Parte IV

Noções de sistemas de fila

- Um sistema de filas consiste em um ou mais servidores que fornecem algum serviço para clientes que chegam. Quem chega e encontra todos os servidores ocupados entra em alguma fila.
- Grande parte das simulações de evento discreto modelam sistemas de filas do mundo real.

Sistema	Servidor	idor Cliente	
Banco	Caixas	Clientes	
Hospital	Médicos	Pacientes	
	Enfermeiros		
	Leitos		
Computacional	CPU	Tarefas	
	Dispositivos		
Fábrica	Trabalhadores	Produtos	
	Máquinas		
Aeroporto	Pistas	Aviões	
	Portões	Viajantes	
	Check-in		
Comunicação	Linhas	Chamadas	
	Circuitos	Chamadores	
	Operadores	Mensagens	

8 Componentes e Notação

- 3 componentes: processo de chegada, mecanismo de serviço e disciplina da fila.
- Processo de chegada: como os clientes chegam no sistema.
 - Seja A_i a duração entre a chegada do (i-1)-ésimo e do i-ésimo clientes.
 - Se A_1, A_2, \ldots são v.a. i.i.d., então denotamos por E[A] o tempo médio entre chegadas, e por $\lambda = 1/E[A]$ a taxa de chegada de clientes.
- Mecanismo de serviço: (i) número de servidores, (ii) fila única ou uma por servidor, e (iii) distribuição de probabilidades do tempo de atendimento.
 - Seja S_i a duração do i-ésimo atendimento de um servidor.
 - Se S_1, S_2, \ldots são v.a. i.i.d., então denotamos por E[S] o tempo médio de atendimento do servidor, e por $\omega = 1/E[A]$ a taxa de serviço do servidor.
- Disciplina da fila: regra para escolher o próximo cliente na fila. Ex.:
 - FIFO: primeiro o cliente que chegou a mais tempo.

3

- LIFO: primeiro o cliente que chegou a menos tempo. Ex.: produtos perecíveis no estoque.
- Prioridade: baseado em ordem de importância (ex.: uso da CPU, idoso no banco), ou característica do serviço requerido (ex.: descarga de caminhões mais leves).
- Notação (fila única, FIFO, chegada e atend. i.i.d.): dist. chegada / dist. atend. / num. servidores
 - − G: distribuição qualquer.
 - M: distribuição exponencial.
 - $-E_k$: k-Erlang (soma de k exponenciais).

9 Medidas de performance

- Sejam
 - $-D_i$: atraso na fila do *i*-ésimo cliente.
 - $-W_i = D_i + S_i$: tempo que cliente *i* passou no sistema.
 - -Q(t): número de clientes da fila no instante t.
 - -L(t): número de clientes no sistema no instante t (ou seja, Q(t) mais o número de clientes sendo atendidos no instante t).
- Atraso médio (estacionário):

$$d = \lim_{n \to \infty} \frac{\sum_{i=1}^{n} D_i}{n}$$

• Tempo médio (estacionário) no sistema:

$$w = \lim_{n \to \infty} \frac{\sum_{i=1}^{n} W_i}{n}$$

 Média no tempo (estacionária) do número de clientes na fila:

$$Q = \lim_{T \to \infty} \frac{\int_0^T Q(t)dt}{T}$$

• Média no tempo (estacionária) do número de clientes no sistema:

$$L = \lim_{T \to \infty} \frac{\int_0^T L(t)dt}{T}$$

 Para filas G/G/s, o fator de utilização é definido como:

$$\rho = \frac{\lambda}{s\omega}$$

- $\rho < 1$ é condição necessária para a existência de d, w, Q e L.

10 Equações de conservação

 \bullet Para todo sistema de fila onde $d \in w$ existem,

$$Q = \lambda d$$
 e $L = \lambda w$.
$$w = d + E[S]$$

- Quando a distribuição do tempo entre chegadas, ou a distribuição do tempo de atendimento (ou ambas), é exponencial (ou uma variação da exponencial, como a k-Erlang), podemos obter solução analítica para as medidas de performance.
 - Ex.: para filas M/G/1,

$$d = \lambda \left(\frac{\operatorname{Var}[S] + (E[S])^2}{2(1 - \lambda E[S])} \right).$$

Parte V Revisão de

probabilidade e estatística

Probabilidade e estatística são utilizados para (1) modelar sistemas estocásticos, (2) validar o modelo, (3) escolher as distribuições de entrada, (4) gerar números aleatórios, (5) realizar análise da saída do simulador e (6) projetar experimentos.

11 Variáveis aleatórias e suas propriedades

- O conjunto de todos os resultados possíveis de um experimento é chamada espaço amostral, denotado por S.
 - Ex.: lançamento de moeda $(S = \{cara, coroa\})$, lançamento de dado $(S = \{1, 2, 3, 4, 5, 6\})$.
- Uma variável aleatória é uma função que associa um número real a cada ponto do espaço amostral.
 - Ex.: lançamento de moeda 10 vezes (v.a. número de caras), lançamento de dado 2 vezes (v.a. soma dos valores).
- Uma função de distribuição acumulada F(x) de uma v.a. X é definida como

$$F(x) = \Pr[X \le x]$$
, para todo x real.

