The Semiconductor
in Equilibrium

PREVIEW

o far, we have been considering a general crystal and applying to it the con-

cepts of quantum mechanics in order to determine a few of the characteristics

of electrons in a single-crystal lattice. In this chapter, we will apply these con-
cepts specifically to a semiconductor material. In particular, we will use the density
of quantum states in the conduction band and the density of quantum states in the va-
lence band along with the Fermi-Dirac probability function to determine the con-
centration of electrons and holes in the conduction and valence bands, respectively,
We will also apply the concept of the Fermi energy to the semiconductor material.

This chapter deals with the semiconductor in equilibrium. Equilibrium, or ther-
mal equilibrium, implies that no external forces such as voltages, electric fields, mag-
netic fields, or temperature gradients are acting on the semiconductor. All properties
of the semiconductor will be independent of time in this case. Equilibrium is our
starting point for developing the physics of the semiconductor. We will then be able
1o determine the characteristics that resuli when deviations from equilibrium occur,
such as when a voltage is applied to a semiconductor device.

We will initially consider the properties of an intrinsic semiconductor, that is, a
pure crystal with no impurity atoms or defects. We will see that the electrical proper-
ties of a semiconductor can be altered in desirable ways by adding controlled amounts
of specific impurity atoms, called dopant atoms, to the crystal. Depending upon the
type of dopant atom added, the dominant charge carrier in the semiconductor will be
either electrons in the conduction band or holes in the valence band. Adding dopant
atoms changes the distribution of electrons among the available energy states, so the
Fermi energy becomes a function of the type and concentration of impurity atoms.

Finally, as part of this discussion, we will attempt to add more insight into the
significance of the Fermi energy. R
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CHAPTER 4 The Semiconductor in Equilibrium

4.1 | CHARGE CARRIERS IN SEMICONDUCTORS

Current is the rate at which charge flows. In a semiconductor, two types of charge l
carrier, the electron and the hole, can contribute to a current. Since the current ina |
semiconductor is determined largely by the number of electrons in the conduction
band and the number of holes in the valence band, an important characteristic of the
semiconductor is the density of these charge carriers. The density of electrons and
holes is related to the density of states function and the Fermi distribution function, .
both of which we have considered. A qualitative discussion of these relationships will
be followed by a more rigorous mathematical derivation of the thermal-equilibrium
concentration of electrons and holes.

4.1.1 Egquilibrium Distribution of Electrons and Holes

The distribution {with respect to energy) of electrons in the conduction band is given
by the density of allowed quantum states times the probability that a state is occupied
by an electron. This statement is written in equation form as

n(E) = g.(E) fr(E) (4.1)

where f,.(E) is the Fermi-Dirac probability function and g (E) is the density of quan-
tum states in the conduction band. The total electron concentration per unit volume |
in the conduction band is then found by integrating Equation (4.1) over the entire
conduction-band energy.

Similarly, the distribution (with respect to energy) of holes in the valence band
is the density of allowed quantum states in the valence band multiplied by the prob-
ability that a state is nor occupied by an electron. We may express this as

P(E) = gu(E)[1 — fr(E)] (4.2)

The total hole concentration per unit volume is found by integrating this function
over the entire valence-band energy,

To find the thermal-equilibrium electron and hole concentrations, we need to
determine the position of the Fermi energy £, with respect to the bottom of the
conduction-band energy E,. and the top of the valence-band energy E,..To address
this question, we will initially consider an intrinsic semiconductor. An ideal intrinsic
semiconductor is a pure semiconductor with no impurity atoms and no lattice defects
in the crystal (e.g., pure silicon). We have argued in the previous chapter that, for an
intrinsic semiconductor at T = 0 K, all energy states in the valence band are filled
with electrons and all energy states in the conduction band are empty of electrons.
The Fermi energy must, therefore, be somewhere between E, and E,. (The Fermi
energy does not need to correspond to an allowed energy.)

As the temperature begins to increase above 0 K, the valence electrons will gain
thermal energy. A few electrons in the valence band may gain sufficient energy to
Jjump to the conduction band. As an electron jumps from the valence band to the con-
duction band, an empty state, or hole, is created in the valence band. In an intrinsic
semiconductor, then, electrons and holes are created in pairs by the thermal energy so



4.1 Charge Carriers in Semiconductors

gAE)F(E) = n(E)
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Figure 4.1 | (a) Density of states functions, Fermi-Dirac probability function, and areas representing electron and hole
concentrations for the case when Ep is near the midgap energy; (b) expanded view near the conduction band energy;

and (¢) expanded view near the valence band energy.

that the number of electrons in the conduction band is equal to the number of holes

in the valence band.

Figure 4.1a shows a piot of the density of states function in the conduction band
g.(F), the density of states function in the valence band g,(E), and the Fermi-Dirac
probability function for T > 0 K when E ¢ is approximately halfway between £, and
E,. If we assume, for the moment, that the electron and hole effective masses are
equal, then g.(E) and g,.(£) are symmetrical functions about the midgap energy (the
energy midway between E,. and E,). We noted previously that the function fr(£)
for E > Ef is symmetrical to the function 1 — fr(E) for E < Ep about the energy
E = Er. This also means that the function fr(£) for £ = Ef + dE is equal to the

function 1 — fp(E)for E = Er —dE.
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Figure 4.1b is an expanded view of the plot in Figure 4,1a showing fr(FE) an
g.(E) above the conduction band energy £... The product of g.(E) and fg(E} ist
distribution of electrons n(Z) in the conduction band given by Equation (4.1). Thi
product is plotted in Figure 4.1a. Figure 4.1c is an expanded view of the plot in Fig
ure 4.1a showing [1 — fr(E)] and g.(£) below the valence band energy E,. Th
product of g, (&) and [l — fr(E)] is the distribution of holes p(E) in the vale
band given by Equation (4.2). This product is also plotted in Figure 4.1a. The are
under these curves are then the total density of electrons in the conduction band an
the total density of holes in the valence band. From this we see that if g.(£) an
g.{E) are symmetrical, the Fermi energy must be at the midgap energy in order
obtain equal electron and hole concentrations. If the effective masses of the electro
and hole are not exactly equal, then the effective density of states functions g.(£
and g, (E) will not be exactly symmetrical about the midgap energy. The Fermi leve
for the intrinsic semiconductor will then shift slightly from the midgap energy i
order to obtain equal electron and hole concentrations.

4.1.2 The ny and py Equations

We have argued that the Fermi energy for an intrinsic semiconductor is near midgap.
In deriving the equations for the thermal-equilibrium concentration of electrons #
and the thermal-equilibrium concentration of holes py. we will not be quite so re-
strictive. We will see later that, in particular situations, the Fermi energy can devia
from this midgap energy. We will assume initially, however, that the Fermi ]evj
remains within the bandgap energy.

The equation for the thermal-equilibrium concentration of electrons may be
found by integrating Equation (4.1) over the conduction band energy, or

1y = fgc(E)fp(E) dE (4.3)

The [ower limit of integration is £, and the upper limit of integration should be the
top of the allowed conduction band energy. However, since the Fermi probability
function rapidly approaches zero with increasing energy as indicated in Figure 4.1,
we can take the upper limit of integration to be infinity.
We are assuming that the Fermi energy is within the forbidden-enersy bandgap.
For electrons in the conduction band, we have E = E. It (E. — Ep) > kT, then
(E — Er) » kT, so that the Fermi probability function reduces to the Boltzmann
approximation,' which is i
1 _ 1-E-Ep)
Fil) = N R (44
kT

"The Maxwell-Boltzmann and Fermi-Dirac distribotion functions are within 5 percent of each other
when £ — Ep = 34T (see Figure 3.33). The > notation s then sumewhat misleading te indicate when
the Boltzmann approximation is valid, although it is commonly used.
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Applying the Boltzmann approximation to Equation (4.3), the thermal-equilibrium
density of electrons in the conduction band is found from

X Aw (2™ 3/2 —(E — Ex
ny = f %\/ E — E(. exp [4(}(1_'—}-)] dE (45)
E,

The integral of Equation (4.5) may be solved more easily by making a change of
variable. If we let
E —FE;
kT

n= (4.6)
then Equation (4.5) becomes

4 (2m*k T ) ? l:—(E(. - Er)
cX

g =

s
172 s
= o ] fo n'Fexp(—mdn (4.7

The integral is the gamma function, with a value of
* n 1
f NP exp(—n) dn = E,hr (4.8)
0 .

Then Equation (4.7) becomes
d2rmtkT\* ~(E, — Er)
We may define a parameter N, as
drmtkT \*?
N. =2 — (4.10)

so that the thermal-equilibrium electron concentration in the conduction band can be
wrilten as

“.10

—(E.— E
ngp = N, exp [L“:—F)]

The parameter N, is called the effective density of states function in the conduc-
tion band. If we were to assume that m} = my, then the value of the effective density
of states function at 7 = 300 K is N. = 2.5 x 10!Y cm 2, which is the order of
magnitude of N, for most semiconductors. If the effective mass of the electron is
larger or smaller than mp, then the value of the effective density of states function
changes accordingly, but is still of the same order of magnitude.
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Objective

Calculate the probability that a state in the conduction band is occupied by an electron and cal-
culate the thermal equilibrium electron concentration in silicon at 7= 300 K.

Assume the Fermi energy is 0.25 eV below the conduction band. The value of N, for sil-
fconat T =300Kis N, =2.8 x 10" em™>,

EXAMPLE 4.1
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N Solution
The probability that an energy state at E = E, is occupied by an electron is given by
1 —(E, — Ey)
o S
fr(E) - EE; exp[ T ]
exp T
or
—0.25 5
E) = =643 x 107
frlE) =exp (0.0259) *

The electron concentration is given by
~(E: —Er) 1o —0
=N. =(2.8x 10
o= e"p[ kT J e b
or

fp = 1.8 x 108 em™

B Comment

The probability of a state being occupied can be quite small, but the fact that there are a lar
number of states means that the electron concentration is a reasonable value.

The thermal-equilibrium concentration of holes in the valence band is found b
integrating Equation (4.2) over the valence band energy, or

Po= fgv(E)[l — fr(E)| dE (4.12

We may note that
1

Er — E
1+exp( T )

For energy states in the valence band, E < E,. If (Er — E,) 3 kT (the Fermi func-
tion is still assumed to be within the bandgap), then we have a slightly different form
of the Boltzmann approximation. Equation (4.13a) may be written as

1 N —Ep - E)
gy F 5T
1 +exp (L__)

1~ fr(E) =

(4.132)

1 — fr(E) =

{4.13h

kT

Applying the Boltzmann approximation of Equation (4.13b) to Equation (4.12), we
find the thermal-equilibrium ¢oncentration of holes in the valence band is

Ev 4o (2m*)32 _ _
”sz 2O B Eexp [M] dE (4.1ﬂ

oo i kT
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where the lower limit of integration is taken as minus infinity instead of the bottom
of the valence band. The exponential term decays fast enough so that this approxi-
mation is valid.
Equation (4.14) may be solved more easily by again making a change of vari-
able. If we let
. E,~E
ST

(4.15)

then Equation (4.14) becomes

Ar QD) [ —(Er — E) f”
5 o kT

po = () Pexp(~n)ydny  (4.16)

+o0

where the negative sign comes from the differential dE = —&Tdn'. Note that the
lower limit of ' becomes 400 when £ = —o0. If we change the order of integration,
we introduce another minus sign. From Equation (4.8), Equation (4.16) becomes

2mm kT ol 2 B
_ P F ] |
po=2 (T) exp [T} “@.17)
We may define a parameter N, as
2k T\
Ny=2 (T) (4.18)

which is called the effective density of states function in the valence band. The
thermal-equilibrium concentration of holes in the valence band may now be written as

—{Ep —Ey
Po—= Nl: exp [_(‘::T_Z] (4.19)

The magnitude of N, is also on the order of 10" em™ at 7 = 300 K for most semi-
conductors.

