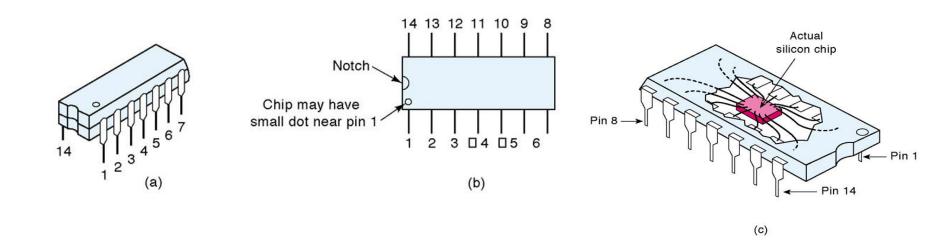
Eletrônica Digital

Famílias Lógicas e Circuitos Integrados


Prof. Rômulo Calado Pantaleão Camara Carga Horária: 4h/60h

Características Básicas de CI Digitais

Circuitos Integrados: coleção de componentes fabricados em um único pedaço de material semicondutor (normalmente o silício), normalmente conhecido como chip.

Chip: confinado em um encapsulamento protetor plástico ou cerâmico, que possui pinos de conexão com o ambiente externo.

O tipo de encapsulamento mais comum é o DIP (dual in-line package).

Características Básicas de CI Digitais

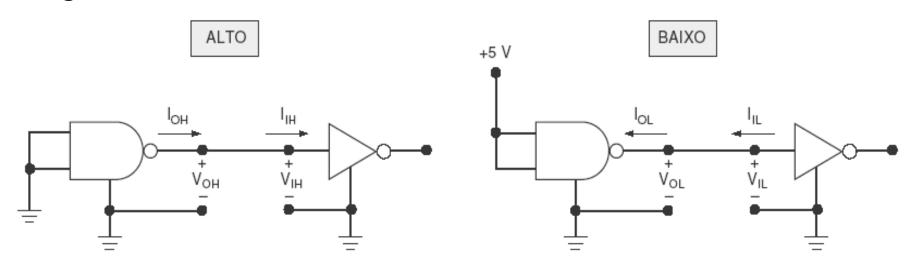
Vantagens:

- Cls contêm muito mais circuitos em um encapsulamento (menor tamanho comparado aos componentes discretos)
- Custo reduzido para produção em larga escala.
- Redução no número de conexões externas proteção contra solda ruim, interrupção ou curto nas trilhas, etc.
- Redução da potência elétrica para realizar funções digitais quanto menor o transistor, menos dissipação → menos ventilação.

Desvantagens:

- Não suportam correntes ou tensões elevadas muitos elementos em uma pastilha gera calor acima do limite aceitável
- Certos dispositivos não podem ser implementados em Cls indutores, transformadores e grandes capacitores.
- Componentes discretos ainda são usados nestes casos.

Com a vasta utilização de CIs, é necessário conhecer as suas características elétricas

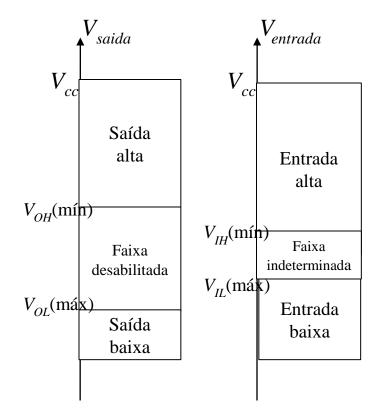

Características Básicas de CI Digitais

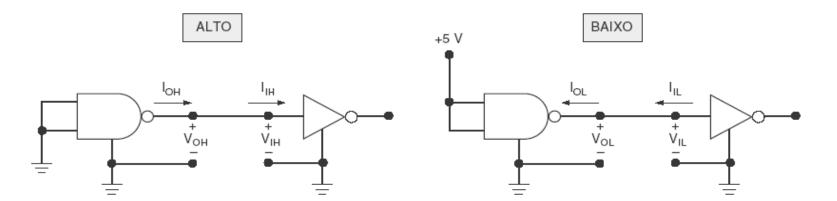
Família TTL: principal familia de CIs bipolares (utilizam transistores bipolares NPN e PNP) nos ultimos 30 anos.

Família CMOS: faz parte de uma classe de CIs unipolares (utilizam transistores unipolares MOSFET canal P ou canal N). Ameaça a liderança dos CIs TTL nas categorias SSI e MSI.

Embora existam diversos fabricantes, a maior parte da nomenclatura de CIs é razoavelmente padronizada.

Convenção: A corrente que flui para um nó ou dispositivo é considerada positiva; a corrente que flui para fora de um nó ou dispositivo é considerada negativa.

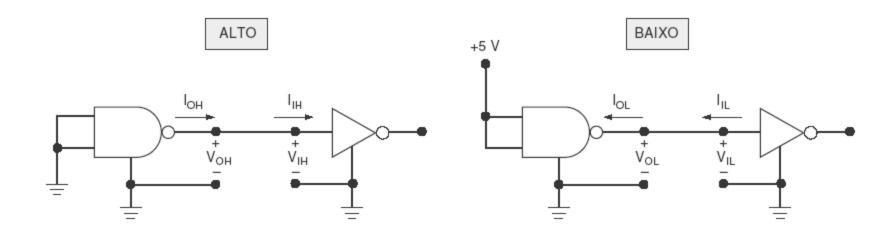



V_{IH} (mín) – Tensão de entrada em nível alto. O nível de tensão mínimo requerido para o nível lógico 1 em uma entrada. Valores abaixo desse nível não são interpretados como nível lógico 1.

V_{IL} (máx) – Tensão de entrada em nível baixo. O nível máximo de tensão requerido para o nível lógico 0 em uma entrada. Valores acima desse nível não são interpretados como nível lógico 0.

V_{OH} (mín) – Tensão de saída em nível alto. O nível de tensão mínimo na saída de um circuito lógico, no estado lógico 1.

V_{ol.} (máx) – Tensão de saída em nível baixo. O nível de tensão máximo na saída de um circuito lógico, no estado lógico 0.



Ін — Corrente de entrada em nível alto. A corrente que flui para uma entrada quando uma tensão de nível alto é aplicada naquela entrada.

IIL — Corrente de entrada em nível baixo. A corrente que flui para uma entrada quando uma tensão de nível baixo é aplicada naquela entrada.

loн — Corrente de saída em nível alto. A corrente que flui de uma saída em nível alto.

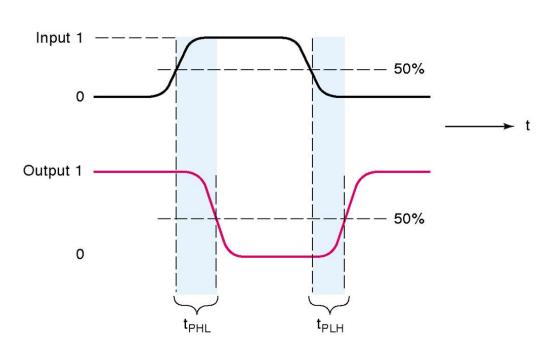
loL – Corrente de saída em nível baixo. A corrente que flui de uma saída em nível baixo.