- A função F(x) tem as propriedades:
 - $-0 \le F(x) \le 1$ para todo x.
 - -F(x) é não decrescente (se $x_1 < x_2$, então $F(x_1) \le F(x_2)$).
 - $-\lim_{x\to+\infty} F(x) = 1 \text{ e } \lim_{x\to-\infty} F(x) = 0.$
- Uma v.a. X é discreta se pode assumir no máximo uma quantidade "contável" de valores.
 - "Contável" significa que existe uma bijeção entre este conjunto e os números naturais.
 - Toda v.a. que pode assumir uma quantidade finita de valores é discreta.
- A probabilidade de uma v.a. X assumir valor x_i é denota por $p(x_i) = \Pr[X = x_i]$ (função de densidade de probabilidade).
 - Portanto, $\sum_{i=1}^{\infty} p(x_i) = 1$.
 - $F(x) = \sum_{x_i \le x} p(x_i).$
 - Ex.: fig. L4.1 e L4.2.

• Uma v.a. X é contínua se existe uma função não negativa f(x) (função de densidade de probabilidade) tal que para todo conjunto de números reais B,

$$\Pr[X \in B] = \int_B f(x)dx.$$

- Logo, $\int_{-\infty}^{+\infty} f(x)dx = 1$.
- $-\Pr[X = x] = \Pr[X \in [x, x]] = \int_{x}^{x} f(y)dy = 0.$
- Para todo $\Delta x > 0$,

$$\Pr[X \in [x, x + \Delta x]] = \int_{x}^{x + \Delta x} f(y) dy,$$

ou seja, a probabilidade é a área abaixo de f(x) no intervalo $[x, x + \Delta x]$.

Ex.: fig. L4.3.

- $-F(x) = \Pr[X \in [-\infty, x]] = \int_{-\infty}^{x} f(y)dy.$
- Utilizando o teorema fundamental do cálculo,

$$\Pr[X \in [a, b]] = \int_{a}^{b} f(x)dx = F(b) - F(a).$$

• Ex.: v.a. uniforme no intervalo [0, 1].

$$f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{caso contrário.} \end{cases}$$

- $-F(x) = \int_{-\infty}^{x} f(y)dy = \int_{0}^{1} 1dx = x.$
- $-\Pr[X \in [a, b]] = F(b) F(a) = b a.$
- Fig. L4.4 e L4.5.
- ullet Se X e Y são v.a. discretas, então

$$p(x,y) = \Pr[X = x, Y = y]$$

é chamada função de densidade de probabilidade conjunta de X e Y.

— As funções de densidade de probabilidade marginais de X e Y são

$$p_X(x) = \sum_{\forall y} p(x, y), \text{ e } p_Y(y) = \sum_{\forall x} p(x, y).$$

- -X e Y são independentes se $p(x,y)=p_X(x)p_Y(y)$ para todo x,y. Conhecer o valor de uma das v.a. não afeta a distribuição da outra.
- Ex.: p(x,y)=xy/27 para $x\in\{1,2\}$ e $y\in\{2,3,4\}$, zero caso contrário. Verificar independência.

$$p_X(x) = \frac{x \times 2}{27} + \frac{x \times 3}{27} + \frac{x \times 4}{27} = \frac{x}{3}$$
$$p_Y(y) = \frac{1 \times y}{27} + \frac{2 \times y}{27} = \frac{y}{9}$$
$$p_X(x)p_Y(y) = \frac{xy}{27} = p(x, y)$$

 As v.a. X e Y são conjuntamente contínuas se existe uma função não negativa f(x, y) (chamada função de densidade de probabilidade conjunta de X e Y) tal que para todo par de conjuntos reais A e B,

$$\Pr[X \in A, Y \in B] = \int_{B} \int_{A} f(x, y) dx dy.$$

— As funções de densidade de probabilidade mar-ginais de X e Y são

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
, e $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$.

- X e Y são independentes se $f(x,y) = f_X(x)f_Y(y)$ para todo x,y.
- Ex.: f(x,y)=24xy para $x\geq 0, y\geq 0, x+y\leq 1,$ zero caso contrário. Verificar independência.

$$f_X(x) = \int_0^{1-x} 24xy dy = 24x \left. \frac{y^2}{2} \right|_0^{1-x} = 12x(1-x)^2$$
$$f_Y(y) = 12y(1-y)^2$$

* contra-exemplo:

$$f_X\left(\frac{1}{2}\right)f_Y\left(\frac{1}{2}\right) = \left(\frac{3}{2}\right)^2 \neq f\left(\frac{1}{2}, \frac{1}{2}\right) = 6$$

• A média ou valor esperado (denotado por μ ou E[X]) de uma v.a. X é definido como

$$\mu = \begin{cases} \sum_{i=1}^{\infty} x_i p(x_i), & \text{se } X \text{ \'e discreta,} \\ \int_{-\infty}^{+\infty} x f(x) dx, & \text{se } X \text{ \'e cont\'inua.} \end{cases}$$

