

Professor: Felipe Wergete Cruz

Data: 25/10/2012 **Horário**: das 14:00h às 16:00h

Aluno: _____ CPF: ____

2^a Avaliação de Álgebra Linear

Instruções

- ♦ Observe que há uma questão no verso desta folha.
- ♦ Não é permitido qualquer tipo de consulta.
- ♦ Leia atentamente o enunciado das questões antes de tentar solucioná-las.
- ♦ As respostas somente serão aceitas com justificativas.
- ♦ Escreva todos os detalhes dos cálculos que o levarem a uma solução.

Questões

1. (2,0 pontos) Sejam V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$ e $\alpha = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ uma base de V. Sejam \vec{u} e $\vec{v} \in V$ tais que

$$[\vec{u}]_{\alpha} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 e $[\vec{v}]_{\alpha} = \begin{bmatrix} 5 \\ 2 \\ -3 \end{bmatrix}$.

Se $\langle \vec{u}, \vec{v} \rangle = 2$, a base α é ortonormal?

- 2. (2,0 pontos) Seja $T:V\to V$ um operador ortogonal em um espaço V com produto interno $\langle\cdot\,,\cdot\rangle$. Prove que se \vec{v}_1 e \vec{v}_2 são autovetores de T associados aos autovalores 1 e -1 respectivamente, então \vec{v}_1 e \vec{v}_2 são ortogonais.
- 3. Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $T(x,y,z) = (x+y,\,x-y,\,-z)$. (a) (0,5 ponto) Mostre que T é uma aplicação autoadjunta com relação ao produto interno usual $\langle \cdot \,, \cdot \rangle$ de \mathbb{R}^3 .
 - (b) (1,0 ponto) Encontre os autovalores e autovetores de T.
 - (c) (0, 5 ponto) Exiba, se possível, uma **matriz** de T na forma diagonal, bem como a **base** na qual está sendo escrita esta matriz.
- 4. (1,0 ponto) Justifique, sem fazer nenhuma conta, por que o operador T do exercício anterior é diagonalizável.

- 5. Seja $V=\mathbb{R}^3$ munido com o produto interno usual. Seja $S=\{(x,y,z)\in\mathbb{R}^3/x-2y+3z=0\}.$
 - (a) (1,0 ponto) Determine S^{\perp} .
 - (b) (1,0 ponto) Determine bases ortonormais de S e $S^\perp.$
 - (c) (1,0 ponto) Seja $P:\mathbb{R}^3\to S$ a projeção ortogonal sobre o subespaçoS. Calcule P(x,y,z).