Objective |  EXAMPLE 4.2

Calculate the thermal equilibrium hole concentration in silicon at T = 400 K.
Assume that the Fermi energy is 0.27 eV above the valence band energy. The value of &,
forsiliconat T =300 K is N, = 1.04 x 10¥% em™>.

o Solution
The parameter values at 7 = 400 K are found as:
4003 *?
N, = (1.04 x 10') (i)'o) = 1.60 x 10"cm™?

and

KT = (0.0259) | 290 _ 0.03453 eV
- wal o



110

kT 0.0345?
or
po =643 % 10% em™?

CHAPTER 4 The Semiconductor in Equilibrium
The hole concentration is then
—(E, — E, —0.27‘
po= N, exp [M} = (1.60 x 10‘”)exp(

B Comment
The parameter values at any temperature can easily be found by using the 300 K values and’
the temperature dependence.

The effective density of states functions, N, and ¥, are constant for a given:
semiconductor material at a fixed temperature. Table 4,1 gives the values of the denji
sity of states function and of the effective masses for silicon, gallium arsenide, and
germanium. Note that the value of N, for gallium arsenide is smaller than the typical
10" cm~? value. This difference is due to the small electron effective mass in galhumg

arsenide. m‘
The thermal equilibrium concentrations of electrons in the conduction band

of holes in the valence band are directly related to the effective density of states con-

stants and to the Fermi energy level. .

TEST YOUR UNDERSTANDING

E4.1 Calculate the thermal equilibrium electron and hole concentration in silicon at
T = 300 K for the case when the Fermi energy level is (.22 eV below the conduction
band energy E.. The value of E, is given in Appendix B.4. :

WO O] X g8 =0d "o un 0] x ¢L°¢ = tusuy)

E4.2 Determine the thermal equilibriwm electron and hole concentration in GaAs at ,
T = 300 K for the case when the Fermi cnergy level is .30 eV above the valence
band energy E.. The value of E, is given in Appendix B.4.

(¢-W2 (01 X €69 = %d *c_u 6,400 = % 'SUY)

4.1.3 The Intrinsic Carrier Concentration

For an intrinsic semiconductor, the concentration of electrons in the conduction b
is equal to the concentration of holes in the valence band. We may denote n; and p;#;

Table 4.1 | Effective density of states function and effective mass vatues

N, (em™) N, {em™) m fmy m fmy
Silicon 2.8 x 10 1.04 x 10" 1.08 0.56
Gallium arsenide 4.7 x 107 7.0 x 10'8 0.067 0.48

Germanium 1.04 x 10 6.0 x 10'® 0.55 0.37




4.1 Charge Carriers in Semiconductors

as the electron and hole concentrations, respectively, in the intrinsic semiconductor.
These parameters are wsually referred to as the intrinsic electron concentraiion and
intrinsic hole concentration. However, n; = p;, so normally we simply use the para-
meter n; as the intrinsic carrier concentration, which refers to either the intrinsic elec-
tron or hole concentration.

The Fermi energy level for the intrinsic semiconductor is called the intrinsic
Fermi energy, or Er = Ef;. If we apply Equations (4.11) and {4.19) to the ntrinsic
semiconductor, then we can write

—(E, ~ Ep;
ne = n; = N, exp [—(—‘FF—‘)] (4.20)
and
—(Er — Ey)
po=p; =n; = N,exp [*‘FE‘;} (4.21)
If we take the product of Equations {4.20) and (4.21), we obtain
2 7(Ec — E '1'} _(E 27 et E1.}
o g [ B BB
or
—(E, — E,) -E :
n? = NN, exp {%[TFL_] = N.N,exp [?F_g] (4.23)

where E, is the bandgap energy. For a given semiconductor material at a constant
temperature, the value of #; is a constant, and independent of the Fermi energy.

The intrinsic carrier concentration for silicon at 7 = 300 K may be calculated
by using the effective density of states function values from Table 4.1. The value of
n; calculated from Equation (4.23) for E, = 1.12eVisn; == 6.95 10° cm™3. The
commonly accepted value™ of n; for silicon at 7 = 300K is approximately
1.5 x 10" ¢m~3. This discrepancy may arise from several sources. First, the values
of the effective masses are determined at a low temperature where the cyclotron res-
onance experiments are performed. Since the effective mass is ap experimentally
determined parameter, and since the effective mass is a measure of how well a parti-
cle moves in a crystal, this parameter may be a slight function of temperature. Next,
the density of states funcrion for a semiconductor was obtained by generalizing the
model of an electron in a three-dimensional infinite potential well. This theoretical
function may also not agree exactly with experiment. However, the difference be-
tween the theoretical value and the experimental value of #; is approximately a factor

arjous references may list slightly different values of the intrinsic silicon concentration at room
temperature. In general, they are all between 1 x 10'"and 1.5 x 10" em™. This difference is. in most
cases, not significant.
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112 CHAPTER 4 The Semigonductor in Equilibrium
Table 4.2 | Commonly accepted values of »,
atT=300K
Silicon np=15x 100 em—?
Gallium arsenide n; = 1.8 x 10° em™3
Germanium n =24 x 10" em™?
of 2, which, in many cases, is not significant. Table 4.2 lists the commonly accepted
values of n; for silicon, gallium arsenide, and germanjum at T = 300 K.
The intrinsic carrier concentration is a very strong function of temperature.
EXAMPLE 4.3 Objective

To calculate the intrinsic carrier concentration in gallium arsenide at 7 = 300K and at
T =430 K,

The values of M. and N, at 300 K for gallium arsenide are 4.7 x 10" cm * and
7.0 x 10" em=?, respectively. Both N, and N, vary as 7°2. Assume the bandgap energy of
gallium arsenide is 1.42 eV and docs not vary with temperature over this range. The value of
kT at 450 K is i

450
T = (0.0259) | = | = 0.03885 eV
KT = (0.0 59)(300) e

o Solution
Using Equation (4.23}, we find for T = 300 K

—1.42

e B 10737, 1% ¢
n; = (4T x 1070 x 10 )cxp(—io_ozjg

) =509 % 10

50 that

n=226x%10°cm™

At T =450 K, we find

r? = (4.7 x 107)(7.0 x 10'8) 450 3ex 142 — 1.48 x 10"
KR : 300/ “P\0ossss )

so that
n; =385 x 10" em™

B Comment
We may note from this example that the intrinsic carrier concentration increased by over 4 or-
ders of magnitude as the temperature increased by 150°C.

Figure 4.2 is a plot of »; from Equation (4.23) for silicon, gallinm arsenide, and
germanium as a function of temperature. As seen in the figure, the value of n, for

these semiconductors may easily vary over several orders of magnitude as the tem-:

perature changes over a reasonable range.

1
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Figure 4.2| The intrinsic carrier
concentration of Ge, 8i, and GaAs asa
function of temperature.

{From Sze f13].)

TEST YOUR UNDERSTANDING

E4.3 Find the intrinsic carrier concentration in silicon at () T = 200 K and (&) T = 400 K.
[—Wo 01 X 8C°T (@) ", w2 01 X g9'L (V) suy]

E44 Repeat E4.3 for GaAs. [ W2 (DF X '€ () ' W §E"[ (1) SUV]

E4.5 Repeat B4.3 for Ge. Le- W2 01 X 98 (§) ¢ W2 01 x 9177 (2} Su¥]

4.14 The Intrinsic Fermi-Level Position

We have qualitatively argued that the Fermi energy level is located near the center of
the forbidden bandgap for the intrinsic semiconductor. We can specifically calculate
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the intrinsic Fermi-level position. Since the electron and hole concentrations are
equal, setting Equations (4.20) and (4.21) equal to each other, we have

N.exp [ik;@} = N, exp [;(EJ;J—E)] (4.24)

If we take the natural log of both sides of this equation and solve for E r;. we obtain
E —I(E +E)+lle B (4.25

Fi — 3 < 1 5 n N(- w23

From the definitions for N, and N, given by Equations (4.10) and (4.18), respec-

tively, Equation (4.25) may be written as

1 3 m,
Ep = E(E(.' + £+ p) kT In (—’;) (4.263)

i

The first term, %(Ef + E,), is the energy exactly midway between £, and E,. or the
midgap energy. We can define

1
E(Ec +E) = Emidgup

so that

3 n,
E[-'j = Emidgap = Z kT In (—P) (‘4’26]3J

If the electron and hole effective masses are equal so that m}, = m;,, then the intrin-
sic Fermi level is exactly in the center of the bandgap. If my > m}, the intrinsic
Fermi level is slightly above the center, and if m}, < myj, it is slightly below the cen-
ter of the bandgap. The density of states function is directly related to the carrier ef-
fective mass; thus a larger effective mass means a larger density of states function,
The intrinsic Fermi level must shift away from the band with the larger density of
states in order to maintain equal numbers of electrons and holes.

EXAMPLE 4.4

Objective

To calculate the position of the intrinsic Fermi level with respect to the center of the bandgap
in silicon at T = 300 K.

The density of states effective carrier masses in silicon are m] = 1.08m, and
m: = (0.56m,.

m Solution
The intrinsic Fermi level with respect 1o the center of the bandgap is

*

3 n, 3 0.56
R ") =< —_
Egi den = 3 n(m ) ey 0259)]n(1.08)

*
n
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ras

or

Epi ~ Egiggep = —0.0128 eV = —~12.8 meV

# Comment

The intrinsic Fermi level in silicon is 12.8 meV below the midgap energy. If we compare
12.8 meV to 560 meV, which is one-half of the bandgap energy of silicon, we can, in many ap-
plications, simply approximate the intrinsic Fermi level to be in the center of the bandgap.
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TEST YOUR UNDERSTANDING

E4.6 Determine the position of the intrinsic Fermi level with respect to the cemer of the
bandgap in GaAs at T = 300 K. (AW g'8¢— 'suy)

4.21 DOPANT ATOMS AND ENERGY LEVELS

The intrinsic semiconductor may be an interesting material, but the real power of
semiconductors is realized by adding small, controlled amounts of specific dopant, or
impurity, atoms. This doping process, described briefly in Chapter 1, can greatly alter
the electrical characteristics of the semiconductor. The doped semiconductor, called
an extrinsic material, is the primary reason we can fabricate the various semiconduc-
tor devices that we will consider in later chapters.