- "Centro de gravidade" dos dados.
- Ex.: uniforme entre 0 e 1. $\mu = \int_0^1 x \cdot 1 \cdot dx = 1/2$.
- Valor esperado de função de v.a. (g(X)):

$$E[g(X)] = \begin{cases} \sum_{i=1}^{\infty} g(x_i) p(x_i), & \text{se } X \text{ \'e discreta,} \\ \int_{-\infty}^{+\infty} g(x) f(x) dx, & \text{se } X \text{ \'e cont\'inua.} \end{cases}$$

- Propriedades do valor esperado:
 - -E[aX + b] = aE[X] + b (linearidade).
 - $E[\sum_{i=1}^{n} c_i X_i] = \sum_{i=1}^{n} c_i E[X_i]$, mesmo quando as v.a. não são independentes.
- A mediana é o menor valor de x tal que $F(x) \ge 0.5$.
 - A mediana é menos sensível a valores extremos do que a média.
 - Ex.: 1,2,3,4,5 com prob. 0.2 tem média e mediana 3.

Ex.: 1,2,3,4,100 com prob. 0.2 tem média 22 e mediana 3.

• A variância de uma v.a. X (denotada por σ^2 ou Var(X)) é definida como

$$\sigma^2 = E[(X - \mu)^2] = E[X^2 - 2\mu X + \mu^2] = E[X^2] - \mu^2.$$

- Medida de dispersão: quanto maior a variância, maior a chance da v.a. se afastar do valor esperado. Fig. L4.9.
- Por que não usar $E[X \mu]$? E usar $E[|X \mu|]$?
- Ex.: uniforme entre 0 e 1.

$$E[X^2] = \int_0^1 x^2.1.dx = \left. \frac{x^3}{3} \right|_0^1 = \frac{1}{3}.$$

$$\sigma^2 = \frac{1}{3} - \left(\frac{1}{2}\right)^2 = \frac{1}{12}.$$

- O desvio padrão (denotado por σ) é definido como $\sigma = \sqrt{\sigma^2}$.
- Propriedades da variância:
 - $\operatorname{Var}(X) \ge 0.$
 - $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X).$
 - $\operatorname{Var}(\sum_{i=1}^{n} c_i X_i) = \sum_{i=1}^{n} c_i^2 \operatorname{Var}(X_i)$, quando as v.a. são independentes (na verdade basta que sejam não correlacionadas).
- A covariância entre duas v.a. X_i e X_j (denotada por C_{ij} ou $Cov(X_i, X_j)$) é definida como

$$C_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)] = E[X_i X_j] - \mu_i \mu_j.$$

- Mede dependência **linear** entre as v.a. X_i e X_j : o quanto o gráfico entre elas se aproxima de uma reta.
- Se forem independentes, o gráfico vai se afastar de uma reta. Porém, também se afasta se houver relação não linear!
- Ou seja, independência implica em covariância nula, mas covariância nula não implica em independência.
- Exceção: quando a dist. é normal multivariada (marginais são normais), covariância nula implica em indepedência.
- As covariâncias são simétricas: $C_{ij} = C_{ji}$.
- $-C_{ii}=\sigma_i^2$
- Se $C_{ij} > 0$ (positivamente correlacionada), $X_i > \mu_i e X_j > \mu_j$ tendem a ocorrer juntos, bem como $X_i < \mu_i e X_j < \mu_j$. Portanto, se uma v.a. tem valor alto, a outra provavelmente também tem.
- Se $C_{ij} < 0$ (negativamente correlacionada), $X_i > \mu_i$ e $X_j < \mu_j$ tendem a ocorrer juntos, bem como $X_i < \mu_i$ e $X_j > \mu_j$. Portanto, se uma v.a. tem valor alto, a outra provavelmente tem valor baixo.

- Unidade: se a v.a. está em minutos, a covariância está em minutos ao quadrado. Para facilitar a interpretação utilizamos a correlação.
- A correlação (denotada por ρ_{ij}) é definida como

$$\rho_{ij} = \frac{C_{ij}}{\sqrt{\sigma_i^2 \sigma_j^2}}.$$

- $-1 \le \rho_{ij} \le 1.$
- Se ρ_{ij} é muito próxima a 1, as variáveis são altamente positivamente correlacionadas.
- Se ρ_{ij} é muito próxima a -1, as variáveis são altamente negativamente correlacionadas.