Fan-Out (Capacidade de Saída)

Geralmente, Cls são interconectados, de forma que um Cl aciona outro(s) (serve como fonte de corrente ou tensão). Assim, é necessário saber a capacidade de acionamento de uma porta, conhecida como fan-out.

Definição: Número máximo de entradas lógicas que uma saída pode acionar com segurança.

Se este número for excedido, o nível lógico na saída não pode mais ser garantido.


Atrasos de Propagação

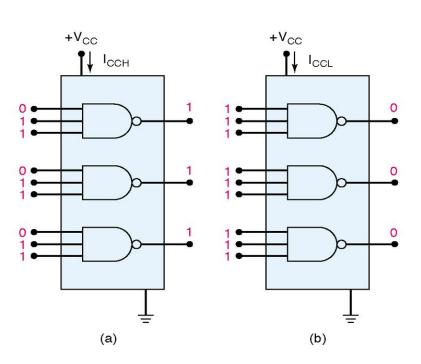
t_{PHL} = tempo de atraso do estado lógico 1 para o estado lógico 0.

t_{PLH} = tempo de atraso do estado lógico 0 para o estado lógico 1.

- Em geral, os dois atrasos não têm o mesmo valor e variam dependendo das condições de carga.
- Tais atrasos são utilizados como uma medida de velocidade relativa dos circuitos lógicos.

Ex.: Atrasos de propagação para um inversor

Requisitos de Potência


A quantidade de potência que um CI necessita é determinada pela corrente (I_{CC} ou I_{DD}) que ele consome da fonte de alimentação (V_{CC} ou V_{DD}), sendo:

Potência =
$$I_{cc} \times V_{cc}$$

Para muitos CIs, a corrente consumida da fonte varia de acordo com os estados lógicos dos circuitos no chip. Em geral I_{CCH} e I_{CCL} têm valores diferentes e I_{CC} média é calculada da seguinte maneira:

$$I_{CC}$$
 (média) $\equiv \frac{I_{CCH} + I_{CCL}}{2}$

$$P_D$$
 (média) $\equiv I_{CC}$ (média) $\times V_{CC}$

Produto Velocidade-Potência

- Cls são caracterizados historicamente tanto pela potência quanto pela velocidade (atraso de propagação e tempo de transição entre níveis lógicos).
- O produto velocidade-potência é uma forma comum para medir e comparar o desempenho de uma família de Cis.

Quanto maior a velocidade, maior a potência dissipada.

Exemplo: Para uma família de Cls que tem um atraso médio de propagação de 10 ns e uma dissipação média de potência de 5mW, o produto velocidade-potência é:

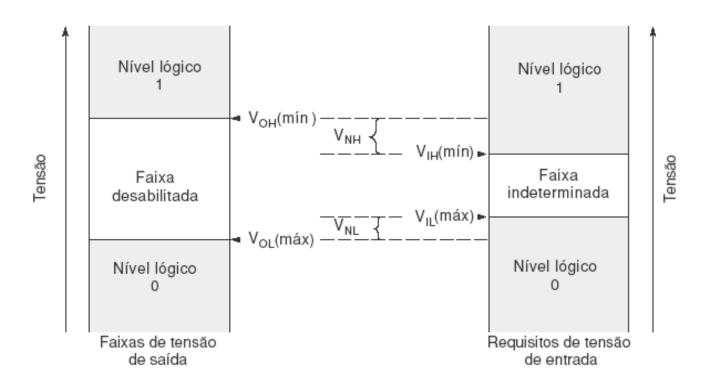
10 ns x 5mW = 50.10^{-12} watt-segundo = 50 picojoules (pJ) (1J = $1w \cdot s$)

Há um esforço contínuo para reduzir o produto velocidade – potência, o que é difícil devido à natureza dos circuitos de chaveamento.

Imunidade ao Ruído

- Campos elétricos e magnéticos parasitas podem induzir tensões nas conexões entre circuitos lógicos, assim como interferências de circuitos externos.
- Os sinais espúrios indesejáveis são chamados de ruído, que podem levar valores de tensão para longe dos níveis aceitáveis.
- A imunidade ao ruído de um circuito lógico é a capacidade de tolerância a ruídos sem alteração dos níveis lógicos de saída.
- Margem de ruído: medida quantitativa da imunidade ao ruído de um circuito lógico.

Imunidade ao Ruído


A margem de ruído aplica-se a conexões entre dois circuitos digitais para um dos dois níveis (ALTO ou BAIXO).

- A margem de ruído para o estado alto (VNH) é definida como:

VNH = VOH(mín) - VIH(mín) → suporta spikes de ruído negativo até VNH

- A margem de ruído para o estado baixo (VNL) é definida como:

VNL = VIL(máx) - VoL(máx) → suporta spikes de ruído positivo até VNL

Imunidade ao Ruído

Exemplo: Um dispositivo lógico tem as seguintes especificações: $V_{OH}(mín) = 2,4V$, $V_{OI}(máx) = 0,4V$, $V_{IH}(mín) = 2,0V$ e $V_{II}(máx) = 0,8V$. Determine:

- a) a maior amplitude de ruído tolerável quando uma saída nível ALTO está acionando uma entrada.
- b) a maior amplitude de ruído tolerável quando uma saída nível BAIXO está acionando uma entrada.

Solução:

a) Saída nível ALTO acionando entrada pode ser tão baixa quanto $V_{OH}(mín) = 2,4V$ e a entrada acionada responderá a uma tensão não menor que $V_{IH}(mín) = 2,0V$. Desta forma, a maior amplitude de ruído será:

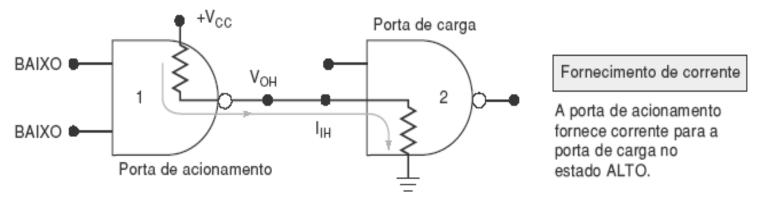
$$V_{NH} = V_{OH}(min) - V_{IH}(min) = 0.4V$$

b) Saída em nível BAIXO pode ser tão alta quanto $V_{OL}(máx) = 0.4V$ e entrada responderá a tensões não maiores que $V_{IL}(máx) = 0.8V$. Assim, a maior amplitude de ruído será:

