164

CHAPTER 2

2.9

* APPLICATION LAYER

connection requests, as done in TCPServer. java. If multiple clients access this
application, they will all send their packets into this single door, serverSocket.

String sentence = new String(receivePacket.getData());
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();

The above three lines unravel the packet that arrives from the client. The first of the
three lines extracts the data from the packet and places the data in the String
sentence; it has an analogous line in UDPClient. The second line extracts the
IP address; the third line extracts the client port number, which is chosen by the
client and is different from the server port number 9876. (We will discuss client port
numbers in some detail in the next chapter.) It is necessary for the server to obtain
the address (IP address and port number) of the client, so that it can send the capital-
ized sentence back to the client.

That completes our analysis of the UDP program pair. To test the application,
you install and compile UDPClient. java in one host and UDPServer. java
in another host. (Be sure to include the proper hostname of the server in UDP
Client. java.) Then execute the two programs on their respective hosts. Unlike
with TCP, you can first execute the client side and then the server side. This is
because the client process does not attempt to initiate a connection with the server
when you execute the client program. Once you have executed the client and server
programs, you may use the application by typing a line at the client.

Building a Simple Web Server

Now that we have studied HTTP in some detail and have learned how to write
client/server applications in Java, let us combine this new knowledge and build a
simple Web server in Java. We will see that the task is remarkably easy.

2.9.1 Web Server Functions

Our goal is to build a server that does the following:

Handles only one HTTP request
Accepts and parses the HTTP request

Gets the requested file from the server’s file system

* & o o

Creates an HTTP response message consisting of the requested file preceded by
header lines

¢ Sends the response directly to the client



2.9 « BUILDING A SIMPLE WEB SERVER 165

Let’s try to make the code as simple as possible in order to shed some light on the
networking issues. The code that we present will be far from bulletproof! For exam-
ple, let’s not worry about handling exceptions. Let’s also assume that the client
requests an object that is—for sure—in the server’s file system.

WebServer.java
Here is the code for a simple Web server:

import java.io.*;
import java.net.*;
import java.util.*;
class WebServer {
public static void main(String argv[]) throws Exception {
String requestMessageLine;
String fileName;
ServerSocket listenSocket = new ServerSocket(6789);
Socket connectionSocket = listenSocket.accept();
BufferedReader inFromClient =
new BufferedReader (new InputStreamReader (
connectionSocket.getInputStream()));
DataOutputStream outToClient =
new DataOutputStream(
connectionSocket.getOutputStream())
requestMessagelLine = inFromClient.readLine()
StringTokenizer tokenizedLine =
new StringTokenizer (requestMessageLine);
if (tokenizedLine.nextToken().equals(“GET")){
fileName = tokenizedLine.nextToken();
if (fileName.startsWith(“/”) == true )
fileName = fileName.substring(l);
File file = new File(fileName);
int numOfBytes = (int) file.length();
FileInputStream inFile = new FileInputStream (
fileName);
byte[] fileInBytes = new byte[numOfBytes];
inFile.read(fileInBytes);
outToClient.writeBytes(
“HTTP/1.0 200 Document Follows\r\n”);
if (fileName.endsWith(”.jpg”))
outToClient.writeBytes(“Content-Type:
image/jpeg\r\n”);
if (fileName.endsWith(”.gif"”))

.

4
.
I



166

CHAPTER 2

* APPLICATION LAYER

outToClient.writeBytes (“Content-Type:

image/gif\r\n”);

outToClient.writeBytes(“Content-Length: “ +

numOfBytes + “\r\n”);

outToClient.writeBytes(“\r\n");

outToClient.write(fileInBytes, 0, numOfBytes);

connectionSocket.close();

}

else System.out.println(“Bad Request Message”);

}

Let us now take a look at the code. The first half of the program is almost iden-
tical to TCPServer.java. As with TCPServer.java, we import the
java.io and java.net packages. In addition to these two packages we also
import the java.util package, which contains the StringTokenizer class,
which is used for parsing HTTP request messages. Looking now at the lines within
the class WebServer, we define two string objects:

String requestMessageLine;
String fileName;

The object requestMessageLine is a string that will contain the first line in the
HTTP request message. The object £ileName is a string that will contain the file
name of the requested file. The next set of commands is identical to the correspon-
ding set of commands in TCPServer. java.

ServerSocket listenSocket = new ServerSocket(6789);
Socket connectionSocket = listenSocket.accept();
BufferedReader inFromClient =
new BufferedReader (new InputStreamReader
(connectionSocket.getInputStream()));
DataOutputStream outToClient =
new DataOutputStream(connectionSocket.
getOutputStream());

Two socket-like objects are created. The first of these objects is 1istenSocket,
which is of type ServerSocket. The object ListenSocket is created by the
server program before it receives a request for a TCP connection from a client. It lis-
tens at port 6789 and waits for a request from some client to establish a TCP con-
nection. When a request for a connection arrives, the accept () method of
listenSocket creates a new object, connectionSocket, of type Socket



2.9 « BUILDING A SIMPLE WEB SERVER

Next, two streams are created: the Buf feredReader inFromClient and the
DataOutputStream outToClient. The HTTP request message comes from
the network, through connectionSocket and into inFromClient; the HTTP
response message goes into outToClient, through connectionSocket and
into the network. The remaining portion of the code differs significantly from
TCPServer. java.

requestMessageLine = inFromClient.readLine();

The above command reads the first line of the HTTP request message. This line is
supposed to be of the form

GET file name HTTP/1.0
Our server must now parse the line to extract the file name.