12 Processos estocásticos

- Um processo estocástico é uma coleção de v.a. ordenadas no tempo, todas definidas em um mesmo espaço amostral.
 - A saída do simulador é um processo estocástico.
 - Se a coleção é $X_1, X_2, ...$, temos um processo estocástico de tempo discreto.
 - Se a coleção é $\{X(t), t \geq 0\}$, temos um processo estocástico de tempo contínuo.
 - Ex.: número de clientes na fila (contínuo), custo total em cada ponto de avaliação do sistema de estoque (discreto).
- Um processo estocástico tem covariância estacionária se

$$\begin{array}{ll} \mu_i = \mu & \text{para } i = 1, 2, \ldots, \text{ e } -\infty < \mu < +\infty \\ \sigma_i^2 = \sigma^2 & \text{para } i = 1, 2, \ldots, \text{ e } \sigma^2 < +\infty \end{array}$$

 $C_j = \text{Cov}(X_i, X_{i+j})$ independe de i, para j = 1, 2, ... $C_v = \text{Cov}(X(t), X(t+v))$ independe de t, para v > 0

- A covariância depende apenas da distância (lag) entre as variáveis.
- A correlação entre X_i e X_{i+j} é então definida como

$$\rho_{i,i+j} = \frac{C_{i,i+j}}{\sqrt{\sigma_i^2 \sigma_{i+j}^2}} = \frac{C_j}{\sigma^2} = \rho_j.$$

- Esta suposição permite a análise estatística de processos estocásticos, mas nem sempre é válida na prática (testar).
- Frequentemente a saída do simulador não tem covariância estacionária no começo (devido à escolha das condições iniciais), mas torna-se estacionária após um tempo de execução (warmup).
 - * Ex.: como a fila do banco está inicialmente vazia, E[Q(0)] = 0, mas E[Q(t)] > 0 para t > 0. Porém, existe prova matemática de que sistemas de filas com 1 servidor são estacionários.

13 Estimativas de médias, variâncias e correlações

- Sejam X_1, X_2, \ldots, X_n v.a. i.i.d. (observações), onde a população tem média finita μ e variância finita σ^2 .
- Desejamos estimar a média μ e variância σ^2 populacionais utilizando esta amostra.
- A média amostral

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

é um estimador não viesado $(E[\overline{X}] = \mu)$ de μ .

• A variância amostral

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

é um estimador não viesado de σ^2 .

$$(X_{i} - \overline{X})^{2} = X_{i}^{2} - 2X_{i}\overline{X} + \overline{X}^{2}$$

$$X_{i}\overline{X} = \frac{X_{i}^{2} + \sum_{j \neq i} X_{i}X_{j}}{n}$$

$$E[X_{i}^{2}] = \sigma^{2} + \mu^{2}, \quad E[X_{i}X_{j}] = \mu^{2} \text{ (pois } C_{ij} = 0)$$

$$E[X_{i}\overline{X}] = \frac{\sigma^{2} + \mu^{2} + (n-1)\mu^{2}}{n} = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$\overline{X}^{2} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i}X_{j}}{n^{2}} = \frac{\sum_{i=1}^{n} (X_{i}^{2} + \sum_{j \neq i} X_{i}X_{j})}{n^{2}}$$

$$E[X_{i}^{2} + \sum_{j \neq i} X_{i}X_{j}] = \sigma^{2} + \mu^{2} + (n-1)\mu^{2} = \sigma^{2} + n\mu^{2}$$

$$E[\overline{X}^{2}] = \frac{\sigma^{2}}{n} + \mu^{2} = E[X_{i}\overline{X}]$$

$$E[(X_{i} - \overline{X})^{2}] = \sigma^{2} + \mu^{2} - \left(\frac{\sigma^{2}}{n} + \mu^{2}\right) = \frac{n-1}{n}\sigma^{2}$$

• O quão afastado \overline{X} está de μ ? Como as v.a. X_i são independentes,

$$\operatorname{Var}[\overline{X}] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}[X_{i}] = \frac{\sigma^{2}}{n}$$

- Ou seja, quanto maior o tamanho n da amostra, mais próximo \overline{X} deve estar de μ .
- Podemos usar o estimador de σ^2 para estimar $\operatorname{Var}[\overline{X}]$:

$$\widehat{\mathrm{Var}}[\overline{X}] = \frac{S^2}{n} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n(n-1)}.$$

- Como as v.a. são independentes, temos que $\rho_{i,j} = 0$ para todo par (i, j) (não precisamos estimar).
- O que acontece com estes estimadores quando as observações não são independentes?

- "If there are simulations with independent output data, we have never seen one." [Law]
- Ex.: o tempo que o cliente esperou tem correlação com o tempo esperado pelo cliente anterior?
- Vamos assumir que o conjunto de v.a. tem pelo menos covariância estacionária.
 - * Neste caso, \overline{X} é um estimador não viesado para μ , mas S^2 passa a ser um estimador viesado para σ^2 .

$$E[S^2] = \sigma^2 \left[1 - 2 \frac{\sum_{j=1}^{n-1} (1 - j/n) \rho_j}{n - 1} \right]$$

$$E[Var[\overline{X}]] = \frac{\sigma^2}{n} \left[1 + 2 \sum_{j=1}^{n-1} (1 - j/n) \rho_j \right]$$

$$E\left[\frac{S^2}{n}\right] = Var[\overline{X}] \frac{n/a - 1}{n - 1},$$
onde $a = 1 + 2 \sum_{j=1}^{n-1} (1 - j/n) \rho_j$

