguindo o plano
obtido, o tempo de execução de cada job foi coletado.

Com posse dos resultados, foi então ajustado modelo de regressão linear, usando
a técnica da eliminação passo atrás (descrita na Seção 2.4). Com isso, a influência de
cada fator foi analisado e, por fim, as propriedades NIID dos resíduos do modelo foram
verificadas graficamente.
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5 RESULTADOS

Esse capítulo mostra e descreve os resultados obtidos a partir da condução das 192
unidades experimentais, mostradas no anexo A, na plataforma Google Cloud Dataproc.
Além disso, a análise gráfica dos resíduos também é discutida.

5.1 PARÂMETROS IMPORTANTES E MODELO DE REGRESSÃO LINEAR

Tabela 3 – Projeto experimental 27−1
V × 3 para tempo NB (continua)

# Plano X1 (KB) X2 (KB) X3 (KB) X4 X5 (KB) X6 X7 (KB) t1, t2, t3 (s) t

1 53-103-159 16 – 16 – 16000 – 8 – 24000 + 2 – 4000 + (277.16,291.50,283.29) 283.98
2 39-126-139 2000 + 16 – 16000 – 8 – 24000 + 2 – 16 – (265.46,288.82,287.18) 280.49
3 5-74-148 16 – 2000 + 16000 – 8 – 24000 + 2 – 16 – (278.18,305.93,285.07) 289.72
4 32-117-143 2000 + 2000 + 16000 – 8 – 24000 + 2 – 4000 + (273.18,291.06,277.19) 280.48
5 24-77-130 16 – 16 – 1000000 + 8 – 24000 + 2 – 16 – (279.98,294.08,294.70) 289.59
6 20-113-192 2000 + 16 – 1000000 + 8 – 24000 + 2 – 4000 + (285.32,302.54,294.20) 294.02
7 43-100-157 16 – 2000 + 1000000 + 8 – 24000 + 2 – 4000 + (272.86,307.86,283.22) 287.98
8 37-99-185 2000 + 2000 + 1000000 + 8 – 24000 + 2 – 16 – (278.67,285.31,290.03) 284.67
9 41-108-166 16 – 16 – 16000 – 200 + 24000 + 2 – 16 – (277.84,305.52,285.08) 289.48

10 12-122-154 2000 + 16 – 16000 – 200 + 24000 + 2 – 4000 + (301.14,292.76,285.67) 293.19
11 59-118-177 16 – 2000 + 16000 – 200 + 24000 + 2 – 4000 + (292.25,287.57,296.07) 291.97
12 56-73-152 2000 + 2000 + 16000 – 200 + 24000 + 2 – 16 – (283.81,277.31,291.73) 284.28
13 13-104-180 16 – 16 – 1000000 + 200 + 24000 + 2 – 4000 + (278.96,301.86,286.54) 289.12
14 35-86-158 2000 + 16 – 1000000 + 200 + 24000 + 2 – 16 – (271.96,279.13,292.21) 281.10
15 40-85-156 16 – 2000 + 1000000 + 200 + 24000 + 2 – 16 – (298.78,280.52,292.18) 290.50
16 55-107-165 2000 + 2000 + 1000000 + 200 + 24000 + 2 – 4000 + (282.39,291.24,298.17) 290.60
17 44-71-146 16 – 16 – 16000 – 8 – 96000 + 2 – 16 – (272.84,296.53,283.31) 284.23
18 64-101-163 2000 + 16 – 16000 – 8 – 96000 + 2 – 4000 + (283.62,313.98,288.17) 295.26
19 26-79-129 16 – 2000 + 16000 – 8 – 96000 + 2 – 4000 + (264.83,269.64,281.19) 271.89
10 1-102-186 2000 + 2000 + 16000 – 8 – 96000 + 2 – 16 – (273.25,317.16,271.36) 287.26
21 36-105-140 16 – 16 – 1000000 + 8 – 96000 + 2 – 4000 + (274.24,324.42,288.39) 295.68
22 54-123-145 2000 + 16 – 1000000 + 8 – 96000 + 2 – 16 – (287.21,289.93,290.67) 289.27
23 38-119-184 16 – 2000 + 1000000 + 8 – 96000 + 2 – 16 – (280.27,307.23,309.65) 299.05
24 61-91-172 2000 + 2000 + 1000000 + 8 – 96000 + 2 – 4000 + (286.72,290.81,298.11) 291.88
25 10-125-155 16 – 16 – 16000 – 200 + 96000 + 2 – 4000 + (276.32,292.21,288.69) 285.74
26 63-110-132 2000 + 16 – 16000 – 200 + 96000 + 2 – 16 – (286.28,297.87,282.74) 288.96
27 21-68-144 16 – 2000 + 16000 – 200 + 96000 + 2 – 16 – (272.84,288.80,301.26) 287.63
28 14-78-133 2000 + 2000 + 16000 – 200 + 96000 + 2 – 4000 + (277.62,284.69,282.09) 281.46
29 47-88-171 16 – 16 – 1000000 + 200 + 96000 + 2 – 16 – (284.26,297.10,284.45) 288.61
30 51-127-164 2000 + 16 – 1000000 + 200 + 96000 + 2 – 4000 + (305.69,295.18,297.74) 299.56
31 2-94-179 16 – 2000 + 1000000 + 200 + 96000 + 2 – 4000 + (285.02,334.01,290.99) 303.34
32 60-82-136 2000 + 2000 + 1000000 + 200 + 96000 + 2 – 16 – (292.53,290.03,281.82) 288.13