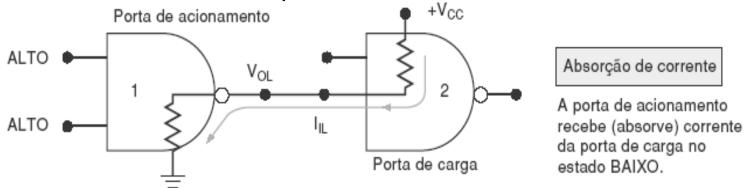
$$V_{NL} = V_{IL}(m\acute{a}x) - V_{OL}(m\acute{a}x) = 0.4V$$

Níveis de Tensão Inválidos

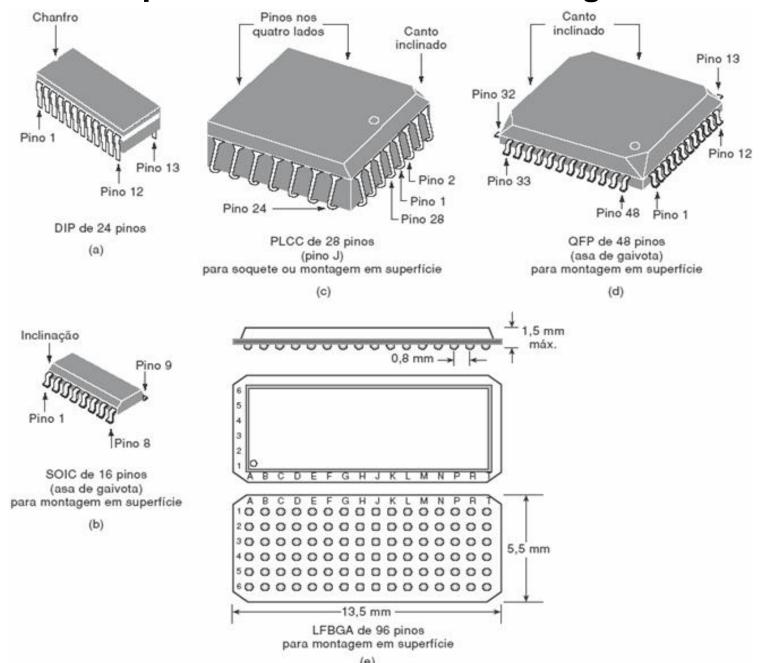
Para operação lógica correta, os níveis de tensão devem estar fora da faixa indeterminada, ou seja, níveis acima de $V_{IH}(mín)$ ou abaixo de $V_{IL}(máx)$.


Para valores contidos na faixa indeterminada, a entrada é inválida e produzirá uma resposta de saída imprevisível.

- Em condições normais (circuitos operando dentro das especificações) não se atinge a região inválida.
- Caso contrário, tem-se entradas inválidas quando:
- A saída lógica tem problemas.
- Opera com sobrecarga (fan-out excedido).
- Tensões de alimentação fora da faixa aceitável.
- O dispositivo do exemplo anterior funcionará com um nível de entrada de 1,7V?


Ação de Fornecimento e de Absorção de Corrente

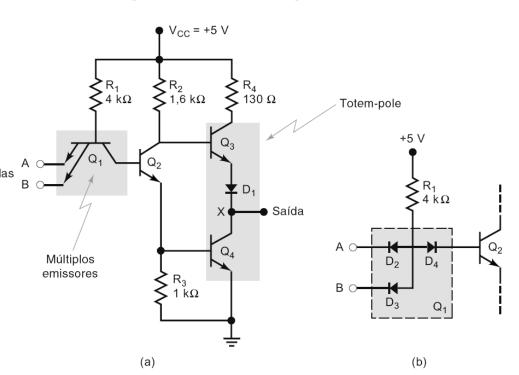
Pode-se descrever circuitos lógicos pelo modo como a corrente flui de um circuito a outro:


• Quando a saída da porta número 1 está em nível lógico ALTO, ela **fornece** uma corrente IIH para a entrada da porta número 2.

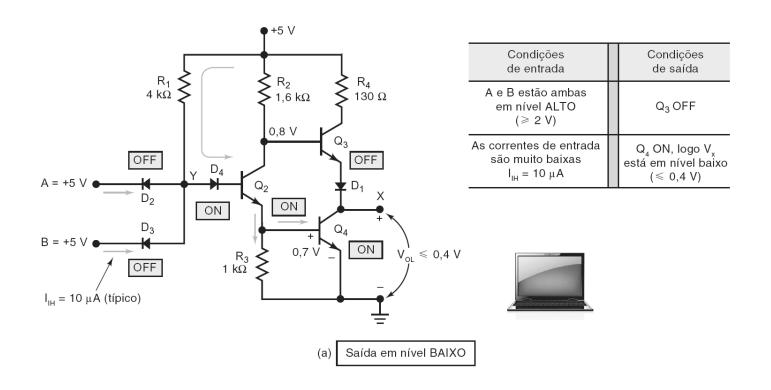
• Quando a saída da porta número 1 está em nível lógico BAIXO, ela **absorve** uma corrente lu da porta número 2.

Encapsulamento de Circuitos Integrados

- As famílias lógicas distinguem-se umas das outras pelo tipo de dispositivo semicondutor incorporados e pela forma como estes dispositivos são interligados.
- A Lógica Transistor-Transistor (TTL) é uma série original de dispositivos lógicos, que existe há mais de 30 anos, e foi introduzida em 1964 pela Texas Instruments
- Utiliza transistores de junção bipolares (TJB).
- Apesar de gradativamente substituída por outras famílias, ainda é amplamente utilizada como lógica auxiliar ou que necessitem de acionamentos com altas correntes.


O circuito TTL básico e a porta NAND.

- As características de entrada das famílias TTL são provenientes do transistor Q1 (múltiplos emissores ate 8).
- A ou B em $0 \Longrightarrow Q1$ (conduz), Q2 (corta), Q3 (conduz) e Q4 (corta).
- A e B em 1 → Q1 (corta), Q2 (conduz), Q3 (corta) e Q4 (conduz).


Totem-pole: dois transistores que operam como chave, sempre com um ou outro conduzindo.

Alta velocidade para tempos de subida.

Usada para manter baixa a dissipação media de potencia.