- * Ou seja, se $\rho_j>0$ (caso comum) então $E[S^2]<\sigma^2,\ a>1$ e $E[S^2/n]<\mathrm{Var}[\overline{X}].$ Estamos subestimando a variância!
- * As correlações podem ser estimadas com

$$\hat{\rho_j} = \frac{\hat{C}_j}{S^2}, \text{ onde}$$

$$\hat{C}_j = \frac{\sum_{i=1}^{n-j} (X_i - \overline{X})(X_{i+j} - \overline{X})}{n-j}$$

- * Com estes estimadores para as correlações podemos melhorar o estimador da variância.
- * Porém, ρ_j é bom estimador apenas quando n é grande e j é bem menor que n (viesado, grande variância, e correlacionado com outros $\rho_k, k \neq j$).
- * Note que $\hat{\rho_j}$ pode ser diferente de zero mesmo quando $\rho_j = 0$, pois $\hat{\rho_j}$ é uma v.a..

14 Intervalo de confiança e teste de hipótese para a média

- Sejam X_1, X_2, \ldots, X_n v.a. i.i.d. com média μ e variância σ^2 finitas.
- Teorema do Limite Central: para n "suficientemente grande", a v.a.

$$Z = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}}$$

tem distribuição aproximadamente normal com média 0 e variância 1 (normal padrão), independente da distribuição dos X_i 's.

- Geralmente a variância não é conhecida, mas para n grande podemos substituir σ^2 por S^2 .
- O ponto crítico z_{β} de uma v.a. normal padrão Z é tal que $\Pr[Z \leq z_{\beta}] = \beta$.
 - Ex.: se $\beta = 0.975$, então $z_{\beta} = 1.96$ (tabela).
- Então, (Fig. L4.15)

$$\Pr[-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2}] = 1 - \alpha$$

- Ex.: $\alpha = 0.05$, $\Pr[-1.96 \le Z \le 1.96] = 0.95$.
- Intervalo de confiança $100(1-\alpha)\%$ (para n grande):

$$\Pr\left[-z_{1-\alpha/2} \le \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \le z_{1-\alpha/2}\right] = 1 - \alpha$$

$$\Pr\left[\overline{X} - z_{1-\alpha/2}\sqrt{\frac{S^2}{n}} \le \mu \le \overline{X} + z_{1-\alpha/2}\sqrt{\frac{S^2}{n}}\right] = 1 - \alpha$$

- Interpretação: se construirmos vários intervalos de confiança com base em amostras independentes de tamanho n (grande), $100(1-\alpha)\%$ destes intervalos conterão a média populacional μ .
- Problema: o tamanho n ("suficientemente grande") depende do quanto a distribuição dos X_i 's se afasta de uma normal.
- Quando os X_i 's têm distribuição normal, Z tem distribuição t com n-1 graus de liberdade.
 - Logo, o intervalo de confiança $100(1-\alpha)\%$ vale

$$\overline{X} \pm t_{n-1,1-\alpha/2} \sqrt{\frac{S^2}{n}},$$

- onde $t_{n-1,1-\alpha/2}$ é o ponto crítico da dist. t com n-1 graus de liberdade tal que $\Pr[Z \leq t_{n-1,1-\alpha/2}] = 1-\alpha$.
- A distribuição t tem caudas maiores que a normal, fornecendo intervalos de confiança mais largos (mais conservadores).
- Na prática os X_i's raramente tem distribuição normal, logo os intervalos de confiança utilizando a distribuição t também são aproximados.
 - Mas como estes intervalos são mais conservadores, são mais recomendados que aqueles utilizando a distribuição normal.
 - Mesmo porque, a distribuição t converge para a distribuição normal com o aumento de n.
- Ex.: (matlab)

 $x = [1.2 \ 1.5 \ 1.68 \ 1.89 \ 0.95 \ 1.49 \ 1.58 \ 1.55 \ 0.5 \ 1.09];$

mean(x), tinv(0.95,9)*sqrt(var(x)/10)

- $-\mu = 1.34 \pm 0.24$ (90% de confiança da média ocorrer neste intervalo).
- \bullet Cobertura da média por intervalo de confiança 90% em 500 experimentos:

Distribuição	Skew	n=5	n = 10	n = 20	n = 40
Normal	0.00	0.910	0.902	0.898	0.900
Exponencial	2.00	0.854	0.878	0.870	0.890
Chi quadrada	2.83	0.810	0.830	0.848	0.890
Lognormal	6.18	0.758	0.768	0.842	0.852
Hiper-exp	6.43	0.584	0.586	0.682	0.774