Fonte: A Autora (2023).

As Tabelas 3 e 4 mostram o tempo de execução (em segundos) para os experi-
mentos conduzidos baseado no plano 27−1

V com três replicações8. O número de unidades
experimentais executadas foi de 26 × 3 = 192. A primeira coluna mostra o experimento, já
a segunda coluna mostra a ordem com a qual o experimento foi conduzido (levando em
conta, também, suas replicações). Por exemplo, o experimento #1 teve três replicações,
estas executadas na 53ª, 103ª e 159ª posição do projeto. A seguir, tem-se as colunas dos
parâmetros de configuração e, depois, a coluna com os resultados obtidos com a execução
8 Um projeto de experimento 27−1

V significa um projeto fatorial completo 27 reduzido para um fracionado
26 com resolução V.
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Tabela 4 – Projeto experimental 27−1
V × 3 para tempo NB (conclusão)

# Plano X1 (KB) X2 (KB) X3 (KB) X4 X5 (KB) X6 X7 (KB) t1, t2, t3 (s) t

33 52-93-147 16 – 16 – 16000 – 8 – 24000 +– 6 + 16 – (292.79,296.57,276.30) 288.56
34 49-97-191 2000 + 16 – 16000 – 8 – 24000 +– 6 + 4000 + (285.79,298.32,279.06) 287.72
35 22-69-183 16 – 2000 + 16000 – 8 – 24000 +– 6 + 4000 + (285.05,297.22,288.81) 290.36
36 57-109-169 2000 + 2000 + 16000 – 8 – 24000 +– 6 + 16 – (277.66,290.39,279.94) 282.66
37 3-128-138 16 – 16 – 1000000 + 8 – 24000 +– 6 + 4000 + (287.53,286.17,282.40) 285.37
38 27-112-175 2000 + 16 – 1000000 + 8 – 24000 +– 6 + 16 – (297.83,298.45,273.45) 289.91
39 28-92-131 16 – 2000 + 1000000 + 8 – 24000 +– 6 + 16 – (292.22,289.63,301.74) 294.53
40 6-120-190 2000 + 2000 + 1000000 + 8 – 24000 +– 6 + 4000 + (281.42,295.86,292.48) 289.92
41 58-83-162 16 – 16 – 16000 – 200 + 24000 +– 6 + 4000 + (292.18,294.39,294.10) 293.56
42 50-80-141 2000 + 16 – 16000 – 200 + 24000 +– 6 + 16 – (302.37,303.28,280.39) 295.34
43 33-70-168 16 – 2000 + 16000 – 200 + 24000 +– 6 + 16 – (289.53,287.52,298.50) 291.85
44 19-75-137 2000 + 2000 + 16000 – 200 + 24000 +– 6 + 4000 + (282.11,285.44,274.24) 280.60
45 18-95-161 16 – 16 – 1000000 + 200 + 24000 +– 6 + 16 – (290.43,297.91,298.23) 295.52
46 4-98-150 2000 + 16 – 1000000 + 200 + 24000 +– 6 + 4000 + (287.42,342.89,288.88) 306.39