42,1 Qualitative Description

In Chapter 3, we discussed the covalent bonding of silicon and considered the sim-
ple two-dimensiona) representation of the single-crystal silicon lattice as shown in
Figure 4.3. Now consider adding a group V element, such as phosphorus, as a sub-
stitutional impurity. The group V element has five valence electrons. Four of these
will contribute to the covalent bonding with the silicon atoms, leaving the fifth more
loosely bound to the phosphorus atom. This effect is schematically shown in
Figure 4.4. We refer to the fifth valence electron as a donor electron.
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Figure 4.4 | Two-dimensional

Figure 4.3 | Two-dimensional

representation of the intrinsic silicon lattice. with a phosphorus atom.
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The phosphorus atom without the donor electron is positively charged. At very
low temperatures, the donor electron is bound o the phosphorus atom. However. by
intuition, it should seem clear that the energy required to elevate the donor electron
into the conduction band is considerably less than that for the electrons involved in
the covalent bonding. Figure 4.5 shows the energy-band diagram that we would cx-
pect. The energy level, £y, is the energy state of the donor electron.

If a small amount of energy, such as thermal energy, is added to the donor elec-
tron, it can be elevated into the conduction band, leaving behind a positively charged
phosphorus ion. The electron in the conduction band can now move through the crys-
tal generating a current, while the positively charged ion is fixed in the crystal. This
type of impurity atom donates an electron to the conduction band and so is called a
donor impurity arom. The donor impurity atoms add electrons to the conduction band
without creating holes in the valence band. The resulting material is referred to as an
n-type semiconductor (n for the negatively charged electron).

Now consider adding a group III element, such as boron, as a substitutional im-
purity to silicon. The group lII element has three valence electrons, which are all
taken up in the covalent bonding. As shown in Figure 4.6a, one covalent bonding po-
sition appears to be empty. It an electron were to occupy this “empty™ position, its

Conduction band . x i
! s s
—_——_——_———— = —_—— =t — = — —F,
2 = + +
5 &
5 S
s g
g g
3 . -E, H E,
= Valence band ’ 2 !
; 23]
(a) (b)

Figure 4.5 | The energy-band diagram showing (a) the discrete donor energy staie
and (b} the effect of a donor state being ionized.
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Figure 4.6 | Two-dimensional representation of a silicon lattice (2) doped with a boron atom
and (b) showing the ionization of the boron atom resulting in a hole.
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Figure 4.7 | The energy-band diagram showing (a) the discrete acceptor energy state
and (b) the effect of an acceptor state being ionized.

energy would have to be greater than that of the valence electrons, since the net charge
state of the boron atom would now be negative. However, the electron occupying this
“empty” position does not have sufficient energy to be in the conduction band, so its
energy is far smaller than the conduction-band energy. Figure 4.6b shows how va-
lence electrons may gain a small amount of thermal energy and move about in the
crystal. The “empty” position associated with the boron atom becomes occupied, and
other valence electron positions become vacated. These other vacated electron posi-
tions can be thought of as holes in the semiconductor material,

Figure 4.7 shows the expected energy state of the “empty” position and also the
formation of a hole in the valence band. The hole can move through the crystal gen-
erating a current, while the negatively charged boron atom is fixed in the crystal. The
group I1I atom accepts an electron from the valence band and so is referred to as an
acceptor impurity atom. The acceptor atom can generate holes in the valence band
without generating electrons in the conduction band. This type of semiconductor ma-
terial is referred to as a p-rype material (p for the positively charged hole).

The pure single-crystal semiconductor material is called an intrinsic material.
Adding controlled amounts of dopant atoms, either donors or acceptors, creates a
material called an extrinsic semiconductor. An extrinsic semiconductor will have ei-
ther a preponderance of electrons (n type) or a preponderance of holes (p type).

4.2.2 Tonization Energy

We can calcolate the approximate distance of the donor electron from the donor im-
purity ion, and also the approximate energy required to elevate the donor electron
into the conduction band. This energy 1s referred to as the ionization energy. We will
use the Bohr mode) of the atom for these calculations. The justification for using this
model is that the most probable distance of an electron from the nucleus in a hydro-
gen atom, determined from quantum mechanics, is the same as the Bohr radius. The
energy levels in the hydrogen atom determined from quantum mechanics are also the
same as obtained from the Bohr theory.

In the case of the donor impurity atom, we may visualize the donor electron or-
biting the donor ion, which is embedded in the semiconductor material. We will need
1o use the permittivity of the semiconductor material in the calculations rather than
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the permittivity of free space as is used in the case of the hydrogen atom. We will
use the effective mass of the electron in the calculations.

The analysis begins by setting the coulomb force of attraction between the el
tron and 1on equal to the centripetal force of the orbiting electron. This condition w
give a steady orbit. We have

et m*u?

= (43

il
dmer: ol

where v is the magnitude of the velocity and r, is the radius of the orbit. Tt we ass
the angular momentum is also quantized, then we can write

m*r,v = nh (4.

where »n is a positive integer. Solving for v from Equation (4.28), substituting in
Equation (4.27), and solving for the radius, we obtain

n*Hame

Py 2
m*e?

(4.
The assumption of the angular momentum being quantized leads to the radius
being quantized.

The Bohr radius is defined as

4 eqh?

ap = =0.53A (4.

=
mnpe-

We can normalize the radius of the donor orbital to that of the Bohr radius, which giv

n Moy
L= e, | — (4.3
ap m*

where ¢, is the relative dielectric constant of the semiconductor material, g is fl
rest mass of an electron, and m™ is the conductivity effective mass of the electron
the semiconductor.

If we consider the lowest energy state in which # = 1, and if we consider 5ili1
in which ¢, = 11.7 and the conductivity effective mass is m*/mg = 0.26, then
have that |

045 @
2
or r; = 23.9 A. This radius corresponds 1o approximately four lattice constants
silicon. Recall that one unit cell in silicon effectively contains eight atoms, so thet
dius of the orbiting donor electron encompasses many silicon atoms. The donor ele
iron is not tighily bound 10 the donor atom.
The total energy of the orbiting electron is given by

E=T+V (.
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where T is the kinetic energy and V is the potential energy of the electron. The kinetic
energy 1s

T = —m*e? {4.34)

Using the velocity v from Equation (4.28) and the radius r,, from Equation (4.29), the
kinetic energy becomes

*’, m*e?
: T (4.35

2(nii)’ (4mwe)? 435)
The potential energy is

2 4.4
—e —m*e
V= == 4.36
dwer, (nh)2{4me)? Gham
The total energy is the sum of the kinetic and potential energies, so that
—m™e?
E=TH+V=r-—r7—— 4.37
2(ni) (dme)? (@.37)
For the hydrogen atom, m* = mg and € = «;. The ionization energy of the hydrogen
afom in the lowest energy state is then £ = —13.6 eV. If we consider silicon, the ion-
ization energy is £ = —25.8 meV, much less than the bandgap energy of silicon,

This energy is the approximate ionization energy of the donor atom, or the energy re-
quired to elevate the donor electron into the conduction band.

For ordinary donor impurities such as phosphorus or arsenic in silicon or ger-
manium, this hydrogenic model works quite well and gives some indication of the
magnitudes of the lonization energies involved. Table 4.3 lists the actual experimen-
tally measured ionization energies for a few impurities in silicon and germanium.
Germanium and silicon have different relative dielectric constants and effective
masses; thus we expect the ionization energies to differ.

4.2.3 Group l1-V Semiconductors

In the previous sections, we have been discussing the donor and acceptor impurities
in a group 1V semiconductor, such as silicon. The simation in the group HI-V

Table 4.3 | Impuriry ionization energies in silicon
and germanium

Tonization energy (eV)

Impurity Si Ge
Donors
Phosphorus 0.045 0.012
Arsenic 0.05 0.0127
Acceptors

Boron 0.045 0.0104

Aluminum (.06 0.01G2
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Table 4.4 | Impurity ionization energies
in galltum arsenide

Impurity Ionization energy (eV).
Donors
Selenium 0.0059
Tellurtum 0.0058
Silicon 0.0058
Germanivm 0.0061
Acceptors
Beryllium 0.028
Zinc 0.0307
Cadmium 0.0347
Silicon 0.0345
Germanium 0.0404

compound semiconductors, such as gallium arsenide, is more complicated. Group
elements, such as beryllium, zinc, and cadmium, can enter the lattice as subst
tional impurities, replacing the group III gallium element to become acceptor impu-
rities. Similarly, group VI elements, such as selenium and tellurium, can enter the
lattice substitutionally, replacing the group V arsenic element to become donor im-
purities. The corresponding ionization energies for these impurities are smaller than
for the impurities in silicon. The ionization energies for the donors in gallium ar
senide are also smaller than the ionization energies for the acceptors, because of the
smaller effective mass of the electron compared to that of the hole.

Group IV elements, such as silicon and germanium, can also be impurity atoms
in gallium arsenide. If a silicon atom replaces a gallium atom, the silicon impurity
will act as a donor, but if the silicon atom replaces an arsenic atom. then the silicon
impurity will act as an acceptor. The same is true for germanium as an impurity atom,
Such impurities are called amphoteric. Experimentally in gallium arsenide, it is
found that germanium is predominantly an acceptor and silicon is predominantly a
donor. Table 4.4 lists the ionization energies for the various impurity atoms in gallium
arsenide.

TEST YOUR UNDERSTANDING

E4.7 Calculate the radius (normalized to a Bohr radius) of a donor electron in its lowest
energy state in GaAs. (5661 Suy)

4.3 | THE EXTRINSIC SEMICONDUCTOR

We defined an intrinsic semiconductor as a material with no impurity atoms pres
in the crystal. An extrinsic semiconductor is defined as a semiconductor in whi
controlled amounts of specific dopant or impurity atoms have been added so that
thermal-equilibrium electron and hole concentrations are different from the intrin




4.3 The Extrinsic Semiconductor

carrier concentration. One type of carrier will predominate in an extrinsic semicon-
ductor.

431 Equilibrium Distribution of Electrons and Holes

Adding donor or acceptor impurity atoms to a semiconductor will change the distrib-
ution of electrons and holes in the material. Since the Fermi energy is related to the
distyibution funciion, the Fermi energy will change as dopant atoms are added. If the
Fermi energy changes from near the midgap value, the density of electrons in the con-
duction band and the density of holes in the valence band will change. These effects
are shown in Figures 4.8 and 4.9. Figure 4.8 shows the case for £y > Ef; and
Figure 4.9 shows the case for Ef < Eg;. When EF > Ef;, the electron concentra-
tion is larger than the hole concentration, and when Er < E g, the hole concentration

|

Area = np =
electron
congcentration

/// ’,“7_\
T lE) Area = py =

hole concentration

frEy=0 FlE)Y =1

Figure 4.8 Density of states functions, Fermi-Dirac
probability tunction, and areas representing electron
and hole concentrations for the case when Ef is above
the intrinsic Fermi energy.
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Figure 4.9 | Density of states functions, Fermi-Dirac
probability function, and areas representing electron and
hole concentrations for the casc when £ is below the
intrinsic Fermi energy.

is larger than the electron concentration. When the density of electrons is greater than
the density of holes, the semiconductor is n type; donor impurity atoms have been
added. When the density of holes is greater than the density of electrons, the semi-|
conductor is p type; acceptor impurity atoms have been added. The Fermi energy’
level in a semiconductor changes as the electron and hole concentrations change and,

* again, the Fermi energy changes as donor or acceptor impurities are added. The

change in the Fermi level as a function of impurity concentrations will be consider

" in Section 4.6.

The expressions previously derived for the thermal-equilibrium concentration o
electrons and holes, given by Equations (4.11) and (4.19) are general equations f
ng and py in terms of the Fermi energy. These equations are again given as

7(E(' - EF):|

nyg = N.exp [ T
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and

_(EF = Ev)}

p(J:Nvﬁxp[ T

As we just discussed, the Fermi energy may vary through the bandgap energy, which
will then change the values of ng and pg.

