Fundação Universidade Federal do Vale do São Francisco - UNIVASF Colegiado de Engenharia de Produção - CPROD Prof. Felipe Wergete

3^a Lista de Exercícios de Álgebra Linear - 2012.1

1. (a) Considere o operador linear T sobre $P_3(\mathbb{R})$ definido por:

$$T(p(t)) = p(t) + tp''(t).$$

Determine os autovalores e os autovetores do operador T.

- (b) Sejam V um espaço vetorial real de dimensão finita e T um operador linear sobre V definido em uma base ordenada $\gamma = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ de V da seguinte forma: $T(\vec{v}_i) = \lambda_i \vec{v}_i, \lambda_i \in \mathbb{R}$. Determine o polinômio característico e os autovalores do operador linear T.
- 2. Sejam V um espaço vetorial real e T um operador linear sobre V. Mostre que $\lambda=0$ é um autovalor de T se, e somente se, T não é um operador injetor.
- **3.** Sejam V um espaço vetorial real e T um operador linear sobre V tal que $T^2 = T$, isto é, $T(T(\vec{v})) = T(\vec{v})$ para todo $\vec{v} \in V$ (**operador idempotente**). Mostre que os autovalores de T são $\lambda_1 = 0$ e $\lambda_2 = 1$.
- **4.** Sejam V um espaço vetorial real e T um operador linear sobre V tal que $T^2 = I_V$, isto é, $T(T(\vec{v})) = \vec{v}$ para todo $\vec{v} \in V$ (**operador auto-reflexivo**). Mostre que os autovalores de T são $\lambda_1 = 1$ e $\lambda_2 = -1$.
- **5.** Considere o operador linear T sobre $P_2(\mathbb{R})$ definido por:

$$T(p(t)) = p(t) + tp'(t).$$

Determine os autovalores e os autovetores do operador T.

6. Considere o operador linear T sobre $M_2(\mathbb{R})$ definido por:

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \left[\begin{array}{cc}2a+b&2b\\2c&3d\end{array}\right]$$

Determine os autovalores e os autovetores do operador T.

- 7. Sejam T um operador linear sobre \mathbb{R}^3 , $\gamma = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ uma base de \mathbb{R}^3 e o subespaço $S = [\vec{v}_1, \vec{v}_3]$. Sabendo que $T(\vec{v}) = \vec{v}$ para todo $\vec{v} \in S$ e que $T(\vec{v}_2) = \vec{v}_1 + 2\vec{v}_2 + 3\vec{v}_3$, determine os autovalores e os autovetores do operador T.
- 8. Considere T o operador linear sobre \mathbb{R}^2 dado por

$$T(x,y) = (-3x + 4y, -x + 2y).$$

Mostre que T é um operador linear diagonalizável.

9. Considere o espaço vetorial real $P_3(\mathbb{R})$ e o operador linear T sobre $P_3(\mathbb{R})$ definido por:

$$T(p(t)) = p'(t) + p''(t).$$

Verifique se T é um operador linear diagonalizável. Em caso afirmativo, determine uma base ordenada γ para $P_3(\mathbb{R})$ de modo que $[T]^{\gamma}$ seja uma matriz diagonal.

10. Considere o espaço vetorial real $P_2(\mathbb{R})$ com o produto interno

$$\langle p, q \rangle = \int_0^1 p(t) q(t) dt \quad \forall p, q \in P_2(\mathbb{R}).$$

Dados os polinômios

$$p(t) = t + 2, q(t) = 3t - 2 e h(t) = t^2 - 3,$$

determine

$$\langle p, q \rangle$$
, $\langle p + q, q \rangle$, $||p||$, $||q + h||$, $||p - h||$ e $\cos \theta$,

onde θ é o ângulo entre os polinômios p(t) e h(t).

- 11. Considere o espaço vetorial real \mathbb{R}^4 munido do produto interno usual. Determine os valores do parâmetro α de modo que os elementos $\vec{u}=(1,2,\alpha,3)$ e $\vec{v}=(\alpha,2,\alpha,-2)$ sejam ortogonais, isto é, $\langle \vec{u}, \vec{v} \rangle = 0$.
- 12. Considere V um espaço vetorial real com o produto interno $\langle \cdot, \cdot \rangle$ e $\| \cdot \|$ a norma proveniente do produto interno. Prove a "Lei do Paralelogramo", isto é, mostre que

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2), \forall \vec{u}, \vec{v} \in V.$$

13. Considere o espaço vetorial real $P_3(\mathbb{R})$ com o produto interno

$$\langle p, q \rangle = \int_{-1}^{1} p(t) q(t) dt \quad \forall p, q \in P_3(\mathbb{R}).$$

Obter a partir da base $\beta = \{1, t, t^2, t^3\}$ uma base ortogonal γ .

(Dica : Use o processo de ortogonalização de Gram-Schmidt.)

14. Considere o espaço vetorial real \mathbb{R}^3 com o produto interno usual e o operador linear T sobre o \mathbb{R}^3 definido por

$$T(x, y, z) = (x + 2y, 2x + 3y - z, -y + 2z).$$

Mostre que T é um operador auto-adjunto.

- **15.** Considere V um espaço vetorial real com o produto interno $\langle \cdot, \cdot \rangle$. Sejam T_1 e T_2 operadores auto-adjuntos sobre V. Então $T_1 \circ T_2$ é um operador auto-adjunto sobre V se, e somente se, $T_1 \circ T_2 = T_2 \circ T_1$.
- **16.** Considere o espaço vetorial real $M_2(\mathbb{R})$. Seja W o subespaço de $M_2(\mathbb{R})$ dado por

$$W = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] / a + d = 0, b + c = 0 \right\}.$$

(a) Encontre o complemento ortogonal W^{\perp} de W com relação ao produto interno usual de $M_2(\mathbb{R})$:

$$\left\langle \left[\begin{array}{cc} a & b \\ c & d \end{array} \right], \left[\begin{array}{cc} e & f \\ g & h \end{array} \right] \right\rangle = ae + bf + cg + dh.$$

(b) Encontre a projeção ortogonal de $M_2(\mathbb{R})$ sobre W com relação ao produto interno usual de $M_2(\mathbb{R})$.