Eletrônica Digital

Álgebra de Boole e Teorema de De Morgan Prof. Rômulo Calado Pantaleão Camara

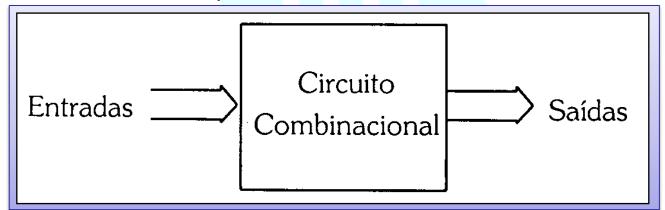
Carga Horária: 2h/60h

Álgebra de Boole

- A Álgebra de Boole é empregada no projeto de circuitos digitais, para:
- ✓ análise é um método prático e econômico de descrever as funções de um circuito digital e, consequentemente, seu funcionamento.
- ✓ projeto ao identificar a função a ser realizada por um circuito, a álgebra de Boole pode ser aplicada para simplificar sua descrição e, assim, também sua implementação.

Álgebra de Boole

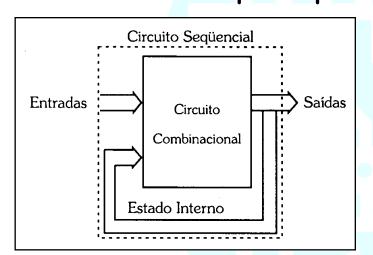
✓ A vantagem de se utilizar a álgebra de Boole como fundamento é que se pode efetuar, inicialmente, toda a análise matemática do problema lógico antes da construção do circuito digital. Ela serve como suporte para a construção de um sistema digital.


Classificação dos Circuitos Digitais

- ✓ Podem ser classificados em:
 - Circuitos Combinacionais

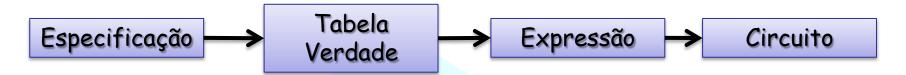
- Circuitos Senquenciais

Classificação dos Circuitos Digitais

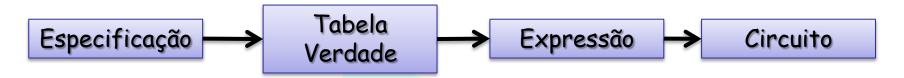

✓ Circuitos Combinacionais: são circuitos nos quais a saída é função dos valores de entrada correntes; Esse circuito não tem capacidade de armazenamento;

✓ Exemplo: Multiplexadores, Codificadores, circuito de operações matemáticas.

Classificação dos Circuitos Digitais

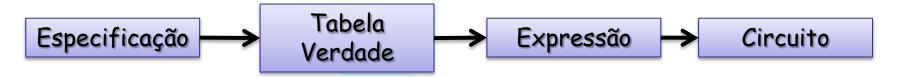

✓ Circuitos Sequenciais: são circuitos nos quais a saída é função dos valores de entrada correntes e dos valores de entrada no instante anterior; elemento básico: Flip-flop.

Curiosidade: FLIP em inglês pode significar "atirar ao alto" e FLOP pode significar "queda repentina". Assim, o dispositivo sendo biestável (possui dois estados lógicos estáveis) pode ser levado ao alto (FLIP), ou ser forçado a voltar repentinamente ao estado baixo (FLOP).


✓ Exemplo: Memórias, registradores.

Projeto de um Circuitos Combinacional

- ✓ Sequência de operações:
 - Determinar as variáveis de entradas do circuito;
 - Determinar as variáveis de saída do circuito;
 - A partir das combinações das variáveis de entrada, montar a tabela verdade para cada saída;
 - Obter a expressão booleana de cada saída;
 - Implementar o circuito combinacional correspondente.


Projeto de um Circuitos Combinacional

- ✓ Exemplo: Considere um sistema de segurança:
 - Há um sensor de contato que, ligado, (on), indica que a porta está fechada;
 - Um sensor infravermelho que, ligado, indica que não há pessoas ou coisas se movendo no interior da loja.
 - Há, também, um alarme que é acionado quando um dos dois sensores é desligado. Isto é, basta um único sensor ser desativado para soar o alarme.

Determine a expressão lógica e o circuito correspondentes deste sistema.