123

Objective

To calculate the thermal equilibrium concentrations of electrons and holes for a given Fermi
energy.

Consider silicon at 7 =300K so that N =28 x 10" cm™ and N, = 1.04 »
10"® ¢m—*. Assume that the Fermi energy is .25 eV below the conduction band. If we assume
that the bandgap energy of silicon is 1.12 eV, then the Fermi energy will be 0.87 eV above the
valence band.

N Solution

Using Equation {4.11), we have
x- —0.25
i . 19 o 15 -3
* ne = (2.8 % 10 )exp(0.0259) =18 x 10" cm

From Equation (4.19), we can write

= (1.04 T
po= (10310 )e"p(o.0259

7) =27 % 10" e~

H Comment

The change in the Fermi level is actually a function of the donor or acceptor impurity concen-
trations that are added to the semiconductor. However, this example shows that electron and
hole concentrations change by orders of magnitude from the intrinsic carrier concentration as
the Fermi energy changes by a few tenths of an electron-volt.

EXAMPLE 4.5

In this example, since r2g > pg, the semiconductor is n type. In an n-type semi-
conductor, electrons are referred to as the majority carrier and holes as the minority
carrier. By comparing the relative values of sy and pg in the example, it is easy w
see how this designation came about. Similarly, in a p-type semiconductor where
Pu > ny, holes are the majority carrier and electrons are the minority carrier.

We may derive another form of the equations for the thermal-equilibrium con-
centrations of electrons and holes. If we add and subtract an intrinsic Fermi energy in
the exponent of Equation (4.11), we can write

—(E. — Ep))+(Er —~ Eg;
ng= N, exp[ 2 T i i ):l {4.38a)
or
—(E. — Eg) (Er — Efp)
= N _— _— 4.3
oy ) [ o7 ] exp [ o :| (4.38h)
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The intrinsic carrier concentration is given by Equation (4.20} as

—(E. - E;—,—)]

n; = N, exp I: T

so that the thermal-equilibrium electron concentration can be written as

Er— Er.-]

oT (4.3%

g = H; CXp |:

Similarly, if we add and subtract an intrinsic Fermi energy in the exponent of Eq
tion (4.19), we will obtain

—(Er _EH):I (4.40)

Po =R, exp|: T

As we will see, the Fermi level changes when donors and acceptors are added,
but Equations (4.39) and (4.40) show that, as the Fermi level changes from the intrin-
sic Fermi level, ng and pg change from the n; value. If £4 > Ep;, then we will have
ng > n; and po < n;. One characteristic of an n-type semconductor is that Er > Eg
so that ng > po. Similarly, in a p-type semiconductor, Er < Eg; sothat pg > n; an
ny < ny; thus py > ng.

We can see the functional dependence of ny and py with Er in Figures 4.8 and
4.9. Az Er moves above or below Eg;, the overlapping probability function with the
density of states functions in the conduction band and valence band changes. As Egp
moves above £, the probability function in the conduction band increases, whilcl
the probability, | — fr(E}, of an empty state (hole) in the valence band decreases.
As Er moves below Er;, the opposite occurs.

4.3.2 The ngpy Product

We may take the product of the general expressions for ny and pg as given in Equa-
tions (4.11) and (4.19), respectively. The result is

—(E. — E;-)] a1 [—(EF = Eu):|

7 T (4.41)

Ropo = N('Nl,‘ exp I:
which may be written as
N.N, ) (442
= ci¥p € i
o Po xp X7
As Equation (4.42) was derived for a general value of Fermi energy, the values

of ng and py are not necessarily equal. However, Equation (4.42) is exactly the same
as Equation (4.23), which we derived for the case of an intrinsic semiconductor. We
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then have that, for the semiconductor in thermal equilibrivm,

nypy = n; (4.43)

Equation (4.43) states that the product of ng and py is always a constant for a
given semiconductor material at a given temperature. Although this equation seems
very simple, it is one of the fundamental principles of semiconductors in thermal
equilibrium. The significance of this relation will become more apparent in the chap-
ters that follow. It is important to keep in mind that Equation (4.43) was derived
using the Boltzmann approximation, If the Boltzmann approximation is not valid,
then likewise, Eguation {4.43) is not valid.

An extrinsic semiconductor in thermal equilibrium does not, strictly speaking,
conlain an intrinsic catrier concentration, although some thermally generated carri-
ers are present. The intrinsic electron and hole carrier concentrations are modified by
the donor or acceplor impurities. However, we may think of the intrinsic concentra-
tion #; in Equation (4.43) simply as a parameter of the semiconductor material.

*4.3.3 The Fermi-Dirac Integral

In the derivation of the Equations (4.11) and (4.19) for the thermal equilibrium elec-
tron and hole concentrations, we assumed that the Boltzmann approximation was
valid, If the Boltzmann approximation does not hold, the thermal equilibrium elec-
tron concentration is written from Equation (4.3) as

4 o  EA2
=gt [ A =B AR (4.44)
h3 " E-F
B 14 exp 4
kT

If we again make a change of variable and let

E—E,
= A5¢
n o (4.45a)
and also define
Er—E.
S R 4.45
nr T ( b)

then we can rewrite Equation {(4.44} as

Dtk T 3/2 poo 112 4
s (L) f o HBH, L (4.46)
h® o l+exp(n—rnre)

The integral is defined as

Fi 2 )—fm i} (4.47)
= T+ exp(r— np) :
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Figure 4.10 | The Fermi—Dirac integral Fy;2 as a function 1

of the Fermi energy. /

(From Sze [13]) 4

1

This function, called the Fermi-—Dirac integral, is a tabulated function of the variabl{
nr. Figure 4.10 is a plot of the Fermi-Dirac integral. Note that if nF > 0, thq
Er > E.:thus the Fermi energy is actually in the conduction band.

EXAMPLE 4.6

Objective

To calculate the electron concentration using the Fermi-Dirac integral. I
Let ng = 2 so that the Fermi energy is above the conduction band by approximatel
52meVat T =300 K.

H Solution
Equation (4.46) can be written as

2
nyg = —=N.Fi2018)

T
For silicon at 300 K, N, = 2.8 x 10" cm ¥ and. from Figure 4.10, the Fermi-Dirac integrd
has a value of #,;,(2) = 2.3. Then

2

(2.8 x 10"M2.3) =727 x 10 em™?
Jr

ly =
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§ Comment

Note that if we had used Equation (4,11}, the thermal equilibrium value of ng would be ny =
2,08 x 10® em™*, which is incorrect since the Boltzmann approximation is not valid for this
case.
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We may use the same general method to calculate the thermal equilibrium con-
ceptration of holes. We obtain

2mrkT 32 poo N2 gy
Po= 4n ( p" ) f ———(i)———’—n——,f (4.48)
e o T rexp (@ —1p)
where
, E.—E y
= e 4.4
n W (4.49a)
and
E,— Er
e S 4.49b
ng T ( )

The integral in Equation (4.48) is the same Fermi-Dirac integral defined by Equa-
tion (4.47), although the variables have slightly different definitions. We may note
that if # > 0, then the Fermi level is in the valence band.

TEST YOUR UNDERSTANDING |

F4.8 Calculate the thermal equilibrium electron concentration in silicon for the case when
Er=E and T =300 K. (W2 01 x §'] 'suy)

434 Degenerate and Nondegenerate Semiconductors

In our discussion of adding dopant atoms to a semiconductor, we have implicitly as-
sumed that the concentration of depant atoms added is small when compared to the
density of host or semiconductor atoms. The small number of impurity atoms are
spread far enough apart so that there is no interaction between donor electrons, for
example, in an n-type material. We have assumed that the impurities introduce dis-
crete, noninteracting donor energy states in the n-type semiconductor and discrete,
noninteracting acceptor states in the p-type semiconductor. These types of semicon-
ductors are referred to as nondegenerate semiconductors.

If the impurity concentration increases, the distance between the impurity atoms
decreases and a point will be reached when donor electrons, for example, will begin
to interact with each other. When this occurs, the single discrete donor energy will
split into a band of energies. As the donor concentration further increases, the band
of donor states widens and may overlap the bottom of the conduction band. This
overlap occurs when the donor concentration becomes comparable with the effective
density of states. When the concentration of electrons in the conduction band exceeds
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Figure 4.11 | Simplified energy-band diagrams for degenerately doped (a) n-type and
(b) p-type semiconductors.

the density of states N, the Fermi energy lies within the conduction band. This ty
of semiconductor is called a degenerate n-type semiconductor,

In a similar way, as the acceptor doping concentration increases in a p-ty
semiconductor, the discrete acceptor encrgy states will split into a band of energi
and may overlap the top of the valence band. The Fermi energy will lie in the valen
band when the concentration of holes exceeds the density of states &,.. This type
semiconductor is called a degenerate p-type semiconductor.

Schematic models of the energy-band diagrams for a degenerate n-type and d
generate p-type semiconductor are shown in Figure 4.11. The energy states below E
are mostly filled with electrons and the energy states above Ep are mostly empty.
the degenerate n-type semiconductor, the states between E ¢ and £, are mostly fill
with electrons; thus, the electron concentration in the conduction band is very larg
Similarly, in the degenerate p-type semiconductor, the energy states between F,
Ep are mostly empty; thus, the hole concentration in the valence band is very larg

4.4! STATISTICS OF DONORS AND ACCEPTORS

In the last chapter, we discussed the Fermi—Dirac distribution function, which giv
the probability that a particular energy state will be occupied by an electron. We ne
to reconsider this function and apply the probability statistics to the donor and ac-
ceptor energy states.

4.4.1 Probability Function

One postulate used in the derivation of the Fermi—Dirac probability function was the
Pauli exclusion principle, which states that only one particle is permitted in
guantum state. The Pauli exclusion principle also applies to the donor and accept
states.

Suppose we have N; electrons and g; quantum states, where the subscript ¢ indi-
cates the ith energy level. There are g; ways of choosing where to put the first parti-
cle, Each donor level has two possible spin orientations for the donor electron; th
each donor level has two quantum states. The insertion of an electron into one qu
tum state, however, precludes putting an electron into the second quantum state.
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adding one electron, the vacancy requirement of the atom is satisfied, and the addi-
tion of a second electron in the donor level is not possible. The distribution function
of donor electrons in the donor energy states is then slightly different than the
Fermi-Dirac function,

The probability function of electrons occupying the donor state is

Nd

1 E(I_EF
Todglse e
+2exp( T )

where n; 1s the density of electrons occupying the donor level and Ej is the energy
of the donor level. The factor 4 in this equation is a direct result of the spin factor just
mentioned. The 1 factor is sometimes written as 1/g, where g is called a degeneracy
factor. i

Equation (4.50) can also be written in the form

ng = (4.50)

Ry = N(j = N{;r (451)

where N is the concentration of ionized donors. In many applications, we will be
interested more in the concentration of ionized donors than in the concentration of
electrons remaining in the donor states.

If we do the same type of analysis for acceptor atoms, we obtain the expression

Na

prf:]+l EF_Ea
— ex e
g i kT

=N, - N, (4.52)

where N, is the concentration of acceptor atoms, £, is the acceptor energy level, p,
is the concentration of holes in the acceptor states, and N, is the conceuntration of
ionized acceptors. A hole in an acceptor state corresponds to an acceptor atom that is
neutrally charged and still has an “empty” bonding position as we discussed in Sec-
tion 4.2.1. The parameter g is, again, a degeneracy factor. The ground state degener-
acy factor g is normally taken as four for the acceplor level in silicon and gallium
arsenide because of the detailed band structure.