- Se a amostra X_1, X_2, \ldots, X_n é i.i.d. com distribuição aproximadamente normal (ou com n grande), podemos utilizar a estatística Z para testar a hipótese $H_0: \mu = \mu_0$.
 - Se a hipótese for verdadeira, então Z tem distribuição t com n-1 graus de liberdade.
 - Portanto, com nível de confiança α : Rejeitamos H_0 se $|Z| > t_{n-1,1-\alpha/2}$. "Aceitamos" H_0 caso contrário.
 - Podemos cometer dois tipos de erros: tipo 1 (rejeitar H_0 quando for verdadeira) e tipo 2 (aceitar H_0 quando for falsa).
 - Quando H_0 é verdadeira, a chance de rejeitar H_0 vale α .
 - * Ou seja, temos controle sobre a chance de cometer este erro.
 - * Geralmente escolheremos confiança $\alpha = 0.05$ ou $\alpha = 0.10$, antes de realizar o teste.
 - Quando H_0 é falsa, não conhecemos a distribuição de Z.
 - * Ou seja, não temos controle da confiança do teste se a hipótese for falsa.
 - * Neste sentido, na verdade nunca aceitamos H_0 , mas apenas deixamos de rejeitar.
 - * Sabemos apenas que a probabilidade de cometer o erro tipo 2 diminui com o aumento de n.
 - Ex.: com os dados do exemplo anterior (matlab), rejeitamos a hipótese de que $\mu=1$ com nível $\alpha=0.1$?

15 Problemas ao substituir uma distribuição pela sua média

- Para simplificar o modelo, o analista pode ficar tentado a substituir uma v.a. de entrada pelo valor esperado.
- Ex.: fila M/M/1 com $\lambda = 1$ e $\omega = 0.99$ (em minutos).
 - Substituindo o tempo entre chegadas pela média, teríamos intervalos fixos de 1 min entre chegadas.

- Substituindo o tempo de atendo pela média, teríamos sempre o atendimento em 0.99 min.
- Portanto, o atraso do cliente seria sempre zero.
- Entretanto,

$$d = 1 \times (0.99^2 + 0.99^2)/(1 - 0.99) = 98.01 \text{ min.}$$

Parte VI

Distribuições clássicas contínuas e discretas

- Para cada distribuição apresentaremos sua definição, uso, média ($\mu = E[X]$), variância ($\sigma^2 = E[(X-\mu)^2] = E[X^2] \mu^2$) e como obter números aleatórios nesta distribuição partindo da distribuição uniforme entre 0 e 1 (U(0,1)). Apresentaremos a expressão da acumulada apenas quando ela não for simplesmente o somatório de densidades de probabilidades.
- A "função geratriz de momentos" $M_X(t)$ de uma VA X é o valor esperado de e^{tX} .

$$M_X(t) = \mathbb{E}[e^{tX}] = \begin{cases} \sum_x e^{tx} f(x), & \text{se } X \text{ \'e discreta} \\ \int_{-\infty}^{+\infty} e^{tx} f(x) dx, & \text{se } X \text{ \'e contínua} \end{cases}$$

$$E[X^r] = \left. \frac{d^r M_X(t)}{dt^r} \right|_{t=0}$$

- Se X é uma VA e a uma constante, então

$$M_{X+a}(t) = e^{at} M_X(t)$$

$$M_{aX}(t) = M_X(at)$$

— Se X_1, \dots, X_n são VA independentes, e $Y = \sum_{i=1}^n X_i$, então

$$M_Y(t) = M_{X_1}(t) \times \ldots \times M_{X_n}(t).$$

• Alguns somatórios utilizados:

- Como
$$\sum_{k=0}^{n} k^2 + (n+1)^2 = \sum_{k=0}^{n} (k+1)^2 = \sum_{k=0}^{n} k^2 + 2 \sum_{k=0}^{n} k + \sum_{k=0}^{n} 1,$$

$$2\sum_{k=0}^{n} k = (n+1)^2 - (n+1) = n(n+1).$$

- Como
$$\sum_{k=0}^{n} k^3 + (n+1)^3 = \sum_{k=0}^{n} (k+1)^3 = \sum_{k=0}^{n} k^3 + 3 \sum_{k=0}^{n} k^2 + 3 \sum_{k=0}^{n} k + \sum_{k=0}^{n} 1$$
,

$$6\sum_{k=0}^{n} k^2 = n(n+1)(2n+1).$$

- Como
$$a \sum_{k=0}^{n} a^k = \sum_{k=0}^{n} a^{k+1} = \sum_{k=0}^{n} a^k + a^{n+1} - 1,$$

$$(1-a)\sum_{k=0}^{n} a^k = 1 - a^{n+1}.$$

- Como
$$\sum_{k=0}^{n} (k+1)a^{k+1} = \sum_{k=0}^{n} ka^k + (n+1)a^{n+1} = a\sum_{k=0}^{n} ka^k + a\sum_{k=0}^{n} a^k$$
,

$$(1-a)^2 \sum_{k=0}^{n} ka^k = a(1-a^{n+1}) - (1-a)(n+1)a^{n+1}.$$

$$\lim_{n \to \infty} \sum_{k=0}^n k a^k = \frac{a}{(1-a)^2}, \quad 0 < a < 1.$$

$$\lim_{n \to \infty} \sum_{k=0}^{n} k^2 a^k = \frac{a(a+1)}{(1-a)^3}, \quad 0 < a < 1.$$

- Para gerar números aleatórios em algumas distribuições utilizaremos o fato de que, se uma VA X tem função de densidade acumulada F(x), então u = F(x) tem distribuição uniforme entre 0 e 1.
 - Assim, x pode ser gerado utilizando algum número aleatório uniforme u, pois $x = F^{-1}(u)$.
 - Prova: $F_U(u) = \Pr[U \le u] = \Pr[X \le F^{-1}(u)] = F(F^{-1}(u)) = u$ (ver figura 28.1, Jain). Além disso, $f_U(x) = dF_U/du = 1$. Logo, $u \sim U(0, 1)$.
 - Para distribuições discretas, nos casos onde a expressão de $F^{-1}(u)$ é complexa, colocamos os valores de F(x) em um array e procuramos o valor de x tal que $F(x) \le u < F(x+1)$.