47 48-65-189 16 – 2000 + 1000000 + 200 + 24000 +– 6 + 4000 + (285.18,293.77,279.41) 286.12
48 8-84-176 2000 + 2000 + 1000000 + 200 + 24000 +– 6 + 16 – (299.75,292.31,281.83) 291.30
49 25-96-151 16 – 16 – 16000 – 8 – 96000 + 6 + 4000 + (272.39,310.39,282.86) 288.55
50 15-121-174 2000 + 16 – 16000 – 8 – 96000 + 6 + 16 – (267.92,286.62,277.95) 277.50
51 34-90-142 16 – 2000 + 16000 – 8 – 96000 + 6 + 16 – (284.92,293.47,287.49) 288.63
52 17-81-173 2000 + 2000 + 16000 – 8 – 96000 + 6 + 4000 + (277.56,287.32,280.75) 281.88
53 30-115-181 16 – 16 – 1000000 + 8 – 96000 + 6 + 16 – (282.70,299.05,311.07) 297.61
54 42-106-187 2000 + 16 – 1000000 + 8 – 96000 + 6 + 4000 + (286.08,288.73,281.97) 285.59
55 9-116-170 16 – 2000 + 1000000 + 8 – 96000 + 6 + 4000 + (274.09,285.64,291.45) 283.73
56 11-66-178 2000 + 2000 + 1000000 + 8 – 96000 + 6 + 16 – (284.41,295.87,287.10) 289.13
57 29-72-182 16 – 16 – 16000 – 200 + 96000 + 6 + 16 – (287.87,276.82,279.88) 281.52
58 62-67-153 2000 + 16 – 16000 – 200 + 96000 + 6 + 4000 + (291.33,284.56,283.14) 286.35
59 46-124-135 16 – 2000 + 16000 – 200 + 96000 + 6 + 4000 + (281.29,276.11,277.09) 278.16
60 23-114-134 2000 + 2000 + 16000 – 200 + 96000 + 6 + 16 – (266.30,294.22,286.03) 282.18
61 7-87-160 16 – 16 – 1000000 + 200 + 96000 + 6 + 4000 + (278.98,308.38,283.05) 290.14
62 31-111-149 2000 + 16 – 1000000 + 200 + 96000 + 6 + 16 – (280.85,285.83,282.50) 283.06
63 16-76-167 16 – 2000 + 1000000 + 200 + 96000 + 6 + 16 – (297.51,295.45,286.90) 293.29
64 45-89-188 2000 + 2000 + 1000000 + 200 + 96000 + 6 + 4000 + (290.37,284.22,275.25) 283.28

Fonte: A Autora (2023).

Tabela 5 – Representação em símbolo dos parâmetros de configuração Spark

Nome do parâmetro Símbolo
spark.shuffle.file.buffer X1
spark.io.compression.lz4.blockSize X2
spark.sql.files.maxPartitionBytes X3
spark.sql.shuffle.partitions X4
spark.reducer.maxSizeInFlight X5
spark.default.parallelism X6
spark.broadcast.blockSize X7

Fonte: A Autora (2023).

do experimento, considerando o valor das três replicações. Por último, tem-se a coluna da
média dos resultados, para cada experimento. Os parâmetros de configuração analisados
estão representados simbolicamente conforme mostra a Tabela 5.