Portas TTL NAND com saída nível baixo

Portas TTL NAND com saída nível ALTO

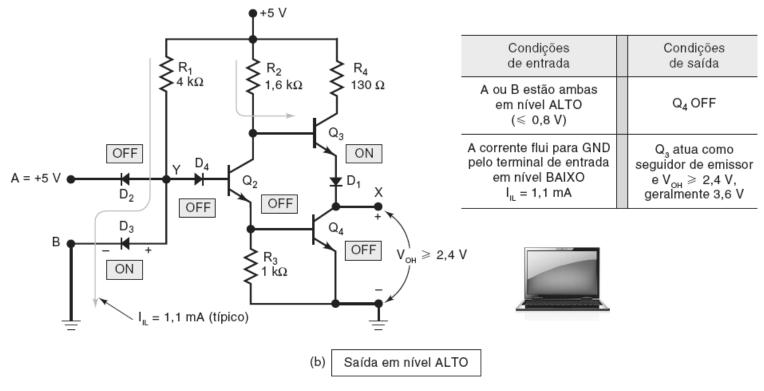
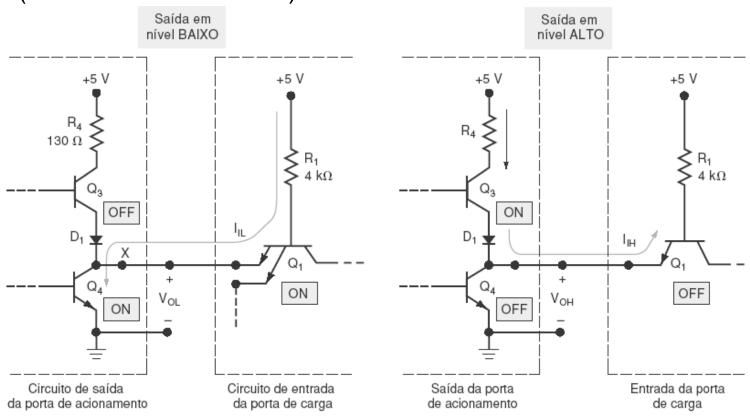



FIGURA 8.8 Porta NANDTTL nos seus dois estados de saída.

Absorção e Fornecimento de Corrente

- Q4 atua como absorvedor de corrente (drenando sua corrente da carga).
- Q3 atua com fornecedor de corrente (fornecendo corrente para a carga).
- Q4 é chamado de transistor de absorção de corrente ou transistor pull-down (conecta a saída ao terra).
- Q3 é chamado de transistor de fornecimento de corrente ou transistor pull-up (conecta a saída a Vcc).

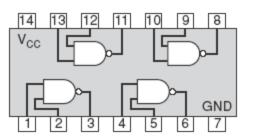
Todos os fabricantes de CIs TTL usam o mesmo sistema de número de identificação, seguindo o precursor Texas Instruments (séries 54 e 74).

Fabricantes distintos usam prefixos especiais próprios, tais como:

- Chip quádruplo de portas NAND.

DM7400 - National Semiconductor;

SN7400 – Texas Instruments;


S7400 – Signetics.

Família TTL: 74, 74LS, 74S, etc. Séries diferem nas características que definem as capacidades e limitações desses dispositivos.

Todas as informações a respeito dos CIs podem ser encontradas na folha de dados (*data sheet*) editadas pelos fabricantes.

Como exemplo, considere o 54/74ALS00, com quatro portas NAND de duas entradas.

Folha de Dados (data sheet) 54/74ALS00

recommended operating conditions

		SN	SN54ALS00A		SN74ALS00A			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	٧
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8‡	1	Vert 1 - 1	0.8	v
				0.7§				1 °
ЮН	High-level output current			-0.4			-0.4	mA
loL	Low-level output current			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	°C

^{\$} Applies over temperature range -55°C to 70°C

electrical characteristics over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54ALS00A			SN74ALS00A			
PARAMETER			MIN	TYPT	MAX	MIN	TYPT	MAX	UNIT
VIK	V _{CC} = 4.5 V,	I _I = -18 mA			-1.2			-1.5	V
VOH	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			V
VOL	V _{CC} = 4.5 V	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	v
VOL	VCC - 4.5 V	I _{OL} = 8 mA	3 0 -153		Maria ya S		0.35	0.5	٧
II	V _{CC} = 5.5 V,	V _I = 7 ∨			0.1			0.1	mA
Iн	V _{CC} = 5.5 V,	V _I = 2.7 V	-100		20			20	μА
IIL	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.1			-0.1	mA
10‡	V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA
Іссн	V _{CC} = 5.5 V,	V _I = 0		0.5	0.85		0.5	0.85	mA
ICCL.	V _{CC} = 5.5 V.	V _I = 4.5 V		1.5	3		1.5	3	mA

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R _L = 500 Ω, T _A = MIN to MAX§				UNIT
	, ,	,	SN54ALS00A SN74	SN74A	LS00A		
	19 19 19 19 19 19 19 19 19 19 19 19 19 1		MIN	MAX	MIN	MAX	
tPLH	A or D		3	15	3	11	
tPHL .	A or B	1	2	9	2	8	ns

[§] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[§] Applies over temperature range 70°C to 125°C

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

Faixas de Tensão de Alimentação

Ambas as séries usam tensão de alimentação nominal Vcc = 5 V, podendo tolerar variações de ±0,5 V.

Série 74ALS – projetada para 0 a 70°C (aplicações comerciais)

Série 54ALS – projetada para -55 a +125°C (aplicações militares/espaciais)

Níveis de Tensão

Os valores mostrados representam o pior caso de tensão de alimentação, temperatura e condições de acionamento de carga.

$$V_{NL} = V_{IL}(max) - V_{OL}(max) = 0.8 - 0.5 = 0.3 V$$

$$V_{NH} = V_{OH}(mim) - V_{IH}(mim) = 2.5 - 2 = 0.5 V$$

Como forma de comparação, costuma-se usar a margem de ruído garantida para o pior caso da série 74ALS, que é de 0,3 V.

Dissipação de Potência Nominal

Consumo médio de cada porta NAND TTL = 2,4 mW.

$$I_{CC}(méd) = (I_{CCH} + I_{CCL}) / 2 = (0.85 + 3) \text{ mA} / 2 = 1.925 \text{ mA}.$$

$$P_D(méd)_{chip} = 1,925 \text{ mA x 5 V} = 9,65 \text{ mW (potência total das 4 portas do chip)}.$$

$$P_D(méd)_{porta} = 9,65 \text{ mW} / 4 = 2,4 \text{ mW (por porta)}.$$

Atrasos de Propagação

Adotar a média dos valores máximo e mínimo: $t_{PLH} = (11+3)/2 = 7$ ns e $t_{PHL} = (8+2)/2 = 5$ ns.

O atraso de propagação médio típico é de $t_{pd} = (t_{PHL} + t_{PLH})/2 = 6$ ns.

Opcionalmente: $t_{pd} = max \{t_{PHL} e t_{PLH}\}$

Exemplo: Observando o *data sheet* do 74ALS00, determine a potência de dissipação média máxima e o atraso de propagação médio máximo para uma porta NAND.