4.4.2 Complete Ionization and Freeze-Qut

The probability function for electrons in the donor energy state was just given by
Equation (4.50). If we assume that (£; — EF) 3 kT, then

—(£y — Ey)
kT

Ny

_ P E; — EF)
o] e R
* 2 P\ T
If{E; — Ef) 3> kT, then the Boltzmann approximation is also valid for the elec-
trons in the conduction band so that. from Equation (4.11).

_(E( - EF)
kT

= 2N, exp[ (4.53)

fg = N, exp [
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We can determine the relative number of electrons in the donor state compa
with the total number of electrons; therefore we can consider the ratio of electrons
the donor state to the total number of electrons in the conduction band plus do
state. Using the expressions of Equations (4.53) and (4.11), we write

—(E; - E
2N exp —(Es—Ep)
Ry _ kT d @
ng + oy 2Ndexp[-(EiT EF)}“FN(-EXP[(E;(T E;—)}

The Fermi energy canceis out of this expression, Dividing by the numerator term, '
obtain

Ny 1

ng+re N, ~(E, — Eg)
d S Z—AT;eXP[_—_—%kT ]

The factor (E, — E;) is just the ionization energy of the donor electrons.

(4.5

EXAMPLE 4.7

Objective

To determine the fraction of total electrons still in the donor states at 7 = 300 K.
Consider phosphorus doping in silicon, for T = 300 K, at a concentration of Nj
10'% cm—3.

W Solution
Using Equation (4.55). we find
1
s e e e Ry o oo R - BAVE
) + Ry i n 2.8 x 10'9 (¥0.045)
2000 P Gozse

¥ Comment

This example shows that there are very few electrons in the doner state compared with th
conduction band. Essentially all of the electrons from the donor states are in the conductio
band and. since only about 0.4 percent of the dunor states contain electrons, the donor state
are said to be completely ionized.

At room temperature, then, the donor states are essentially completely ionizet
and, for a typical doping of 10'® em ™, almost all donor impurity atomns have donate
an electron to the conduction band.

At room temperature, there is also essentially complete ionizarion of the accep
tor atoms. This means that each acceptor atom has accepted an electron from the va
lence band so that p, is zero. At typical acceptor doping concentrations, a hole is cre:
ated in the valence band for each acceptor atom. This ionization effect and the
creation of electrons and holes in the conduction band and valence band, respec
tively, are shown in Figure 4.12.
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Figure 4.12 | Energy-band diagrams showing complete jonization of (a) donor states
and (b} acceptor states.
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Figure 4.13 | Energy-band diagram at T = 0 K for (a) n-type and (b) p-type
semiconductors,

The opposite of complete ionization occurs at T = 0 K. At absolute zero de-
grees, all electrons are in their lowest possible energy state; that is, for an n-type
semiconductor, each donor state must contain an electron, therefore ny = Ny or
N} = 0. We must have, then, from Equation (4.50) that exp [(Eq — E}/kT] = 0.
Since T = 0 K, this will occur for exp (—oc) = 0, which means that Er > E,. The
Fermi energy level must be above the donor energy level at absolute zero. In the case
of a p-type semiconductor at absolute zero temperature, the impurity atoms will not
contain any electrons, so that the Fermi energy level must be below the acceptor en-
ergy state. The distribution of electrons among the various energy states, and hence
the Fermi energy, is a function of temperature.

A detailed analysis, not given in this text, shows that at T = 0 K, the Fermi en-
ergy is haltway between E. and E; for the n-type material and halfway between £,
and E, for the p-type material. Figure 4.13 shows these effects. No electrons from
the donor state are thermally elevated into the conduction band; this effect is called
freeze-our. Similarly, when no electrons from the valance band are elevated into the
acceptor states, the effect is also called freeze-out.



132

CHAPTER 4 The Semiconductor in Equilibrium

Between T = 0 K, freeze-out, and 7 = 300 K, complete ionization, we hav
partial ionization of donor or acceptor atoms.

EXAMPLE 4.8

Objective

To determine the temperature at which 90 percent of acceptor atoms are ionized.

Consider p-type silicon doped with boron at a concentration of ¥, = 10'® em™3.

H Solution

Find the ratio of holes in the acceptor state to the total number of holes in the valence band pl
acceptor state. Taking into account the Boltzmann approximation and assuming the degener
acy factor 1s g = 4, we write

Pa 1
o +pn B Nl.‘ ‘(Ea - El)
1+ - —_
an, exP[ kT
For 90 percent ionization,
1
i" =0.10= -~
Pa Pa 19 T
]+(I.04><10 )(300) 0,045
cexp | ———
4(10'5) T
0,0259( —
023 300
Using trial and error, we find that 7 = 193 K.

H Comment

This example shows that at approximately 100°C below room temperature, we still hav
90 percent of the acceptor atoms ionized; in other words, 90 percent of the acceptor ato
have “donated” a hole to the valence band.

'l

TEST YOUR UNDERSTANDING

E4.9  Determine the fraction of total holes still in the acceptor states in silicon at T =
300 K for a boron impurity concentration of N, = 10'7 em~*, (6L1°0 SUV)

F4.10 Consider silicon with a phosphorus impurity concentration of Ny = 5 x 10 em™.
Plot the percent of ionized impurity atoms versus temperature over the range
100 < T < 400 K.

4.5 | CHARGE NEUTRALITY

In thermal equilibrium, the semiconductor crystal is electrically neutral. The el
trons are distributed among the various energy states, creating negative and positiv
charges, but the net charge density is zero. This charge-neutrality condition is used
determine the thermal-equilibrium electron and hole concentrations as a function o
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the impurity doping concentration. We will define a compensated semiconductor and
then determine the electron and hole concentrations as a function of the donor and
acceptor concentrations.

451 Compensated Semiconductors

A compensated semiconductor is one that contains both donor and acceptor impurity
atoms in the same region. A compensated semiconductor can be formed, for exam-
ple, by diffusing acceptor impurities into an n-type material, or by diffusing donor
impurities into a p-type material. An n-type compensated semiconductor occurs
when Ny > N,, and a p-type compensated semiconductor occurs when N, > N,.
If N, = Ny, we have a completely compensated semiconductor that has, as we will
show, the characteristics of an intrinsic material. Compensated semiconductors are
created quite naturally during device fabrication as we will see later.

45.2 Equilibrium Electron and Hole Concentrations

Figure 4.14 shows the energy-band diagram of a semiconductor when both donor
and acceptor impurity atoms are added to the same region to form a compensated

Total electron

concentration
Thermal { Donor
electrons my electrons
—— —_——
[
C
PR R
- _' / / + ¥ + ¥ o
Un-ionized NP =(N;—ng
donors Ionized donors
------------- e B el
Un-ionized N, ={(N,—p)
acceptors lonized acceptors
A A
—_——_—— —_—— = —_— — = = E,
¢ L \f ¥ ] EV
N + + + +
...... s .
Thermal i Acceptor
holes ( holes
Total hole

concentration

Figure 4.14 | Encrgy-band diagram of a compensated
sermiconductor showing ionized and un-ionized donors
and acceptors.
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semiconductor. The figure shows how the electrons and holes can be distributed;
among the various states.

The charge nentrality condition is expressed by equating the density of negativ
charges to the density of positive charges. We then have

R0+Na_=p0+N; 45
or

ny + (N; — Po) = po+ (Ng — ny) 4.5

where 1y and pg are the thermal-equilibrinom concentrations of electrons and holes i
the conduction band and valence band, respectively. The parameter n, is the conce
tration of electrons in the donor energy states, so N(+ = N, — n, is the concentrati
of positively charged donor states. Similarly, p, is the concentration of holes in th
acceptor states, so N, = N, — p, is the concentration of negatively charged accep-
tor states. We have expressions for #g, po. #14, and p, in terms of the Fermi energy
and temperature.

If we assume complete ionization, n; and p, are both zero, and Equation (4.57)
becomes

ng+ Ny = po+ Ny (4.58)4

If we express po as #; /ry, then Equation (4.58) can be written as

2
n:

np+ N, = — + Ny (4.59)
o

which in turn can be written as
ng— (Ny — Ng)ng —nf =0 (4.59)

The electron concentration ny can be determined using the quadratic formula, or

N, _NH N, *Nu :
nﬂ=( d2 )+\/( dz ) +n? (4.60)

The positive sign in the quadratic formula must be used, since, in the limit of an in-
trinsic semiconductor when N, = N, = 0, the electron concentration must be a pos-
itive quantity, or ny = #;.

Equation (4.60) is used to calculate the electron concentration in an n-type semi-
conductor, or when N; > N,. Although Equation (4.60) was derived for 1 compen-
sated semiconductor, the equation is also valid for N, = 0.

EXAMPLE 4.9

Objective

To determine the thermal equilibrium electron and hole concentrations for a given doping
concentration.
Consider an n-type silicon semiconductor at 7 = 300 K in which Ny = 10" cm 7 and

N, = 0. The intrinsic carrier concentration is assumed to be #; = 1.5 x 10'® ecm .
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u Solution
From Equation (4.60), the majority carrier electron concentration is

Hpy =

10 DERS
-5 (T) +(1.5 % 10")2 = 10! ¢m ™3

The minority carrier hole concentration is found as

n; {15 x 1017y
s =ris “m—mm

T 2.25 % 10" em ™
g

u Comment

In this example, Ny > n;, so that the thermal-equilibrium majority carrier electron concen-
tration is essentially equal to the donor impurity concentration. The thermal-equilibrium ma-
jority and minority carrier concentrations can differ by many orders of magnitude.

135

We have argued in our discussion and we may note from the results of Exam-
pie 4.9 that the concentration of electrons in the conduction band increases above the
intrinsic carrier concentration as we add donor impurity atoms. At the same time, the
minority carrier hole concentration decreases below the intrinsic carrier concentra-
tion as we add donor atoms. We must keep in mind that as we add donor impurity
atoms and the corresponding donor electrons, there is a redistribution of electrons
among available energy states. Figure 4.15 shows a schematic of this physical redis-
tribution. A few of the donor electrons will fall into the empty states in the valence

Tnerinsic
electrons
i
\r % 5—-5—5—5—5{.
s N B S O P S e g
d
J4 4 1
LI = -
lonized donors Un-ionized donors

> A few donor electrons
annihilate some
intrinsic holes

@ @ @ + >in§rinsif: holes - "

g e ST

A
} et
et = 5

Po 1y

Figure 4.15 | Energy-band diagram showing the
redistribution of clectrons when donors are added.
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band and, in doing so, will annihilate some of the intrinsic holes. The minority car-
rier hole concentration will therefore decrease as we have seen in Example 4.9, At
the same time, because of this redistribution, the net electron concentration in the
conduction band is not simply equal to the donor concentration plus the intring
electron concentration.

EXAMPLE 4.10 T

Objective

To calculate the thermal-equilibrium electron and hole concentrations in a germanium sample|
for a given doping densivy.

Consider a germanium sample at T = 300 K in which ¥; =5 x 10" em™ and N, =
Assume that n; = 2.4 x 10" cn 2.

| Solution
Again, from Equation (4.60), the majority carrier clectron concentration is

5% 10 5% 10342 5
o = x2 +‘/(Tz ) + (2.4 x 10" =5.97 x 10" em™?