A Tabela 6 mostra os parâmetros presentes no modelo final obtido pelo método da
eliminação passo atrás, ou seja, as variáveis de maior importância para a resposta de saída.
Nota-se que o parâmetro spark.sql.shuffle.partitions não está presente no modelo. O ponto
de corte do nível de significância foi de 5%, e todas as variáveis do modelo se mostram
significativas, pois têm o p-value < 0, 05. Na coluna de estimativa de parâmetro é possível
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ver os coeficientes para cada variável, os coeficientes positivos indicam impacto positivo na
resposta analisada, os negativos indicam impacto negativo. Ou seja quanto maior o valor
dos parâmetros com coeficiente positivo maior o tempo de execução de tarefa. Para os
coeficientes negativos, quanto maior o valor do parâmetro, menor é o tempo de execução.

Os parâmetros destacados são:

• spark.default.parallelism, com impacto positivo.

• Interação spark.shuffle.file.buffer com spark.default.parallelism, com impacto negativo

• Interação spark.shuffle.file.buffer com spark.broadcast.blockSize, com impacto posi-
tivo.

• Interação spark.io.compression.lz4.blockSize com spark.broadcast.blockSize, com im-
pacto negativo

• Interação spark.sql.files.maxPartitionBytes com spark.reducer.maxSizeInFlight, com
impacto positivo.

• Interação spark.reducer.maxSizeInFlight com spark.default.parallelism, com impacto
negativo

Tabela 6 – Estimativas de parâmetro

Variável GL Estimativa de parâmetro Erro padrão t-value p-value
Intercept 1 286, 49148 1,93574 148.00 <.0001

X6 1 1, 33830 0,53994 2.48 0.0141
X1X6 1 −0, 00045818 0.00020747 -2.21 0.0284
X1X7 1 6, 625831 ∗ 107 2.835216 ∗ 107 2.34 0.0205
X2X7 1 −6, 52875 ∗ 10−7 2.427972 ∗ 107 -2.69 0.0078
X3X5 1 8, 21679 ∗ 10−11 2.17448 ∗ 10−11 3.78 0.0002
X5X6 1 -0,00001706 0.00000527 -3.24 0.0014

Fonte: A Autora (2023).

Com os coeficientes obtidos com o modelo, é possível construir a Equação reduzida
5.1

t = 286, 49148 + 1, 33830X1 − 0, 00045818X1X6 + 6, 625831 × 10−6X1X7−

6, 52875 × 10−7X2X7 + 8, 21679 × 10−11X3X5 − 0, 00001706X5X6
(5.1)

As informações do modelo obtido são mostrados nas Tabelas 7 e 8. O modelo tem
R2 = 0, 1320 e R2

ajustado = 0, 1038, valores aquém do satisfatório para previsão precisa da
variável dependente. Porém, se mostra significativo com p-value = 0, 0002 < 0, 05.
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Com os resultados obtidos, e possível notar, por exemplo, que para o treinamento do
algoritmo Naïve Bayes, no cluster Google Cloud especificado no capítulo 4, aumentar o grau
de paralelismo leva a uma piora do desempenho Spark. Nesse caso, é importante ressaltar
que, apesar de os resultados servirem para obter um entendimento geral do funcionamento
Spark, eles estão restritos à aplicação e contexto com a qual os experimentos foram testados
(algoritmo de aprendizagem de máquina, volume de dados e especificações do cluster).

Tabela 7 – Análise de variância do modelo

Fonte de variação GL Soma de quadrados Quadrado médio F Value p-value
Regressão 6 3196,80166 532,80028 4,69 0,0002

Erro 185 21028 113,6653
Total 191 24225

Fonte: A Autora (2023).

Tabela 8 – Análise do modelo

REQM 10,66140 R2R2R2 0,1320
Média da variável dependente 288,42790 R2

ajustadoR2
ajustadoR2
ajustado 0,1038

Coeficiente de variação 3,69638
Fonte: A Autora (2023).

5.2 ANÁLISE DOS RESÍDUOS

Com o modelo de regressão linear obtido, é necessário então analisar os resíduos
para investigar a adequação do modelo às suposições das propriedades NIID, descritas na
Seção 2.4.1.