Solução: Devemos encontrar $P_{med}(máx)_{porta} = I_{CCmed}(máx) \times V_{CC}(máx) / 4$. A corrente é obtida tomando-se a média dos valores máximos de I_{CCH} e I_{CCL} . Pelo *data sheet*, vemos que

$$I_{CCmed}(máx) = (I_{CCH}(máx) + I_{CCL}(máx)) / 2 = (0.85 + 3) / 2 = 1.925 \text{ mA}$$

Também pelo data sheet, vemos que esses valores foram obtidos quando $V_{CC} = 5,5V$. Portanto:

$$P_{\text{med}}(\text{máx})_{\text{porta}} = I_{\text{CCmed}}(\text{máx}) \times V_{\text{CC}}(\text{máx}) / 4 = 1,925 \text{ mA} \times 5,5 \text{ V} / 4 = 2,65 \text{ mW}$$

Os atrasos de propagação máximos são t_{PLH} = 11 ns e t_{PHL} = 8 ns, o que dá:

$$t_{PD}$$
 (máx) = (11 + 8) / 2 = 9,5 ns

Comparação entre séries TTL

	74	74S	74LS	74AS	74ALS	74F
Índice de Desempenho						
Atraso de Propagação	9	3	9,5	1,7	4	3
Diss. de Potência (mW)	10	20	2	8	1,2	6
Velocidade-potência (pJ)	90	60	19	13,6	4,8	18
Taxa Máx. Clock (MHz)	35	125	45	200	70	100
Fan-Out (mesma série)	10	20	20	40	20	33
Parâmetros de Tensão						
VOH(mín)	2,4	2,7	2,7	2,5	2,5	2,5
VOL(máx)	0,4	0,5	0,5	0,5	0,5	0,5
VIH(mín)	2,0	2,0	2,0	2,0	2,0	2,0
VIL(máx)	0,8	0,8	0,8	0,8	0,8	0,8

 Valores tipicos para as caracteristicas mais importantes de cada uma das series TTL.

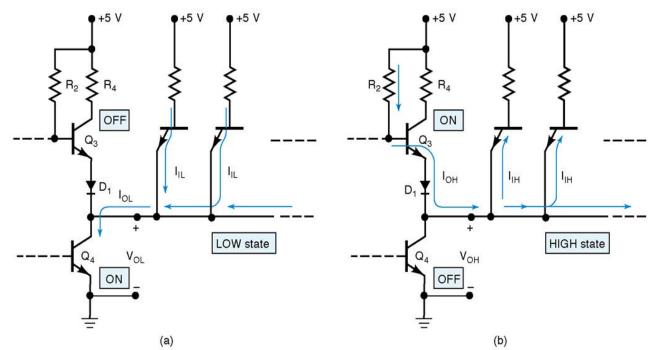
Comparação entre séries TTL

Exemplo: Usando a tabela anterior, calcule as margens de ruído para um 74LS típico.

Solução:

$$VNH = VOH(min) - VIH(min) = 2,7 - 2,0 = 0,7 V$$

$$VNL = VIL(máx) - VOL(máx) = 0.8 - 0.5 = 0.3 V$$


Exemplo: Qual das séries pode acionar o maior número de portas da mesma série?

Resposta: Série 74AS, pois tem o maior fan-out = 40.

Fan-Out e Acionamento de Carga para TTL

BAIXO - Quando Q4 conduz ele absorve corrente. Devido à sua resistência coletor/emissor, se IOL for alta (muitas portas conectadas à saída) VOL pode exceder o limite de VOL(máx) e reduzir a margem de ruído. Se VOL ultrapassa VIL(máx) ela estará na faixa indeterminada.

ALTO – Quando Q3 conduz ele fornece corrente. Se IOH for muito alta haverá um aumento da queda de tensão em R2, podendo levar VOH abaixo de VOH(mín), reduzindo a margem de ruído. Se VOH ultrapassa VIH(mín) ela estará na faixa indeterminada.

Em resumo, IOH(máx) e IOL(máx) limitam o número de portas conectadas.

Determinando o fan-out

Quantas portas NAND 74ALS00 podem ser acionadas pela saída de uma porta NAND 74ALS?

Observando o datasheet:

Nível BAIXO

 $I_{OL(m\acute{a}x)} = 8$ mA e $I_{IL(m\acute{a}x)} = -0.1$ mA (corrente negativa \rightarrow flui para fora do terminal de entrada; pode-se ignorá-lo para o propósito atual)

fan-out (0) =
$$I_{OL(m\acute{a}x)} / I_{IL(m\acute{a}x)} = 80$$

Nível ALTO

$$I_{OH(m\acute{a}x)} = -400 \text{ uA e } I_{IH(m\acute{a}x)} = 20 \text{ uA} \rightarrow \text{fan-out } (1) = I_{OH(m\acute{a}x)} / I_{IH(m\acute{a}x)} = 20$$

 $fan-out = minimo\{fan-out (0), fan-out (1)\} = 20$

Determinando o fan-out

Quando aparece combinação de varias famílias lógicas:

- 1- **Some o IIH** para todas as entradas que estão conectadas a uma saída. Essa soma tem que ser menor do que a especificação do IOH da saída.
- 2 **Some o IIL** para todas as entradas que estão conectadas a uma saída. Essa soma tem que ser menor do que a especificação do IOL da saída.

Exemplo: Determine se ha problema em uma porta 74ALS00 acionar três portas 74S00 e uma 7400.

Soma de IIH = $3 \times 50 \text{ uA} + 1 \times 40 \text{ uA} = 190 \text{ uA} < 400 \text{ uA}$ (IOH do 74ALS00) – nível alto OK.

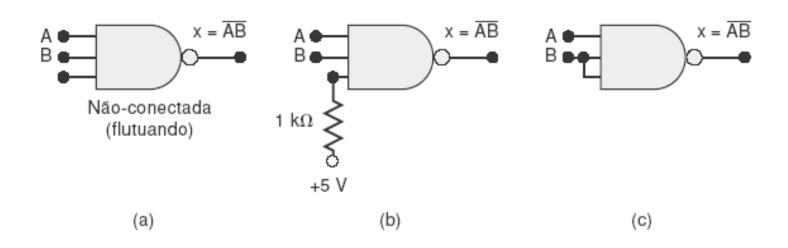
Soma de IIL = $3 \times 2 \text{ mA} + 1 \times 1,6 \text{ mA} = 7,6 \text{ mA} < 8 \text{ mA} (IOL do 74ALS00) – nivel baixo OK.$

	Saída	Saída	Entrada	Entrada
TTL	Iон (mA)	Iol (mA)	IIH (uA)	IIL (mA)
74	- 0,4	16	40	- 1,6
74S	- 1	20	50	- 2
74LS	- 0,4	8	20	- 0,4
74AS	- 2	20	20	- 0,5
74ALS	- 0,4	8	20	- 0,1
74F	- 1	20	20	- 0,6

Determinando o fan-out

Exemplo: A saída da porta 74ALS00 do exemplo anterior precisa ser usada para acionar, além das portas descritas, algumas portas 74ALS. Quantas destas portas podem ser acionadas a mais, sem causar sobrecarga?

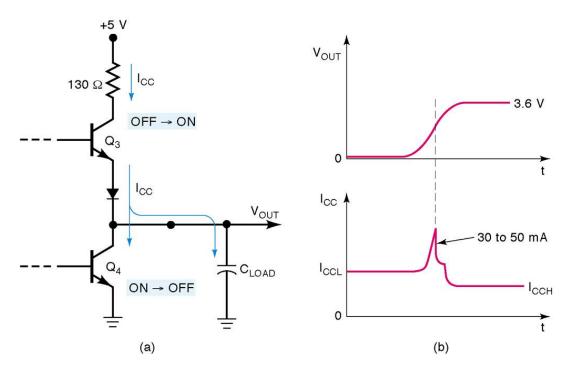
De acordo com o exemplo anterior, o nível baixo esta mais próximo de uma sobrecarga.