16 Distribuições Discretas

• Se X uma v.a. discreta, então $\mathrm{E}[X] = \sum_x x p(x)$, onde p(x) é a probabilidade de ocorrência de x.

16.1 Uniforme Discreta

• Uma v.a. X tem distribuição "uniforme discreta" se os n valores que pode assumir x_1, \ldots, x_n tem probabilidades iguais. Portanto,

$$p(x_i) = \frac{1}{n}$$

$$F(x) = \frac{i}{n}, \quad x_i \le x < x_{i+1}, \ x_0 = -\infty, \ x_{n+1} = +\infty$$

• Quando os valores de X são inteiros consecutivos $a, a+1, \ldots, b,$ para $a \leq b,$ temos

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a + 1}{b - a + 1}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

$$\mu = \frac{1}{b-a+1} \sum_{k=a}^{b} k = \frac{(b+a)(b-a+1)}{2(b-a+1)} = \frac{a+b}{2},$$

$$\sigma^2 = \frac{1}{b-a+1} \sum_{k=1}^{b} \left(k - \frac{a+b}{2} \right)^2 = \frac{(b-a+1)^2 - 1}{12}.$$

- É utilizada quando acreditamos que o valor é igualmente provável dentro de um intervalo.
- Ex.: resultado do lançamento de um dado tem $\mu = (1+6)/2 = 3.5$ e $\sigma = \sqrt{((6-1+1)^2-1)/12} \approx 1.7$.
- Para gerar um valor de X, geramos $u \sim U(0,1)$, e retornamos $|a + (b a + 1) \times u|$.

16.2 Bernoulli

• Uma v.a. de Bernoulli pode assumir apenas dois valores 0 (falha) ou 1 (sucesso). Portanto, se p é a probabilidade de sucesso, então 1-p será a probabilidade de falha. Assim

$$p(x) = \begin{cases} 1 - p, & \text{se } x = 0 \\ p, & \text{se } x = 1 \\ 0, & \text{caso contrário} \end{cases}$$

$$\mu = 1 \times p + 0 \times (1 - p) = p$$
$$\sigma^2 = (1 - p)^2 \times p + (0 - p)^2 \times (1 - p) = p(1 - p)$$

- Ex.: no lançamento de uma moeda, podemos considerar cara como sucesso e coroa como falha. Se a moeda for justa, p = 0.5, $\mu = 0.5$ e $\sigma = \sqrt{0.5 \times 0.5} = 0.5$.
- Utilizando $u \sim U(0,1)$, geramos um valor para esta v.a. retornando 1 se $u \leq p$, e 0 caso contrário.

16.3 Binomial

- Considere um experimento onde são coletadas n observações independentes de uma VA de Bernoulli com probabilidade de sucesso 0 . A VA <math>X que é igual ao número de sucessos neste experimento é chamada de "binomial" com parâmetros p e n.
 - Como os n eventos são independentes, a probabilidade de ocorrer uma dada combinação com x sucessos é $p^x(1-p)^{n-x}$. Como existem $\binom{n}{x}$ destas combinações,

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

– Se Y é uma VA de Bernoulli, $M_Y(t) = 1 - p + e^t p$. Então,

$$M_X(t) = (1 - p + e^t p)^n.$$

$$\mu = n(1 - p + e^t p)^{n-1} (e^t p)|_{t=0} = np$$

$$E[X^2] = n(1 - p + e^t p)^{n-1} (e^t p)$$

$$+ n(n-1)(1 - p + e^t p)^{n-2} (e^t p)^2|_{t=0}$$

$$= np + n(n-1)p^2$$

$$\sigma^2 = np + n(n-1)p^2 - (np)^2 = np(1-p)$$

• Ex.: (matlab)

p=.9;n=10;x=1:n;bar(x, binopdf(x,n,p));grid on
p=.5;n=10;x=1:n;bar(x, binocdf(x,n,p));grid on
p=.9;n=100;r=binornd(n,p),[p,pci]=binofit(r,n)

- Ex.: Se a probabilidade de um computador falhar em 2 anos é de 10%, qual a probabilidade de x computadores terem falhados neste período em um laboratório com 10 computadores? Figura 3-8(b), Montgomery.
- Podemos gerar um valor para X gerando n valores independentes para uma variável de Bernoulli com probabilidade de sucesso p, e somando estes n valores.