Projeto de um Circuitos Combinacional

Solução:

- ✓ A = "sensor de contato"
- ✓ B = "sensor infravermelho"
- ✓ S = "alarme"

Tabela-Verdade

A	В	S	
_0	0	1	
0	1	1	
1	0	1	
1	1	0	

- Como obter a expressão lógica e o circuito correspondente?

Tabela Verdade - Expressão Lógica

- ✓ Função AND => Produto
- √ Função OR =>Soma
 - Soma de produtos

$$A.B + \overline{A}.C + B.\overline{C}$$

- Produto de somas

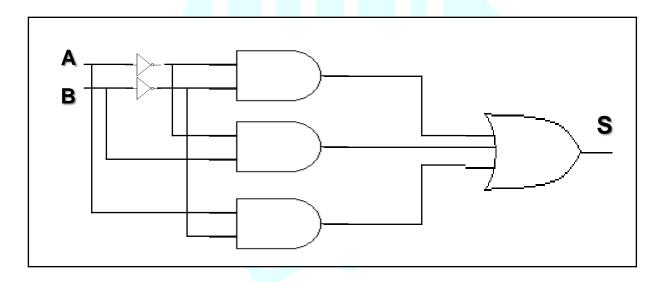
$$(A+B).(\overline{B+C}).(A+\overline{C})$$

- ✓ Soma de Produtos: OR dos minitermos que levam a saída para "1"; (Mais utilizado).
- ✓ Produto de somas AND dos maxitermos que levam a saída para "0";

Tabela Verdade - Expressão Lógica

✓ Minitermos:

- 1. faz a função AND dos termos de entrada
- 2. Variável de entrada é "1" Função direta;
- 3. Variável de entrada é "0" Função Negada;
- ✓ Exemplo do Alarme:


Α	В	S	Minitermos
0	0	1	$S_1 = \overline{A}\overline{B}$
0	1	1	$S_2 = \overline{A}B$
1	0	1	$S_3 = A\overline{B}$
1	1	0	S ₄ = 0

$$S = S_1 + S_2 + S_3 + S_4$$
$$S = \overline{A}\overline{B} + \overline{A}B + A\overline{B}$$

Expressão Lógica - Circuito Lógico

✓ Obtido a expressão lógica, desenvolva o circuito direto.

Exemplo do Alarme: $S = \overline{AB} + \overline{AB} + \overline{AB} + \overline{AB}$

Expressão Lógica - Circuito Lógico

✓ O Circuito não é o mais simples?!!

» Simplifica

Utilizando a álgebra de Boole

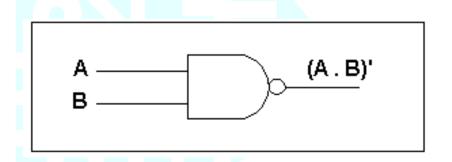
✓ Regras básicas da Álgebra de Boole

Postulados		
<u>Complementação</u>		
Se A = 0 er	ntão $\overline{A} = 1$	
Se A = 1 então $\overline{A} = 0$		
Identidade		
$\overline{\overline{\mathbf{A}}} = \mathbf{A}$		
<u>Adição</u>	<u>Multiplicação</u>	
0 + 0 = 0	0 . 0 = 0	
0 + 1 = 1	0 . 1 = 0	
1 + 0 = 1		
1 + 1 = 1		
Identidade Identidade		
A + 0 = A	A . 0 = 0	
A + 1 = 1	A . 1 = A	
A + A = A	$A + A = A$ $A \cdot A = A$	
$A + \overline{A} = 1$ $A \cdot \overline{A} = 0$		

✓ Regras básicas da Álgebra de Boole

Propriedades
Comutativa
$A \cdot B = B \cdot A$
A + B = B + A
Associativa
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
A + (B + C) = (A + B) + C
Distributiva
$A \cdot (B + C) = A \cdot B + A \cdot C$
$A + (B \cdot C) = (A + B) \cdot (A + C)$
Teoremas
Teoremas de De Morgan
$\overline{A + B} = \overline{A} \cdot \overline{B}$
$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$
Teoremas da Absorção
$A + A \cdot B = A$
$A + \overline{A} \cdot B = A + B$

✓ Obtenha a expressão lógica simplificada e o circuito lógico correspondente para o exemplo do Alarme.