Figura 8 – Normalidade dos resíduos

(a) Histograma dos resíduos (b) Quantil-quantil

Fonte: A Autora (2023).
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A Figura 8a mostra o histograma dos resíduos e a Figura 8b mostra o gráfico
quantil-quantil de distribuição de resíduos. É notável o formato de distribuição Normal
do gráfico do histograma. Para o gráfico quantil-quantil, existem pontos afastados da
reta considerados outliers, porém a maioria dos pontos está concentrado sobre a reta dos
quantis teóricos, o que evidencia a normalidade dos resíduos.

Figura 9 – Gráficos de Resíduos versus Valores ajustados

(a) Resíduos versus Valores ajustados
(b) Resíduos estudentizados versus

Valores ajustados

Fonte: A Autora (2023).

Figura 10 – Gráficos de Resíduos versus Variáveis regressoras

Fonte: A Autora (2023).
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Além disso, a Figura 9 mostram os gráficos de Resíduos versus Valores ajustados e
o de Resíduos Estudentizados versus Valores ajustados. Aqui, é possível ver a distribuição
dos resíduos próximo do zero, sem padrões notórios, evidência da homogeneidade dos
resíduos.

Por último, há o gráfico de Resíduos versus Regressores presente na Figura 10.
Nele, é possível ver os resíduos igualmente distribuídos. O gráfico com os regressores X1X7
apresenta diferença na distribuição, porém ainda aceitável para uso do modelo.

Com isso, verifica-se a adequação do modelo no que se refere às suposições básicas
de normalidade, com base na análise de seus resíduos.
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6 CONSIDERAÇÕES FINAIS

Com o crescer da necessidade de análise Big Data, vem à tona a importância em
otimizar tarefas, principalmente, para poupar recursos. Esse trabalho tem como objetivo
identificar parâmetros de configuração Spark que mais impactam o tempo de execução de
tarefas.

Com uso de técnicas de delineamento experimental, foi possível diminuir o número
de experimentos necessários para tirar conclusões sobre a importância dos fatores analisados
na pesquisa, visto que um modelo de regressão linear considerando os efeitos principais e
interações de segunda ordem foi obtido a partir dos resultados dos experimentos.

Apesar do modelo ter valores de R2 e R2
ajustado aquém do considerado satisfatório

e não ser confiável para para se obter uma estimativa precisa do tempo de execução de
acordo com os valores de suas variáveis regressoras, o modelo de regressão linear mostra-se
significativo, com p-value < 0, 05, o que significa que ele mostra o modo com o qual o
tempo de execução varia de acordo com suas variáveis regressoras. Além disso, ele também
indica com significância, os fatores e interações de maior importância para variação da
resposta analisada (MINITAB, 2019). Por exemplo, é possível concluir que um aumento no
spark.default.parallelism acarraterá em um aumento do tempo de execução. Ao contrário
do produto do valor do spark.shuffle.file.buffer e spark.default.parallelism, cujo aumento
leva a uma diminuição do tempo de execução da tarefa.

É importante ressaltar que os resultados obtidos têm valor no contexto específico
da pesquisa. Isso porque, há evidências que, ao mudar de aplicação, volume e natureza
dos dados e plataforma experimental, principalmente hardware, os parâmetros de maior
importância para variação do tempo de execução também mudam, como mostrado em
trabalhos relacionados descritos no Capítulo 3.

Nesse contexto, a pesquisa teve como resultados:

• A implementação de tarefa sobre a base de dados PT7 Web

• Identificação de parâmetros mais importantes, dado o contexto

• Obtenção de modelo de regressão linear que auxilia no entendimento da variação do
tempo de execução com base nos parâmetros de configuração de maior importância,
apesar de não a estimar com precisão
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6.1 DIFICULDADES ENCONTRADAS

A principal dificuldade encontrada na pesquisa se refere à obtenção de modelo
que se adequasse à premissa da normalidade, visto que, com a investigação exploratória e
execução de experimentos com três, seis e doze replicações em plataforma Docker, não foi
possível obter nenhum modelo cujos resíduos tivessem distribuição Normal. Essa dificuldade
indica a possibilidade de que a plataforma experimental referente à essa etapa do trabalho
tivessem variáveis de fundo o suficiente para prejudicar a obtenção de resultados adequados.