The minority carrier hole concentration is

n? (24 x 10132

P = e T 507 % 100

=9.65 x 10" gm™*

® Comment

it the donor impurity concenfration is not too different in magnitude from the intrinsic carrier
concentration, then the thermal-equilibrium majority carrier electron concentration is influ-
enced by the intrinsic concentration.

We have seen that the intrinsic carrier concentration n; is a very strong functien
of temperature, As the temperature increases, additional electron-hole pairs are ther-
mally generated so that the n? term in Equation (4.60) may begin to dominate. The
semiconductor will eventually lose its extrinsic characteristics. Figure 4.16 shows
the electron concentration versus temperature in silicon doped with 5 x 10'* doners
per cm®. As the temperature increases, we can see where the intrinsic concentration
begins to dominate. Also shown is the partial ionization, or the onset of freeze-out, at
the low temperature.

If we reconsider Equation (4.58) and express ng as ”52 / pu, then we have

2

— 4+ Ny = po+ Ny (4.61
o

which we can write as

Py — (Na = Np)po—n; =0 (4.61
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Figure 4.16 | Electron concentration versus temperature
showing the three regions: partial ionization, extrinsic, and
intrinsic.

"

Using the quadratic formula, the hole conceniration is given by

N, — Ny N, — Ng\*
po=———+ (GT) +n; (4.62)

where the positive sign, again, must be used, Equation (4.62} is used to calculate the
thermal-equilibrium majority carrier hole concentration in a p-type semiconducior,
ot when N, > Ny. This equation also applies for Ny = 0.
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Objective
To calculate the thermal-equilibrium electron and hole concentrations in a compensated p-type
semiconductor.

Consider a silicon semiconductor at 7 = 300 K in which ¥, = 10!® em™ and N, =
3x 10Y cm ¥, Assume r; = 1.5 x 10" ¢cm 7.

¥ Solution
Since N, > N, the compensated semiconductor is p-type and the thermal-equilibrium ma-
jority carrier hole concentration is given by Equation (4.62) as

1015 — 3 x 10 1015 — 3 % 10152
. P +\/( : ) (L5 x 101)2

2 2

50 that

po =7 x 10" em™?

EXAMPLE 4.11
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The minority carrier electron concentration is

nf _ (1.5 x 10'9)2

= = 1o =32 x 10 cm™?
Po x LU

g =

N Comment
If we assume complete ionization and if (¥, — Ny) > n;, then the majority carrier hole col
centration is, to a very good approximation, just the difference between the accepior and don
concentrations.

We may note that, for a compensated p-type semicenductor, the minoerity carti
electron concentration is determined trom

n* n?
g = —

po (Na—Np)

Objective

To determine the required impurity doping concentration in a semiconductor materiai.

A silicon device with n-type material is to be operated at T = 550 K. At this temperatu
the intrinsic carrier concentration must contribute no more than 5 percent of the total elec
concentration. Determine the minimum donoy concentration required 1o meet this specificati

= Solution
At T = 550 K, the intrinsic carrier concentration is found from Equation (4.23) as

—E 550" —1.12 {300
P = NNy £ = (28 % 109)(1.04 x 10 | =— T
n} = NN ew( = ) (2.8 % 107){1.04 x )(300) GXP[O.OZSQ (550)]

ml= 102 x 107

or

so that

n; =320 % 10" em™?

For the intrinsic carrier concentraiion to coniribute no more than 5 percent of the total electr
concentration, we set ng = 1.05N,.
From Equation (4.60), we have

or

N N5
1.05N; = 7" +f(7") 1 (3.20 x 104)?
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which yields
Ny =139 x 10" em™?

1 Comment
If the temperatare remains less than 7 = 550 K, then the intrinsic carrier concentration will
contribute less than 5 percent of the total electron concentration for this donor impurity
concentration.

Equations (4.60) and (4.62) are used to calculate the majority carrier electron
concentration in an n-type semiconductor and majority carrier hole concentration in
a p-ype semiconductor, respectively. The minority carrier hole concentration in an
n-type semiconductor could, theoretically, be calculated from Equation (4.62). How-
ever, we would be subtracting two numbers on the order of 10! em™, for example,
to obtain a number on the order of 10* cm™?, which from a practical point of view is
not possible. The minority carrier concentrations are calculated from ngpg = #7 once
the majority carrier concentration has been determined.

; TEST YOUR UNDERSTANDING

F4.11 Consider a compensated GaAs semiconductor at T = 300 K doped at Ny =
5x 10 em~ and N, = 2 x 10'* cm™. Caiculate the thermal equilibrium electron
and hole concentrations. (oW ([ X 9]’ = %*, W 0] X ¢'] = 0d "suy)
E4.12 Silicon is doped at N, = 10'* cm™ and N, = 0. (@) Plot the concentration of
electrons versus temperature over the range 300 < T < 600 K. (b) Calculate the
temperature at which the clectron concentration is equal to 1.1 x 10" em™.
(M 76 =~ [ suy)

i

I

4.6 [ POSITION OF FERMI ENERGY LEVEL

We discussed qualitatively in Section 4.3.1 how the electron and hole concentrations
change as the Fermi energy level moves through the bandgap energy. Then, in Sec-
tion 4.3, we calculated the electron and hole concentrations as a function of donor
and acceptor impurity concentrations. We can now determine the position of the
Fermi energy level as a function of the doping concentrations and as a function of
temperature. The relevance of the Fermi energy level will be further discussed aiter
the mathematical derivations.

4.6.1 Mathematical Derivation

The position of the Fermi energy level within the bandgap can be determined by
using the equations already developed for the thermal-equilibrium electron and hole
concentrations. If we assume the Boltzmann approximation io be valid, then from
E_ Equation (4.11) we have g = N, exp [—(E. — E¢)/&T]. Wecansolve for £, — Ef
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from this equation and obtain

N..
E.—Er=kTIn (w) (4.6
o

where ng is given by Equation (4.60). If we consider an n-type semiconductor i
which N; > n;, then ny = Ny, so that

N
E.—Er=kTIn (—) (4.64)
Nd

The distance between the bottom of the conduction band and the Fermi energy
is a logarithmic function of the donor concentration. As the donor concentration in-
creases, the Fermi level moves closer to the conduction band. Conversely, if the
Fermi level moves closer to the conduction band, then the electron concentration in
the conduction band is increasing. We may note that it we have a compensated semi-
conductor, then the N; term in Equation (4.64} is simply replaced by Ny — N,, orthe
net effective donor concentration.

DESIGN
EXAMPLE 4.13

Objective

To determine the required donor impurity concentration to obtain a specified Fermi energy.

Silicon at T = 300 K contains an acceptor impurity concentration of N, = 10'® cm *.
Determine the concentration of donor impurity atoms that must be added so that the silicon is
n type and the Fermi energy is 0.20 eV below the conduction band edge.

m Solution
From Equation (4.64), we have

E, —E;=kTI o
f A N Nd_Na

which can be rewritten as

7(Ec -E )
Ny — N, =N, exp [—T}—
Then
-0.20
Ny — N, =2. = =1.24 x 10" em™?
+ — N, 8 x 10 EXP[O.DZSQ] b cm
or

Ny =124 % 10" + N, = 2.24 x 10 ¢m™*

® Comment
A compensaled semiconductor can be fabricated to provide a specific Fermi energy level.




4.6 Position of Fermi Energy Level

We may develop a slightly different expression for the position of the Fermi
level, We had from Equation (4.39) that ry = n; expl(Er — Ep;)/kT). We can
solve for Ep — Ep; as

Ep—Ep; =kT In (Z—O) (4.65)
f

Equation (4.65) can be used specifically for an n-type semiconductor, where #p is
given by Equation (4.60). to find the difference between the Fermi level and the in-
trinsic Fermi level as a function of the donor concentration. We may note that, if the
net effective donor concentration is zero, that is, Ny — N, = (), then ny = n; and
Er = EF;. A completely compensated semiconductor has the characteristics of an
intrinsic matertal in terms of carrier concentration and Fermi level posttion.

We can derive the same types of equations for a p-type semiconductor. From
Equation (4.19), we have py = N, exp [—(Er — E,)/kT]. so that

Ny
Er—E,=kTIn (—) (4.66)
Po

If we assume that N, 3> n;. then Equation (4.66) can be written as

. N,
x Er—E, =kT In (N—) (4.67)

a

The distance between the Fermi level and the top of the valence-band energy for
a p-type semiconductor is a logarithmic function of the acceptor concentration: as the
acceptor concentration increases, the Fermi level moves closer to the valence band.
Equation (4.67) still assumes that the Boltzmann approximation is valid. Again, if we
have a compensated p-type semiconductor, then the N, term in Equation (4.67) is re-
placed by ¥, — N, or the net effective acceptor concentration,

We can also derive an expression for the relationship between the Fermi level
and the intrinsic Fermi level in terms of the hole concentration. We have from Equa-
tion (4.40) that pg = n; exp[—(Er — Eri)/kT]. which yields

{4.68}

Equation (4.68) can be used to find the ditference between the intrinsic Ferni level
and the Fermi energy in terms of the acceplor concentration. The hole concentration
po in Equation (4.68) is given by Equation (4.62).

We may again note from Equation (4.65) that, for an n-type semiconductor,
np > n; and Ex > Eg;. The Fermi level for an n-type semiconductor is above Eg;.
For a p-type semiconductor, py > n;, and from Equation {4.68) we see that
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Figure 4.17 | Position of Fermi level for an (a) n-type (N, > N,) and (b) p-type
(¥, > N, semiconductor.

Eri > Ep. The Fermi level for a p-type semtconductor is below E ;. These results
are shown in Figure 4.17.

4.6.2 Variation of Er with Doping Concentration
and Temperature

We may plot the position of the Fermi energy level as a function of the doping con
centration. Figure 4.18 shows the Fermi energy level as a function of donor concen
tration (n type) and as a function of acceptor concentration (p type) for silicon
T = 300 K, As the doping levels increase, the Fermi energy level moves closer tot
conduction band for the n-type material and closer to the valence band for the p-ty
material. Keep in mind that the equations for the Fermi energy level that we have d
rived assume that the Boltzmann approximation is valid.

Nytem™)
1 e I L L C L U L
E T T T T

T 1

¢

| | |
E, 1012 1013 10'4 1045 1016 1047 108
N, (em™)

Figure 4.18 | Position of Fermi level as a function of donor
concentration (n type} and acceptor concentration (p type).
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Obijective
To determine the Fermi-level position and the maximum doping at which the Boltzmann
approximation is still valid.
Consider p-type silicon, at T = 300 K, doped with boron. We may assune that the Jimit
of the Boltzmann approximation occurs when Er — E, = 3kT. (See Section 4.1.2.)

B Solution

From Table 4.3, we find the ionization energy is E, — E, = 0.045 eV for boron in silicon. If
we assume that Ep; & Eqges0. then from Equation (4.68), the position of the Fermi level at
the maximum doping is given by

Eg N’I
Epi—Ep = E‘ —(Ey— E)—{Ep —E,))=kT In{ —

i

ar

0.56 — 0.045 — 3(0.0259) = 0.437 = (0.0259) In (&)

f,
We can then solve for the doping as

0.437

1 =32%10"cm™?
0.0259) ae

N, =n;exp (
% Comment
If the acceptor (or donor) concentration in silicon is greater than approximately 3 x 10'7 em 3,
then the Boltzmann approximation of the distribution function becomes less valid and the
equations for the Fermi-level position are no longer quite as accurate.