StringTokenizer tokenizedLine =
new StringTokenizer (requestMessageLine);
if (tokenizedLine.nextToken().equals(“GET"”)){
fileName = tokenizedLine.nextToken();
if (fileName.startsWith(“/”) == true )
fileName = fileName.substring(l);

The above commands parse the first line of the request message to obtain the
requested file name. The object tokenizedLine can be thought of as the origi-
nal request line with each of the “words” GET, file name, and HTTP/1.0
placed in a separate placeholder called a token. The server knows from the HTTP
RFC that the file name for the requested file is contained in the token that follows
the token containing “GET.” This file name is put in a string called £ileName. The
purpose of the last i f statement in the above code is to remove the slash that may
precede the file name.

FileInputStream inFile = new FileInputStream (fileName);
The above command attaches a stream, inFile, to the file £ileName.

byte[] fileInBytes = new byte[numOfBytes];
inFile.read(fileInBytes);

These commands determine the size of the file and construct an array of bytes of
that size. The name of the array is fileInBytes. The last command reads from
the stream inFile to the byte array fileInBytes. The program must convert
to bytes because the output stream outToClient may only be fed with bytes.

167



168

CHAPTER 2

* APPLICATION LAYER

Now we are ready to construct the HTTP response message. To this end we
must first send the HTTP response header lines into the DataOutputStream
outToClient:

outToClient.writeBytes(“HTTP/1.0 200 Document
Follows\r\n”);

if (fileName.endsWith(“.jpg”))
outToClient.writeBytes (“Content-Type:
image/jpeg\r\n”);

if (fileName.endsWith(“.gif”))
outToClient.writeBytes (“Content-Type:
image/gif\r\n”);

outToClient.writeBytes(“Content-Length: “ + numOfBytes +

“\r\n"”);
outToClient.writeBytes(“\r\n")

The above set of commands is particularly interesting. These commands prepare the
header lines for the HTTP response message and send the header lines to the TCP
send buffer. The first command sends the mandatory status line HTTP/1.0 200
Document Follows, followed by a carriage return and a line feed. The next two
command lines prepare a single content-type header line. If the server is to transfer
a GIF image, then the server prepares the header line Content-Type:
image/gif. If, on the other hand, the server is to transfer a JPEG image, then the
server prepares the header line Content-Type: image/jpeg. (In this simple
Web server, no content line is sent if the object is neither a GIF nor a JPEG image.)
The server then prepares and sends a content-length header line and a mandatory
blank line to precede the object itself that is to be sent. We now must send the file
FileName into the DataOutputStreamoutToClient
We can now send the requested file:

outToClient.write(fileInBytes, 0, numOfBytes);

The above command sends the requested file, fileInBytes, to the TCP send
buffer. TCP will concatenate the file, fileInBytes, to the header lines just cre-
ated, segment the concatenation if necessary, and send the TCP segments to the
client. After serving one request for one file, the server performs some housekeep-
ing by closing the socket connectionSocket:

connectionSocket.close();

To test this Web server, install it on a host. Also put some files in the host. Then
use a browser running on any machine to request a file from the server. When you



2.10 o

request a file, you will need to use the port number that you include in the server
code (for example, 6789). So if your server is located at somehost.some-
where.edu, the file is somefile.html, and the port number is 6789, then the
browser should request the following:

http://somehost.somewhere.edu:6789/somefile.html

2.10 Summary

In this chapter we’ve studied the conceptual and the implementation aspects of net-
work applications. We’ve learned about the ubiquitous client-server architecture
adopted by Internet applications and seen its use in the HTTP, FTP, SMTP, POP3,
and DNS protocols. We’ve studied these important application-level protocols, their
associated applications (the Web, file transfer, e-mail, and DNS) in some detail.
We’ve also learned about the increasingly prevalent P2P architecture and seen its
use in P2P file sharing. We’ve examined how the socket API can be used to build
network applications. We’ve walked through the use of sockets for connection-ori-
ented (TCP) and connectionless (UDP) end-to-end transport services, and also built
a simple Web server using sockets. The first step in our journey down the layered
network architecture is complete!

At the very beginning of this book, in Section 1.1, we gave a rather vague,
bare-bones definition of a protocol: “the format and the order of messages
exchanged between two or more communicating entities, as well as the actions
taken on the transmission and/or receipt of a message or other event.” The mate-
rial in this chapter, and in particular our detailed study of the HTTP, FTP, SMTP,
POP3, and DNS protocols, has now added considerable substance to this defini-
tion. Protocols are a key concept in networking; our study of applications proto-
cols has now given us the opportunity to develop a more intuitive feel for what
protocols are all about.

In Section 2.1 we described the service models that TCP and UDP offer to
applications that invoke them. We took an even closer look at these service models
when we developed simple applications that run over TCP and UDP in Sections 2.7
through 2.9. However, we have said little about how TCP and UDP provide these
service models. For example, we have said little about how TCP provides a reliable
data transfer service to its applications. In the next chapter we’ll take a careful look
at not only the what, but also the how and why of transport protocols.

Equipped with knowledge about Internet application structure and application-
level protocols, we’re now ready to head further down the protocol stack and exam-
ine the transport layer in Chapter 3.

SUMMARY

169