A obtenção de recursos computacionais para possibilitar a execução da pesquisa
também foi um fator de limitação, visto que a documentação do Spark sugere oito a
dezesseis núcleos por nó e o utilizado na pesquisa foi de dois núcleos por nó. O impacto
dessa limitação, porém, não pôde ser medido.

6.2 TRABALHOS FUTUROS

Como oportunidades para trabalhos futuros, destacam-se as opções descritas abaixo.

Analisar mais ou diferentes parâmetros de configuração daqueles analisados nessa
pesquisa. Nesse caso, pode-se, também, combinar parâmetros de software com fatores
de hardware, a exemplo do número de núcleos, tamanho da memória RAM, entre outros.
Ademais, é possível também a análise de outra variável dependente podendo ser, por
exemplo: uso de disco, volume de tráfego de rede ou sobrecarga de CPU.

Além disso, pode-se, também, empregar técnicas para adição de pontos axiais e
centrais no plano experimental a fim de se detectar uma relação não linear entres as variáveis
independentes e a variável dependente. Como exemplo, pode-se citar o delineamento
composto central e o delineamento Box-Behnken (MONTGOMERY, 2013). A partir disso,
é possível aplicar a metodologia da superfície de resposta para otimização da saída de
interesse (MONTGOMERY, 2013).

Ainda como oportunidade de estender o presente trabalho, há o emprego de outras
tarefas de análise Big Data. Estas podendo ser tarefas SQL, Streaming ou outros algoritmos
de aprendizagem de máquina.

E, por fim, há a execução de experimentos em clusters maiores e mais poderosos,
seguindo a recomendação da documentação Spark.
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ANEXO A – PLANO EXPERIMENTAL

# Experimento X1 X2 X3 X4 X5 X6 X7
1 2000 2000 16000 8 96000 2 16
2 16 2000 1000000 200 96000 2 4000
3 16 16 1000000 8 24000 6 4000
4 2000 16 1000000 200 24000 6 4000
5 16 2000 16000 8 24000 2 16
6 2000 2000 1000000 8 24000 6 4000
7 16 16 1000000 200 96000 6 4000
8 2000 2000 1000000 200 24000 6 16
9 16 2000 1000000 8 96000 6 4000
10 16 16 16000 200 96000 2 4000
11 2000 2000 1000000 8 96000 6 16
12 2000 16 16000 200 24000 2 4000
13 16 16 1000000 200 24000 2 4000
14 2000 2000 16000 200 96000 2 4000
15 2000 16 16000 8 96000 6 16
16 16 2000 1000000 200 96000 6 16
17 2000 2000 16000 8 96000 6 4000
18 16 16 1000000 200 24000 6 16
19 2000 2000 16000 200 24000 6 4000
20 2000 16 1000000 8 24000 2 4000
21 16 2000 16000 200 96000 2 16
22 16 2000 16000 8 24000 6 4000
23 2000 2000 16000 200 96000 6 16
24 16 16 1000000 8 24000 2 16
25 16 16 16000 8 96000 6 4000
26 16 2000 16000 8 96000 2 4000
27 2000 16 1000000 8 24000 6 16
28 16 2000 1000000 8 24000 6 16
29 16 16 16000 200 96000 6 16
30 16 16 1000000 8 96000 6 16
31 2000 16 1000000 200 96000 6 16
32 2000 2000 16000 8 24000 2 4000
33 16 2000 16000 200 24000 6 16
34 16 2000 16000 8 96000 6 16
35 2000 16 1000000 200 24000 2 16
36 16 16 1000000 8 96000 2 4000
37 2000 2000 1000000 8 24000 2 16
38 16 2000 1000000 8 96000 2 16
39 2000 16 16000 8 24000 2 16
40 16 2000 1000000 200 24000 2 16
41 16 16 16000 200 24000 2 16
42 2000 16 1000000 8 96000 6 4000
43 16 2000 1000000 8 24000 2 4000
44 16 16 16000 8 96000 2 16
45 2000 2000 1000000 200 96000 6 4000
46 16 2000 16000 200 96000 6 4000
47 16 16 1000000 200 96000 2 16
48 16 2000 1000000 200 24000 6 4000
49 2000 16 16000 8 24000 6 4000
50 2000 16 16000 200 24000 6 16
51 2000 16 1000000 200 96000 2 4000
52 16 16 16000 8 24000 6 16
53 16 16 16000 8 24000 2 4000
54 2000 16 1000000 8 96000 2 16
55 2000 2000 1000000 200 24000 2 4000
56 2000 2000 16000 200 24000 2 16