EXAMPLE 4.14

TEST YOUR UNDERSTANDING

F4.13 Determine the position of the Fermi level with respect to the valence band energy in
p type GaAs at T = 300 K. The doping concentrations are N, = 5 x 10'% em~? and
Ng=4x 109 em™. (AR 0£1°0 = "4 — 77 'suy)

E4.14 Calculate the position of the Fermi energy levcel in n-type silicon at T = 300 K with
respect to the intrinsic Fermi energy level, The doping concentrations are Ny = 2 x
107 em™? and N, =3 x 10" em~?, (AR 1THO = g — 47 suy)

The intrinsic carrier concentration #,, in Equations (4.65) and (4.68), is a strong
function of temperature, so that Eg is a function of temperature also. Figure 4.19
shows the variation of the Fermi energy level in silicon with temperature for several
donor and acceptor concentrations. As the temperature increases, n; increases, and
Er moves closer to the intrinsic Fermi level. At high temperature, the semicondoc-
tor material begins to lose its extrinsic characteristics and begins (o behave more like
an intrinsic semiconductor. At the very low temperature, freeze-out occurs; the
Boltzmann approximation is no longer valid and the equations we derived for the
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Figure 4.19 | Position of Fermi level as a function of
temperature for various doping concentrations.

{From Sze {13].) :

A

Fermi-level position no longer apply. At the low temperature where freeze-out oc-
curs, the Fermi level goes above E; for the n-type material and below E, for the
p-type material. At absolute zero degrees, all energy states below £ ¢ are full and all.
energy states above E are empty. !

4.6.3 Relevance of the Fermi Energy

We have been calculating the position of the Fermi energy level as a function of dop-
ing concentrations and temperature. This analysis may seem somewhat arbitrary and
fictitious. However, these relations do become significant later in our discussion of
pn junctions and the other semiconductor devices we consider. An important point is
that, in thermal equilibrium, the Fermi energy level is a constant throughout a sys-
tem. We will not prove this statement, but we can intuitively see its validity by con-
sidering the following example.

Suppose we have a particular material, A, whose electrons are distributed in the
energy states of an allowed band as shown in Figure 4.20a. Most of the energy states
below Er,4 contain electrons and most of the energy states above Er4 are empty of
electrons. Consider another material, B, whose electrons are distributed in the ena
ergy states of an allowed band as shown in Figure 4.20b. The energy states below
Erp are mostly full and the energy states above E 4 are mostly empty. It these two,
materials are brought into intimate contact, the electrons in the entire system wi
tend to seek the lowest possible energy. Electrons from material A will flow into the
lower energy states of material B, as indicated in Figure 4.20c, until thermal equi-

librium is reached. Thermal equilibrium occurs when the distribution of electrons, ay.
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Figure 4.20 { The Fermi energy of (a) material A in thermal equilibrium, (b) material B
in thermal equilibrium, (¢) materials A and B at the instant they are placed in contact,
and (d) materials A and B in contact at thermal equilibrium.

a function of energy. is the same in the two materials. This equilibrium state occurs
when the Fermi energy is the same in the two materials as shown in Figure 4,20d.
The Fermi energy, important in the physics of the semiconductor, also provides a
good pictorial representation of the characteristics of the semiconductor materials
and devices.

4.71 SUMMARY

B The concentration of electrons in the conduction band 1$ the integral over the conduction
band energy of the product of the density of states function in the conduction band and
the Fermi-Dirac probability function.

R The concentration of holes in the valence band is the integral over the valence band
energy of the product of the density of states function in the valence band and the
probability of a state being empty, whichis [1 — fr(E)].

R Using the Maxwell-Boltzmann approximation, the thermal equilibrium concentration
of electrons in the conduction band is given by

; —(E. —E
. —

where N, is the effective density of states In the conduction band.
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B Using the Maxwell-Boltzmann approximation, the thermal equilibrium concentration
of holes in the valence band is given by

.5 0, 85 [:(_E_F‘_E)]

kT

where &, is the effective density of states in the valence band.
B The intrinsic carrier concentration is found from

rzf = N.N,exp [T{ST—X}

B The concept of doping the semiconductor with donor (group V elements) impurities
and acceptor {group III etements) impurities to form n-type and p-type extrinsic
semiconductors was discussed.

B The fundamental relationship of rg py = n? was derived.

B Using the concepts of complete ionization and charge neutrality, equations for the
electron and hole concentrations as a function of impurity doping concentrations were
derived. :

B  The position of the Fermi energy level as a function of impurity doping concentratio
was derived.

B The refevance of the Fermi energy was discussed. The Fermi energy is a constant
throughout a semiconductor that is in thermal equilibrium.

GLOSSARY OF IMPORTANT TERMS

acceptor atoms [mpurity atoms added to a semiconductor to create a p-type material.

charge carrier The electron and/or hole that moves inside the semiconductor and gives riss
to electrical currents.

compensated semiconductor A semiconductor that contains both donors and acceptors]"
the same semiconductor region. :

complete ionization The condition when all donor atoms are positivety charged by givi
up their donor electrons and all acceptor atoms are negatively charged by accepting electror
degenerate semiconductor A scmiconductor whose electron concentration or hole con
tration is greater than the effective density of states, so that the Fermi level is in the cond
tion band (n type) or in the valence band (p type).

doner atoms [mpurity atoms added (o a semiconductor to create an n-type materal.

effective density of states The parameter N, which results from inteprating the densi
quantum states g.{£) times the Fermi function f» (E) over the conduction-band energy,
the parameter N,. which results from integrating the density of quantum states g, (E) u
[l — fr(E)] over the valence-band energy.

extrinsic semiconductor A semiconductor in which controlled amounts of donors an
acceptors have been added so that the electron and hole concentrations change from the i
trinsic carrier concentration and a preponderance of cither electrons (n type) or holes (p ty
1s created.

freeze-out The condition that occurs in 4 semiconductor when the temperature is low
and the donors and acceptors become neutrally charged. The electron and hole concentrati
become very small.



Review Questions

intrinsic carrier concentration #; The electron concentration in the conduction band and
the hole concentration in the valence band (equal values) in an intrinsic semiconductor,

intrinsic Fermi level Er;  The position of the Fermi level in an intrinsic semiconductor.

intrinsic semiconductor A pure semiconductor material with no impurity atoms and no lat-
tice defects in the crystal.

nondegenerate semiconductor A semiconductor in which a relatively small number of
donors andfor acceptors have been added so that discrete, noninteracting donor states and/or
discrete, noninteracting acceptor states are introduced.

CHECKPOINT

After studying this chapter, the reader should have the ability to:

B Derive the equations for the thermal equilibrium concentrations of electrons and holes
in terms of the Fermi energy.

B Derive the equation for the intrinsic carrier concentration.

B State the value of the intrinsic carrier concentration for silicon at T = 300 K.

B Derive the cxpression for the infrinsic Fermi level.

B Describe the effeci of adding donor and acceptor impurity atoms to a semiconductor.
B Understand the concept of complete ionization.

B Understand the derivation of the fundamental relationship ngpo = nf.

B Describe the meaning of degenerate and nondegenerate semiconductors.

B Discuss the concept of charge neutrality.

B Denve the equations for ng and py in terms of impurity doping concentrations.

B Discuss the variation of the Fermi energy with doping concentration and temperature.
REVIEW QUESTIONS

1. Write the equation for #(E) as a function of the density of states and the Fermi proba-
bility function. Repeat for the function p(E}.

2. Inderiving the equation for 22y in terms of the Fermi function. the upper limit of the
integral should be the energy at the top of the conduction band. Justify using infinity
instead.

1. Assuming the Boltzmann approximation applies, write the equations for ny and py in
terms of the Fermi energy.

What is the value of the intrinsic carrier concentration in silicon at T = 300 K?

Under what condition would the intrinsic Fermi level be at the midgap energy?
What is a donor impurity? What is an acceptor impurity?

What is meant by complete ionization? What is meant by freeze-out?

What is the product of ng and py equal to?

I R R S

Write the equation for charge neutrality for the condition of complete ionization.
10. Sketch a graph of ny versus temperature for an n-type material.

11. Sketch graphs of the Fermi energy versus donor impurity concentration and versus
temperature,
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CHAPTER 4 The Semiconductor in Equilibrium

PROBLEMS

Section 4.1 Charge Carriers in Semiconductors

4.1

4.2

4.3

44

4.5

4.6

4.9

4.9

4.10

4.11

Calculate the intrinsic carrier concentration, »;, at ¥ = 200. 400, and 600 X for
(a) silicon, (k) germanium, and (¢) gallium arsenide.

The intrinsic carrier concentration in silicon is to be no greater than #, = 1 x

10" em™*. Agsume £, = 1.12 eV. Determine the maximum temperature allowed fo
the silicon.

Plot the intrinsic carrier concentration, »;, for a temperature range of 200 < T <
600 K for (a) silicon, (&) germanium, and {¢) gallium arsenide. (Use a log scale
forn;.)

In a particalar semiconductor material, the effective density of states functions are
given by N, = N.o(T) and N, = N,o(T)*" where N, and N,; are constants in
dependent of teniperature. The experimentally determined intrinsic carrier concen
tions as a function of temperature are given in Table 4.5, Determine the product
N.o N, and the bandgap energy E,. (Assume E, is independent of temperature.)

{a) The magnitude of the product g-{ E) fr{E) in the conduction band is a function:
energy as shown in Figore 4.1, Assume the Boltzmann approximation is valid. Deter
mine the energy with respect to £, at which the maximum occurs. (b) Repeat part (a
for the magnitude of the preduct gy {E) [1 — fr(E)] in the valence band.

Assume the Boltzmann approximation in a semiconductor is valid. Determine the !

ratio of n(E) = gc(E) fr{E)at E = E, +4kT tothatat £ = E. + kT/2. |
Assume that £, — Er = (.20 eV in silicon. Plot n(£) = gc (£) fr(E) over the rany
FosE<E +010eVior{e) T =200Kand (b} T =400 K. ‘
Two semiconductor materials have exactly the same properties except that macerial /
has a bandgap energy of 1.0 eV and material B has a bandgap energy of 1.2 eV. Der
mine the ratio of #; of material A to that of material B for 7= 300 K.

{a) Consider silicon at T = 300 K. Plot the thermal equilibrium eleciron concentra-
tion 7, (on a log scale) over the energy range 0.2 < £, — Er < 0.4 eV. (b) Repeat
part (¢} for the hole concentration over the range 0.2 = Er — E, < 0.4 ¢eV.

Given the effective masses of electrons and holes in silicon, germanium, and gallivr
arsenide, calculate the position of the intrinsic Fermi energy level with respect to the
center of the bandgap for each semiconductor at T = 300 K.

(a) The carrier effective masses in a semiconductor are my; = 0.62mg and m}, = lLdu
Determine the position of the intrinsic Fermi level with respect to the center of the
bandgap at T = 300 K. (&) Repeat part (a} if m) = 1.10mg and m), = 0.25my.