Portanto, vamos avaliá-lo.

A corrente da carga já acionada e 7,6 mA (soma das IIL). A porta 74ALS00 pode fornecer ate 8 mA (IOL(max)), portanto, ha uma 'sobra' de 0,4 mA. Como cada entrada da 74ALS demanda IIL de 0,1 mA, podemos conectar mais 4 portas 74ALS a saída da porta 74ALS00 sem causar sobrecarga.

	Saída	Saída	Entrada	Entrada
TTL	Iон (mA)	IOL (mA)	IIH (uA)	IIL (mA)
74	- 0,4	16	40	- 1,6
74S	- 1	20	50	- 2
74LS	- 0,4	8	20	- 0,4
74AS	- 2	20	20	- 0,5
74ALS	- 0,4	8	20	- 0,1
74F	- 1	20	20	- 0,6

Outras Características TTL


- Entradas em aberto (flutuando) = nível 1
- Entradas não utilizadas devem ser tratadas por uma das técnicas:
- (a) Realiza a função desejada, mas atua como antena;
 - (b) Melhor técnica. O resistor protege entrada contra spikes da fonte;
 - (c) Funciona bem, desde que o fan-out do circuito acionador da entrada B não seja excedido.

Transientes de Corrente

Sempre que uma saída TTL totem-pole vai de nível baixo para nível alto, um pico de corrente de alta amplitude é drenado da fonte de alimentação.

- Surto de corrente é de aproximadamente 30 a 50 mA.
- ➤ Pior se existem várias saídas comutando ao mesmo tempo (vários spikes).
- ➤ Uma solução é instalar pequenos capacitores entre Vcc e GND (desacoplamento da fonte de alimentação).

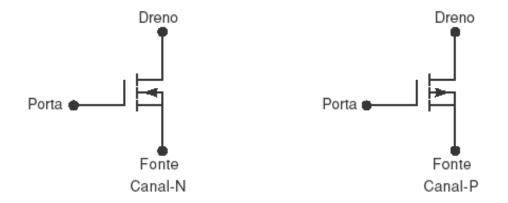
TECNOLOGIA MOS (Semicondutor de Óxido Metálico)

 Transistores implementados com tecnologia MOS são transistores de efeito de campo denominados MOSFET.

Principais vantagens:

- Relativamente simples a fabricação apresenta 1/3 da complexidade dos CIs bipolares (TTL, ECL, etc);
- Pequenos ocupam menos espaço no chip do que os CIs bipolares, que usam elementos resistores que ocupam uma grande área no chip.
- Dispositivos MOS estão cada vez mais rápidos dominando também o mercado SSI e MSI.

Desvantagem:


• Susceptibilidade de danos por eletricidade estática.

O MOSFET

Os Cls MOS usam exclusivamente MOSFET do tipo enriquecimento, que serão analisados como chaves liga / desliga.

Linha tracejada indica que normalmente não há condução entre dreno e fonte.

Separação da porta indica alta resistência (~ 10¹² Ohm)

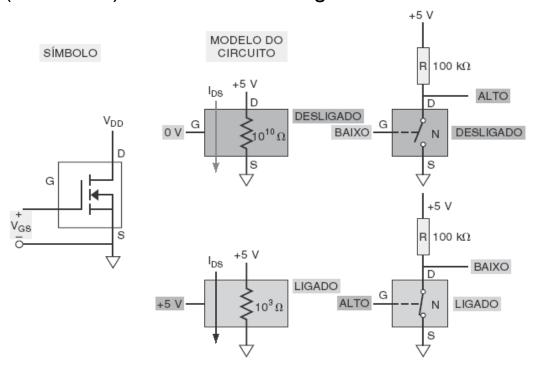
Os CI MOSFET são classificados em três categorias:

- 1- P-MOS, que usa apenas MOSFET canal P tipo enriquecimento
- 2- N-MOS, que usa apenas MOSFET canal N tipo enriquecimento
- 3- CMOS (MOS complementar), que usa os dispositivos canal P e canal N.

O MOSFET

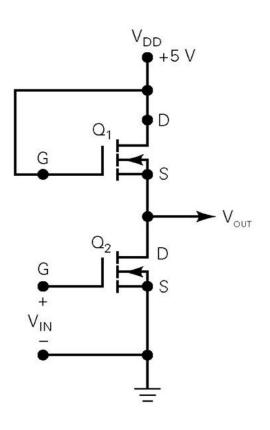
VGS controla a resistência entre dreno e fonte, determinando se o dispositivo está ligado ou desligado.

N-MOS


VGS BAIXO (entrada 0) → MOSFET desligado

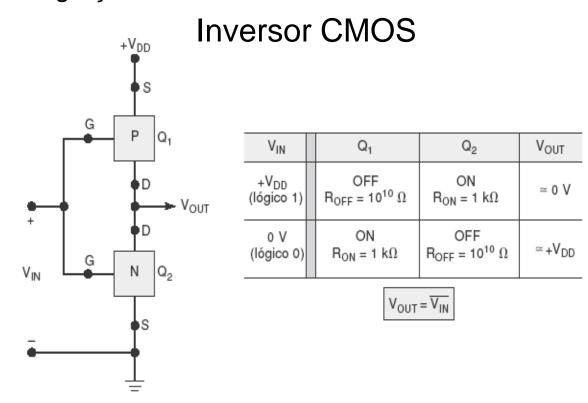
VGS ALTO (entrada 1) → MOSFET ligado

P-MOS tem lógica de acionamento invertida, i.e.:


VGS BAIXO (entrada 0) → MOSFET ligado

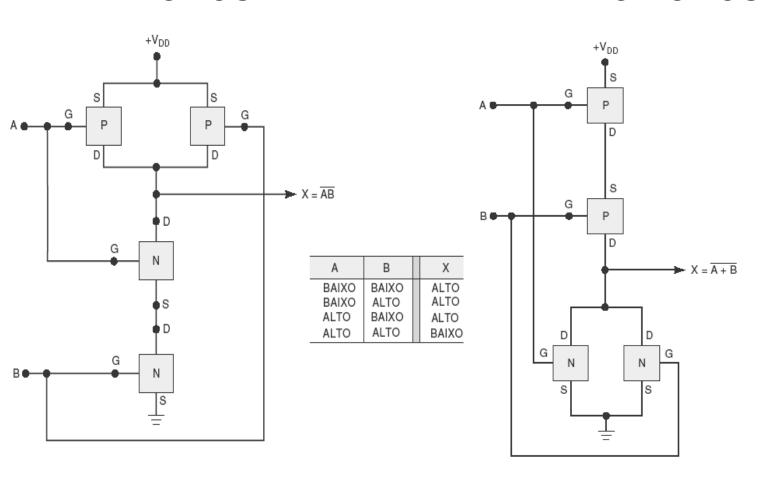
VGS ALTO (entrada 1) → MOSFET desligado

Inversor MOSFET


Q1 funciona como resistor de pull-up ~100 kOhm

V _{IN}		Q ₁	Q_2	V _{OUT}	
+V _{DD} (lógico 1)		OFF $R_{OFF} = 10^{10} \Omega$	ON R _{ON} = 1 kΩ	≃ 0 V	
0 V (lógico 0)			OFF R _{OFF} = 10 ¹⁰ Ω	≃ +V _{DD}	

Lógica MOS Complementar (CMOS)


- A família lógica CMOS utiliza MOSFET tanto canal N quanto canal P para obter diversas vantagens sobre as famílias N-MOS e P-MOS.
- CMOS consome menos potência e são mais rápidos do que as demais famílias MOS.
- Contrapartida: aumento de complexidade de fabricação do CI e menor densidade de integração.