57 2000 2000 16000 8 24000 6 16
58 16 16 16000 200 24000 6 4000
59 16 2000 16000 200 24000 2 4000
60 2000 2000 1000000 200 96000 2 16
61 2000 2000 1000000 8 96000 2 4000
62 2000 16 16000 200 96000 6 4000
63 2000 16 16000 200 96000 2 16
64 2000 16 16000 8 96000 2 4000
65 16 2000 1000000 200 24000 6 4000
66 2000 2000 1000000 8 96000 6 16
67 2000 16 16000 200 96000 6 4000
68 16 2000 16000 200 96000 2 16
69 16 2000 16000 8 24000 6 4000
70 16 2000 16000 200 24000 6 16
71 16 16 16000 8 96000 2 16
72 16 16 16000 200 96000 6 16
73 2000 2000 16000 200 24000 2 16
74 16 2000 16000 8 24000 2 16
75 2000 2000 16000 200 24000 6 4000
76 16 2000 1000000 200 96000 6 16
77 16 16 1000000 8 24000 2 16
78 2000 2000 16000 200 96000 2 4000
79 16 2000 16000 8 96000 2 4000
80 2000 16 16000 200 24000 6 16
81 2000 2000 16000 8 96000 6 4000
82 2000 2000 1000000 200 96000 2 16
83 16 16 16000 200 24000 6 4000
84 2000 2000 1000000 200 24000 6 16
85 16 2000 1000000 200 24000 2 16
86 2000 16 1000000 200 24000 2 16
87 16 16 1000000 200 96000 6 4000
88 16 16 1000000 200 96000 2 16
89 2000 2000 1000000 200 96000 6 4000
90 16 2000 16000 8 96000 6 16
91 2000 2000 1000000 8 96000 2 4000
92 16 2000 1000000 8 24000 6 16
93 16 16 16000 8 24000 6 16
94 16 2000 1000000 200 96000 2 4000
95 16 16 1000000 200 24000 6 16
96 16 16 16000 8 96000 6 4000
97 2000 16 16000 8 24000 6 4000
98 2000 16 1000000 200 24000 6 4000
99 2000 2000 1000000 8 24000 2 16
100 16 2000 1000000 8 24000 2 4000
101 2000 16 16000 8 96000 2 4000
102 2000 2000 16000 8 96000 2 16
103 16 16 16000 8 24000 2 4000
104 16 16 1000000 200 24000 2 4000
105 16 16 1000000 8 96000 2 4000
106 2000 16 1000000 8 96000 6 4000
107 2000 2000 1000000 200 24000 2 4000
108 16 16 16000 200 24000 2 16
109 2000 2000 16000 8 24000 6 16
110 2000 16 16000 200 96000 2 16
111 2000 16 1000000 200 96000 6 16
112 2000 16 1000000 8 24000 6 16
113 2000 16 1000000 8 24000 2 4000
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114 2000 2000 16000 200 96000 6 16
115 16 16 1000000 8 96000 6 16
116 16 2000 1000000 8 96000 6 4000
117 2000 2000 16000 8 24000 2 4000
118 16 2000 16000 200 24000 2 4000
119 16 2000 1000000 8 96000 2 16
120 2000 2000 1000000 8 24000 6 4000
121 2000 16 16000 8 96000 6 16
122 2000 16 16000 200 24000 2 4000
123 2000 16 1000000 8 96000 2 16
124 16 2000 16000 200 96000 6 4000
125 16 16 16000 200 96000 2 4000
126 2000 16 16000 8 24000 2 16
127 2000 16 1000000 200 96000 2 4000
128 16 16 1000000 8 24000 6 4000
129 16 2000 16000 8 96000 2 4000
130 16 16 1000000 8 24000 2 16