Table 4.5 | Intrinsic concentration as a
function of temperature

TK n; {em™?)
200 1.82 x 10?
300 5.83 x 10/
400 374 % 10"

500 195 x 10"




' : Problems

412 Calculate Er; with respect to the center of the bandgap in silicon for T = 200, 400,
and 600 K.

4.13 Plot the intrinsic Fermi energy Er; with respect to the center of the bandgap in silicon
for 200 < T < 600 K.

4.14 If the density of states function in the conduction band of a particular semiconductor
is a constant equal to K, derive the expression for the thermal-equilibriam concentra-
tion of electrans in the conduction band, assuming Fermi-Dirac statistics and assum-
ing the Boltzmann approximation is valid.

4.15 Repeat Problem 4.14 it the density of states function is given by g.(E) = C\(E — E,)
for £ > E, where Cy is a constant.

Section 4.2 Dopant Atoms and Energy Levels

4.16 Calculate the ionization energy and radius of the donor electron in germanium using
the Bohr theory. (Use the density of states effective mass as a first approximation.)
4.17 Repeat Problem 4.16 for gallium arsenide.

3

Section 4.3 The Extrinsic Semiconductor

4,18 The electron corncentration in silicon at T = 300 K is g = 5 % 10* em™3. {a) Deter-
mine py. Is this n- or p-type material? (b) Determine the position of the Fermi level
with respect to the intrinsic Fermi level.

4.19 Determine the values of 7y and p, for silicon at ¥ = 300 K if the Fermi energy is
0.22 eV above the valence band energy.

420 (@ E, — Ep = 0.25 ¢V in gallivm arsenide at T = 400 K, calculate the values of
ng and py. (#) Assuming the value of ng from part {g) remains constant, determine
E.— Epand pgat T =300 K.

421 The value of pg in silicon at 7 = 300 K is 10" ecm™*. Determine (¢) E, — E¢ and
(b no.

422 (a) Consider silicon at T = 300 K, Determine py if Ep; — Ep = 0.35eV. (b) Assum-
ing that py from part {g) rerains constant, determine the vatue of £7; — E¢ when
T =400 K. (¢} Find the value of iy in bath paris (@) and (&).

4.23 Repeat problem 4.22 for GuAs.

*4.24 Assumethat Er = E, at 7 = 300 K in silicon. Determine pg.

4,25 Consider silicon at 7 = 300 K, which has ng = 5 % 10" cm™3. Determine £, — Ep.

Section 4.4  Statistics of Donors and Acceptors

*¥4,26 The electron and hole concentrations as a function of energy in the conduction band
and valence band peak at a particular energy as shown in Figure 4.8. Consider silicon
and assume £, — Ep = 0.20 eV. Determine the energy, relative to the band edges, at
which the concentrations peak.

*4,27 For the Boltzmann approximation 1o be valid for a semiconductor, the Fermi level
must be at least 3kT below the donor level in an n-type material and at least 34T above
the acceptor level in a p~type material. If T = 300 K, determine the roaximum elec-
tron concentration in an n-type semiconductor and the maximum hele concentration

ﬂL li
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in a p-type semiconductor for the Boltzmann approximation to be valid in {a) silicon
and (&) gallium arsenide.

4.28 Plot the ratio of un-iomzed denor atoms to the total electron concentration versus
temperature for silicon over the range 50 < T < 200 K.

WQU

Section 4.5 Charge Neutrality

4.2%9 Consider a germanium semiconductor at T = 300 K. Calculate the thermal equilib-
rium concentrations of sy and py for (@) Ny = 107 e, N, = 0, and () N, =
5x 10% em™*, N, =0.

*4.30 The Fermi level in n-type silicon at T = 300 K is 245 meV below the conduction
band and 200 meV below the donor level. Determine the probability of finding an
electron () in the donor level and (&) in a state in the conduction band & T above the
conduction band edge.

4.31 Determine the equilibrium electron and hole concentrations in silicon for the follow-
ing conditions: 1k
() T=300K, N, =2x10%ecm 3 N, =0
B T =30K, N, =0, N, =10%cm™?

(&) T =300K, N, =N, = 10¥ cm™
() T =400K, Ny =0. N, =10 em™
(¢) T =500K, Ny =10"%em™3 N, =0

4.32 Repeat problem 4.31 for GaAs.

4.33  Assume that silicon, germanium, and gallinm arsenide each have dopant concentra-
tonsof Ny = 1 x 10" em ™ and N, = 2.5 x 10" em™* at T = 300 K. For each of
the three materials (@) Is this material n type or p type? (b) Calculate sy and py.

4.34 A sample of silicon at T = 450 K is doped with boron at a concentration of 1.5 x
10%% em * and with arsenic at a concentration of 8 x 10" em . (a) Is the materiatn
or p type? (&) Determine the electron and hole concentrations. (¢} Calculate the total
ionized impurity concentration.

4.35 The thermal equilibrium hole concentration in silicon at T =300 K is pg = 2 x
10° era~?. Determine the thermal equilibrium electron concentration. Is the material
1 type or p type?

4.36 Inasample of GaAs at T = 200 K, we have experimentally determined that ny = §
and that N, = 0. Calculate ng, py, and Ny

4.37 Consider a sample of silicon doped at N, = 0 and N, = 10" em™". Plot the majority!
carrier concentration versus temperature over the range 200 < 7 < 500 K. 1

'l

i

tration is ¥, = 0. Plot the minority cartier concentration (on a log-log plot) versus N
over the range 10" < Ny < 10" cm™3.
4.39 Repeat problem 4.38 for GaAs.
4,40 A particular semiconductor material is doped at Ny = 2 x 10" em™*, N, = 0. and
= the intrinsic carrier concentration is 7, = 2 x 10" em™. Assume complete ionizationy
Determine the thermal equilibrium majority and minority carrier concentrations.

4.38 The temperature of a sample of silicon is T = 300 K and the acceptor doping Concenj

o

e
Lm [

\

4.41 (o) Silicon at 7 = 300 X is uniformly doped with arsenic atoms at a concentration of
2 x 10" ¢m™? and boron atoms at a concentration of 1 x 10" em . Determine the
thermal equilibrium concentrations of majority and minority carriers. (b) Repeat




442

Problems

part (a) if the impurity concentrations are 2 x 10" cm ™ phosphorus atoms and 3 x
Y phosp

-3
10" e~ boron atoms.

Insilicon at T = 300 K, we have experimemtally found that iy = 4.5 x 10" em ™ and

Ny =35 x 10" em™*. (a) Is the material n type or p type? (b) Determine the majority
and minority carrier concentrations. (c) What types and concentrations of impurity
atoms exist in the material?

Section 4.6 Position of Fermi Energy Level

443

4.4

445

146

147

448

449

4.5¢

Consider germanium with an acceptor concentration of N, = 10'* ¢m~? and a donor
concentration of N; = 0. Consider temperatures of T == 200, 400, and 600 K. Calcu-
late the position of the Fermi energy with respect to the intrinsic Fermi level at these
{emperatures,

Consider germanium at 7 = 300 K with donor concentrations of N, = 10", 10'¢,
and 10" em~*, Let N, = 0. Calculate the position of the Fermj energy level with re-
spect to the nirinsic Fermi level for these doping concentratiors.

A Gahs device is doped with a donor concentration of 3 x 10" cm™2, For the device
10 operate properly, the intrinsic carrier concentration must remain less than 5 percent
of the total electron concentration. What is the maximum temperature that the device
may operate?

Consider germanium with an acceptor concentration of N, = 10" cm~ and a donor
concentration of N,; = 0. Plot the position of the Fermi energy with respect 1o the
intrinsic Fermi level as a function of temperature over the range 200 < T < 600 K.

Consider silicon at T = 300 K with N, = 0. Plot the position of the Fermi energy
level with respect to the intrinsic Fermi level as a function of the donor doping con-

centration over the range 10'* < N, < 10"® em™3,

For a particular semiconductor, £, = 1.50 eV, m; = 10m;, T = 300 K, and

n = | x 10° em™?, (a) Determine the position of the intrinsic Fermi energy level
with respect to the center of the bandgap. (5) Impurity atoms are added so that the
Fermi energy level is (.45 eV below the center of the bandgap. (/) Are acceptor or
donor atoms added? (i) What is the concentration of impurity atoms added?

Silicon at 7 = 300 K contains acceptor atoms at a concentration of N, = 5 x

10" cm™*, Donor atoms are added forming an n-type compensated semiconductor
such that the Fermi level is 0.215 eV below the conduction band edge, What concen-
tration of donor atoms are added?

Siliconat T = 300 K is doped with acceptor atoms at a concentration of N, = 7 %
10" cm?. (@) Determine Er — E,. (b) Calculate the concentration of additional
acceptor atoms that must be added to move the Fermni level a distance kT closer to the
valence-band edge.

(@) Determine the position of the Fermi Ievel with respect to the intrinsic Fermi level
insilicon at T = 300 K that is doped with phosphorus atoms at a concentration of
10" em™3. (&) Repeat part {a) if the silicon is doped with boron atoms at a concentra-
tion of 10'* cm™. (¢) Calculate the electron concentration in the silicon for parts

(a) and (b).

Gallium arsenide at T = 300 K contains acceptor impurity atoms at a density of

10 e, Additional impurity atoms are o be added so that the Fermi level is

0.45 eV below the intrinsic level. Determine the concentration and type (donor or
acceptor) of impurity atoms to be added.

Y HQ‘!H
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4.53

4.54

4.55

Summary and Review

4.56

4.57

4.58

Determine the Fermi energy level with respect to the intrinsic Fermi leve] for each
condition given in Problem 4.31.

Find the Fermi energy level with respect to the valence band energy for the conditi
given in Problem 4.32.

Calculate the position of the Fermi energy level with respect to the intrinsic Fermi f
the conditions given in Problem 4.42.

- ———

A special semiconductor material is to be “designed.” The semiconductor is to be

n-type and doped with 1 x 10'® cm™ donor atoms. Assume complete ionization a
assume N, = (. The effective density of states functions are given by N. = N, =
1.5 x 10" em~? and are independent of temperature. A particular semiconductor

device fabricated with this material requires the eleciron concentration to be no e
greater than 1.01 % 10" em™? at T = 400 K. What is the minimum value of the
bandgap energy?

-

Silicon atoms, at a concentration of 10" ¢m- 3, are added to galtium arsenide. Ass

that the silicon atoms act as fully ionized dopant atorns and that 5 percent of the con-
centration added replace gallium atoms and 95 percent replace arsenic atoms. Let

T = 300 K. (a) Determine the donor and acceptor concentrations, (b) Calculate the
electron and hole concentrations and the position of the Fermi level with respect
to Ef;.

bidden bandgap. Assume that a particular defect in silicon introduces two discrete k
els: a donor level 0.25 ¢V above the top of the valence band, and an acceptor level
0.65 eV above the top of the valence band. The charge state of each defect is a func- i
tion of the position of the Fermi level. (@) Sketch the charge density of each defect
the Fermi level moves from E, to E.. Which defect level dominates in heavily do
n-type material? In heavily doped p-type material? (b) Determine the electron and =
hole concentrations and the location of the Fermi level in (i) an n-type sample doped ©
at Ny = 1077 e and (if) in a p-type sample doped at N, = 10'7 em™. (¢} Deter-
mine the Fermi level position if no dopant atoms are added. Is the material n-type,
p-type, or inirinsic?

Defects in a semiconductor material introduce allowed energy states within the for- ,g
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