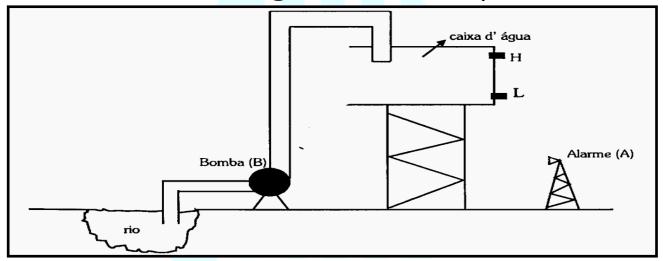

$$S = \overline{A}\overline{B} + \overline{A}B + A\overline{B}$$

$$S = \overline{A}(\overline{B} + B) + A\overline{B}$$

$$\boldsymbol{S} = \overline{\boldsymbol{A}} + \boldsymbol{A} \overline{\boldsymbol{B}}$$

$$\boldsymbol{S} = \overline{\boldsymbol{A}} + \overline{\boldsymbol{B}}$$

$$S = \overline{AB}$$


- ✓ Exercício: Suponha que um circuito digital é descrito pela tabela ao lado:
- ✓ Obtenha o que se pede:
 - expressão lógica correspondente;
 - circuito lógico correspondente;
 - expressão lógica simplificada;
 - circuito lógico correspondente à expressão simplificada.

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

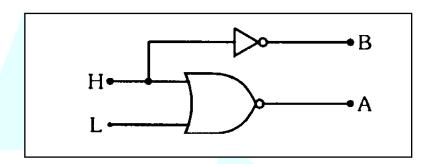
Exemplos de Aplicação

Controle de Bombeamento de água:

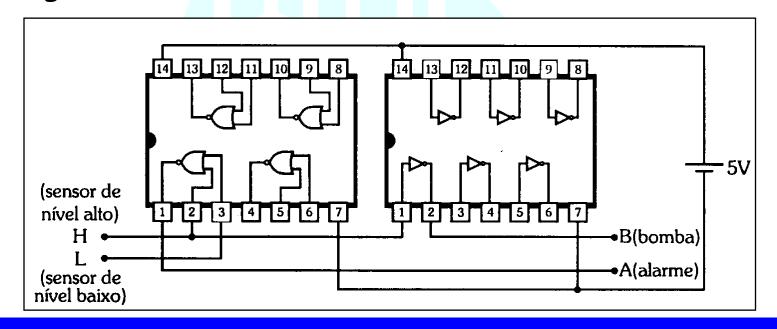
✓ O desenho a seguir mostra um processo simples para encher uma caixa d'água de um rio próximo.

✓ Os sensores de nível alto (H) e de nível baixo (L) são utilizados para determinar o acionamento da bomba (B) e do alarme (A).

Exemplos de Aplicação

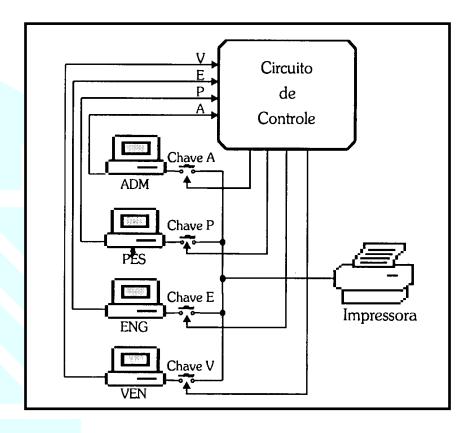

Tabela-Verdade e Expressões Lógicas

	Entradas		Saídas	
Linhas	Н	L	В	Α
1ª	0	0	1	1
2 ^{<u>a</u>} 3 <u><u>a</u> 4<u>a</u></u>	0	1	1	0
3 ^{<u>a</u>}	1	0	X	X
4 ^{<u>a</u>}	1	1	0	0


$$B=\overline{H}.\overline{L}+\overline{H}.L$$
 ou $B=\overline{H}$ $A=\overline{H}.\overline{L}=\overline{(H+L)}$

Exemplos de Aplicação

✓ Circuito Lógico



✓ Montagem

Exercício

✓ A figura ao lado mostra de forma esquemática a conexão de 4 computadores de uma determinada empresa a uma única impressora. Esta conexão é feita através de um circuito de controle.

Exercício

✓ Qual a expressão que descreve o funcionamento do circuito de controle (determine também o circuito lógico e a montagem correspondentes à expressão simplificada)?

- ✓ Devem ser obedecidas às seguintes prioridades:
 - Computador do setor administrativo (ADM) 1º prioridade
 - Computador do setor pessoal (PES) 2ª prioridade
 - Computador do setor de engenharia (ENG) 3ª prioridade
 - Computador do setor de vendas (VEN) 4ª prioridade