131 16 2000 1000000 8 24000 6 16
132 2000 16 16000 200 96000 2 16
133 2000 2000 16000 200 96000 2 4000
134 2000 2000 16000 200 96000 6 16
135 16 2000 16000 200 96000 6 4000
136 2000 2000 1000000 200 96000 2 16
137 2000 2000 16000 200 24000 6 4000
138 16 16 1000000 8 24000 6 4000
139 2000 16 16000 8 24000 2 16
140 16 16 1000000 8 96000 2 4000
141 2000 16 16000 200 24000 6 16
142 16 2000 16000 8 96000 6 16
143 2000 2000 16000 8 24000 2 4000
144 16 2000 16000 200 96000 2 16
145 2000 16 1000000 8 96000 2 16
146 16 16 16000 8 96000 2 16
147 16 16 16000 8 24000 6 16
148 16 2000 16000 8 24000 2 16
149 2000 16 1000000 200 96000 6 16
150 2000 16 1000000 200 24000 6 4000
151 16 16 16000 8 96000 6 4000
152 2000 2000 16000 200 24000 2 16
153 2000 16 16000 200 96000 6 4000
154 2000 16 16000 200 24000 2 4000
155 16 16 16000 200 96000 2 4000
156 16 2000 1000000 200 24000 2 16
157 16 2000 1000000 8 24000 2 4000
158 2000 16 1000000 200 24000 2 16
159 16 16 16000 8 24000 2 4000
160 16 16 1000000 200 96000 6 4000
161 16 16 1000000 200 24000 6 16
162 16 16 16000 200 24000 6 4000
163 2000 16 16000 8 96000 2 4000
164 2000 16 1000000 200 96000 2 4000
165 2000 2000 1000000 200 24000 2 4000
166 16 16 16000 200 24000 2 16
167 16 2000 1000000 200 96000 6 16
168 16 2000 16000 200 24000 6 16
169 2000 2000 16000 8 24000 6 16
170 16 2000 1000000 8 96000 6 4000
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171 16 16 1000000 200 96000 2 16
172 2000 2000 1000000 8 96000 2 4000
173 2000 2000 16000 8 96000 6 4000
174 2000 16 16000 8 96000 6 16
175 2000 16 1000000 8 24000 6 16
176 2000 2000 1000000 200 24000 6 16
177 16 2000 16000 200 24000 2 4000
178 2000 2000 1000000 8 96000 6 16
179 16 2000 1000000 200 96000 2 4000
180 16 16 1000000 200 24000 2 4000
181 16 16 1000000 8 96000 6 16
182 16 16 16000 200 96000 6 16
183 16 2000 16000 8 24000 6 4000
184 16 2000 1000000 8 96000 2 16
185 2000 2000 1000000 8 24000 2 16
186 2000 2000 16000 8 96000 2 16
187 2000 16 1000000 8 96000 6 4000
188 2000 2000 1000000 200 96000 6 4000
189 16 2000 1000000 200 24000 6 4000
190 2000 2000 1000000 8 24000 6 4000
191 2000 16 16000 8 24000 6 4000
192 2000 16 1000000 8 24000 2 4000
193

LEGENDA:        
X1: spark.shuffle.file.buffer        
X2: spark.io.compression.lz4.blockSize      
X3: spark.sql.files.maxPartitionBytes        
X4: spark.sql.shuffle.partitions         
X5: spark.reducer.maxSizeInFlight        
X6: spark.default.parallelism        
X7: spark.broadcast.blockSize      
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