Lógica MOS Complementar (CMOS)

NAND CMOS

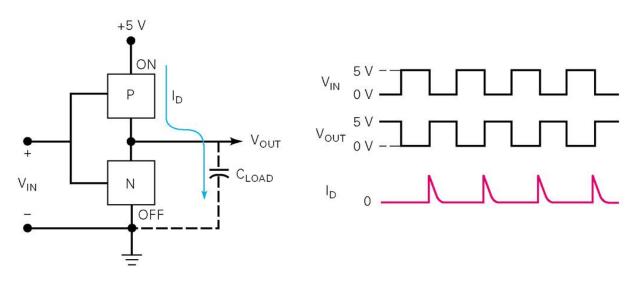
NOR CMOS

Α	В	Х
BAIXO	BAIXO	ALTO
BAIXO	ALTO	BAIXO
ALTO	BAIXO	BAIXO
ALTO	ALTO	BAIXO

- •Família CMOS: 4000, 74HC/HCT, 74AC/ACT, etc. Diferem nas caracteristicas.
- Níveis de Tensão

Os niveis de tensao de entrada e saida sao diferentes para cada serie.

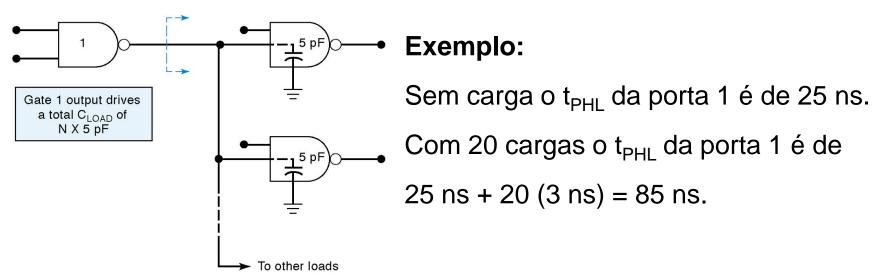
Margens de Ruído


Em geral, os CIs CMOS possuem margens de ruido maiores que os TTL.

	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	TTL	TTL	TTL	TTL
	4000B	74HC	74HCT	74AC	74ACT	74AH C	74AHCT	74	74LS	74AS	74ALS
VIHmín	3,5	3,5	2,0	3,5	2,0	3,85	2,0	2,0	2,0	2,0	2,0
VILmáx	1,5	1,0	0,8	1,5	0,8	1,65	0,8	0,8	0,8	0,8	0,8
VoHmín	4,95	4,9	4,9	4,9	4,9	4,4	3,15	2,4	2,7	2,7	2,5
Volmin	0,05	0,1	0,1	0,1	0,1	0,44	0,1	0,4	0,5	0,5	0,5
VNH	1,45	1,4	2,9	1,4	2,9	0,55	1,15	0,4	0,7	0,7	0,7
Vnl	1,45	0,9	0,7	1,4	0,7	1,21	0,7	0,4	0,3	0,3	0,4

Dissipação de Potência

- Quando um CI CMOS não está comutando, sua dissipação de potência é extremamente baixa (PD = 2,5 nW por porta).
- A dissipação de potência aumenta proporcionalmente com a frequência, por exemplo (VDD = 10 V):


PD = 10 nW em condições CC; PD = 0,1 mW com f = 100 kpps; PD=1 mW com f = 1MHz.

- Se f aumenta, o número de pulsos e a corrente média drenada de VDD também aumenta.

Fan-out

- As entradas CMOS possuem uma resistência muito alta (10¹² Ohms) e drenam uma corrente muito pequena.
- Cada entrada CMOS apresenta uma carga de 5 pF para GND, que limita o n° de entradas acionadas.
- Normalmente, cada entrada aumenta o atraso de propagação do circuito acionador em 3 ns.

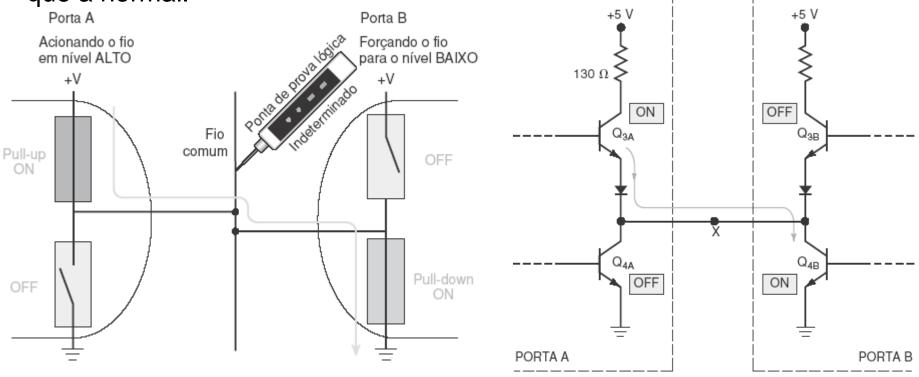
- Fan-out depende do atraso de propagação máximo.
- Geralmente 50 para freq. < 1MHz.

Entradas não usadas

As entradas CMOS nunca devem ficar desconectadas.

Sensibilidade à eletricidade estática

- Dispositivos CMOS são mais susceptíveis a descargas eletrostáticas.
- Diferença de potencial cria corrente na camada óxida, danificando o elemento.
- Deve-se ter cuidado ao manusear CIs CMOS.

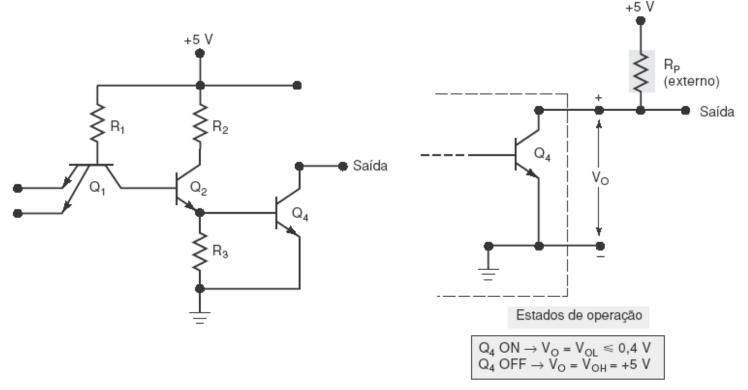

Saída em Coletor Aberto

Situação: compartilhamento de uma via (fio).

 As saídas de circuitos convencionais (CMOS ou TTL) nunca devem ser conectadas juntas.

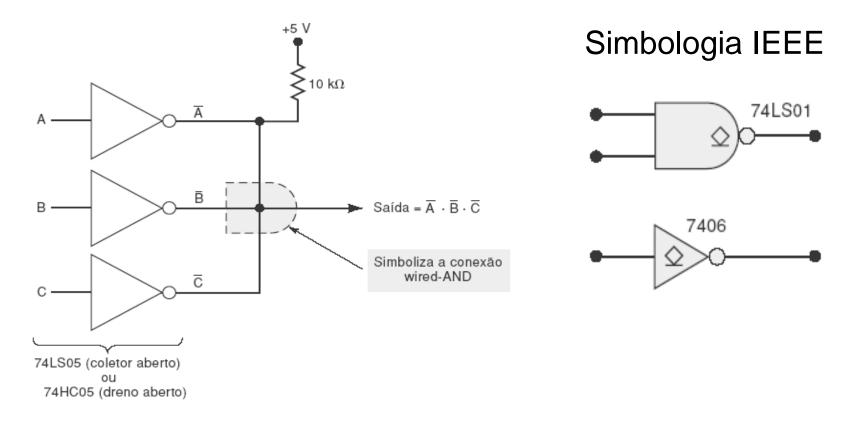
Os transistores de pull-up e pull-down terão uma corrente muito maior

que a normal.

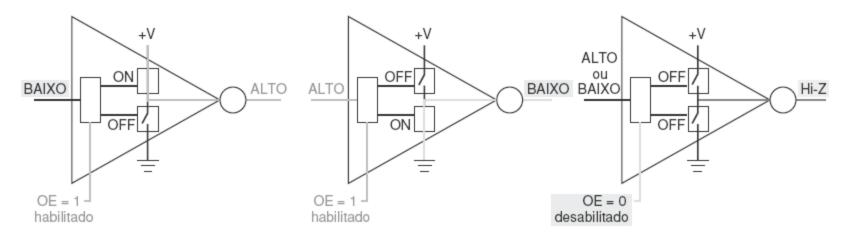


 Em ambos os casos (CMOS = VDD/2 e TTL ~ 1V) o nível de saída estará na faixa indeterminada.

Saída em Coletor Aberto


- A solução para o compartilhamento da via é remover o transistor pull-up ativo do circuito de saída de cada porta, fazendo com que nenhuma porta insista no nível lógico alto.
- Os circuitos CMOS assim modificados são chamados de "saídas de dreno aberto", enquanto os circuitos TTL "saídas de coletor aberto".

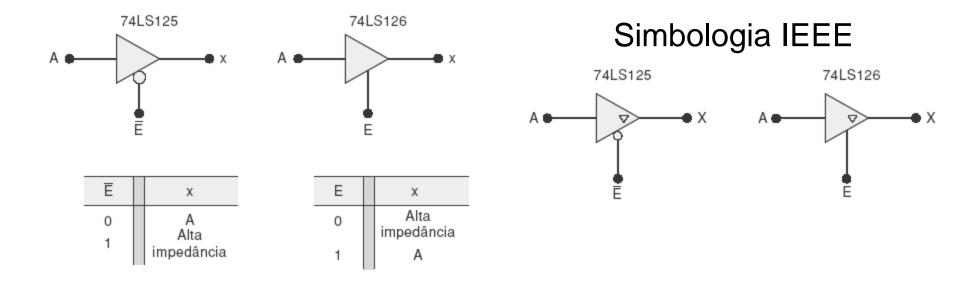
Neste caso, um resistor Rp (pull-up) deve ser conectado para estabelecer o nível alto (~ 10 kOhm).


Saída em Coletor Aberto

- Quando várias portas com saídas de coletor (ou dreno) aberto compartilham uma conexão em comum, a saída estará em nível baixo quando qualquer uma das saídas estiver em nível baixo wired-AND.
- Os dispositivos de coletor aberto são lentos no chaveamento de nível baixo para nível alto e, portanto, não são usados em aplicações de alta velocidade.

Saídas Lógicas Tristate (Três Estados)

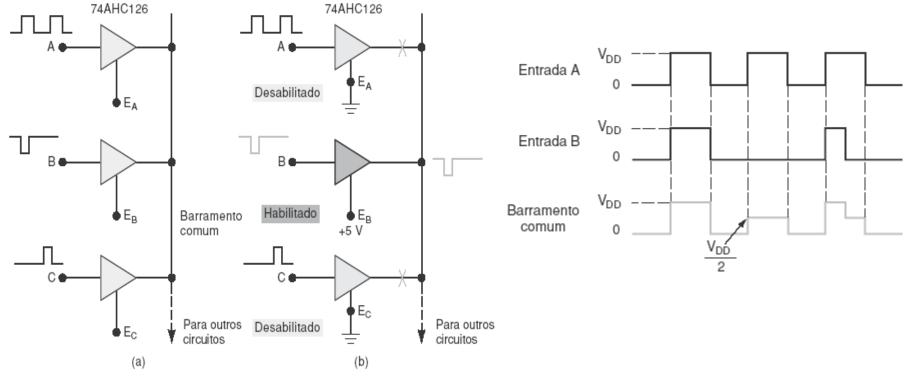
- Circuito de saída usado nas famílias TTL e CMOS.
- Aproveita a operação em alta velocidade da configuração totem-pole, permitindo que as saídas compartilhem um fio comum.
- Permite três estados: ALTO, BAIXO e ALTA IMPEDÂNCIA (Hi-Z) transistores de saída (pull-up e pull-down) desligados.
- A entrada *enable* (E) ou *output enable* (OE) determina se a porta está em funcionamento normal ou em alta impedância.
 - OE = 1, circuito em operação normal
 - OE = 0, circuito em Hi-Z (ambos os transistores em corte)



Saídas Tristate

- As saídas podem ser conectadas juntas sem sacrificar a velocidade.
- Apenas uma saída deve ser habilitada de cada vez, caso contrário haverá conflito de nível lógico.

Buffer Tristate


Circuito utilizado para controlar a passagem do sinal lógico da entrada para a saída.

Compartilhando uma Via (Barramento)

Na figura (a) qualquer um dos três sinais pode ser conectado à via, habilitando o buffer apropriado.

Na figura (b) (EB = 1, EA = EC = 0) mostra-se o sinal B conectado à via – demais saídas "desconectadas".

Contenção de barramento: Se duas saídas forem ativadas juntas, além da produção de correntes elevadas, a via terá um sinal de tensão na faixa indeterminada (quando em níveis diferentes).