16.4 Geométrica

 Considere um experimento onde são coletadas uma sequência de observações independentes de uma VA de Bernoulli com probabilidade de sucesso 0
 A VA X que é igual ao número de observações até o primeiro sucesso é chamada de "geométrica" com parâmetro p.

$$p(x) = (1-p)^{x-1}p, \ x = 1, 2, \dots$$

$$F(x) = \sum_{k=1}^{x} (1-p)^{k-1}p = 1 - (1-p)^{x}$$

$$M_X(t) = \sum_{k=1}^{\infty} e^{tx}(1-p)^{x-1}p = \frac{pe^t}{1 - (1-p)e^t}$$

$$\mu = M_X'(t)|_{t=0} = \frac{1}{p}$$

$$\sigma^2 = M_X''(t)|_{t=0} - \mu^2 = \frac{1-p}{p^2}$$

• Ex.: (matlab)

p=.5; n=10; x=1:n; bar(x, geopdf(x,p)); grid on p=.5; n=10; x=1:n; bar(x, geocdf(x,p)); grid on Estimativa de p usa a média.

- Ex.: Se a chance de falha na transmissão de uma mensagem é de 10%, qual a probabilidade de precisarmos transmitir a mensagem x vezes? Figura 3-9.
- Esta distribuição é "sem memória", no sentido de que as observações passadas não afetam as observações futuras.
 - Ex.: Se enviamos 100 mensagens e todas elas falharam, a probabilidade de que o primeiro sucesso ocorra na mensagem 105 é $(1-p)^4p$, ou seja, igual a probabilidade de sucesso na quinta mensagem de uma nova sequência.
- Geração utilizando $F^{-1}(x)$: $x = \lceil \ln(1-u)/\ln(1-p) \rceil$. Como $1 - u \sim U(0, 1)$, podemos usar

$$x = \left\lceil \frac{\ln(u)}{\ln(1-p)} \right\rceil.$$

16.5 Pascal

- A distribuição de "Pascal" é uma generalização da geométrica, onde a VA X é a quantidade necessária de observações independentes (de uma VA de Bernoulli) até atingirmos r sucessos.
 - A probabilidade de uma dada combinação com r sucessos e x-r falhas $(x \ge r)$ é $(1-p)^{x-r}p^r$. Como a última observação é de sucesso, temos $\binom{x-1}{x-1}$ destas combinações. Portanto,

$$f(x) = {x-1 \choose r-1} (1-p)^{x-r} p^r, \quad x = r, r+1, \dots$$

- Seja a VA Y_1 o número de observações até o primeiro sucesso, Y_2 o número de observações entre o primeiro sucesso e o segundo sucesso, assim sucessivamente.
 - Portanto, podemos interpretar uma VA binomial negativa X como a soma $Y_1 + \cdots + Y_r$.
 - Note que as VAs Y_i são geométricas. Além disso, como a distribuição geométrica não tem memória, as VAs Y_i são independentes.

$$\mu = \sum_{i=1}^{r} E[Y_i] = \frac{r}{p}$$
$$\sigma^2 = \sum_{i=1}^{r} E[(Y_i - E[Y_i])^2] = \frac{r(1-p)}{p^2}$$

- Ex.: Se a chance de falha na transmissão de uma mensagem é de 10%, qual a probabilidade de precisarmos fazer x transmissões na tentativa de enviar r mensagens?
- Geração: produza uma sequência de $u_i \sim U(0,1)$ até que r observações sejam menores que p. Retorne o número de observações.

16.6 Binomial Negativa

- Uma VA X tem distribuição "binomial negativa" se ela representa o número de falhas em experimentos de Bernoulli até atingirmos r sucessos.
 - A probabilidade de uma combinação com x falhas e r sucessos é $(1-p)^x p^r$. Como o último evento é sucesso, temos $\binom{x+r-1}{r-1}$ destas combinações. Assim,

$$f(x) = {x+r-1 \choose r-1} (1-p)^x p^r.$$

— Podemos interpretar uma VA X com distribuição "binomial negativa" como uma VA Y com distribuição de "Pascal" subtraida de r (ou seja, contabiliza apenas as falhas). Portanto,

$$\mu = E[Y] - r = \frac{r(1-p)}{p}$$

$$\sigma^2 = \sigma_Y^2 = \frac{r(1-p)}{p^2}$$

• Ex.: (matlab)

p=.5;r=1;x=0:20;bar(x, nbinpdf(x,r,p));grid on p=.5;r=3;x=0:20;bar(x, nbinpdf(x,r,p));grid on p=.5;r=5;x=0:20;bar(x, nbinpdf(x,r,p));grid on

Acidentes por dia:

a=[2 3 4 2 3 1 12 8 14 31 23 1 10 7 0];

mean(a),var(a),[p,pci]=nbinfit(a)

Var. > média => não Poisson/Binomial

x=0:20;bar(x, nbinpdf(x,p(1),p(2)));grid on

• Geração: produzimos um valor para uma variável 16.8 com distribuição de Pascal e subtraímos de r.

16.7 Poisson

- Considere um intervalo T e uma VA U uniforme em T. Se dividirmos T em k intervalos T_1, \ldots, T_k de mesmo tamanho L, e gerarmos n valores para U, qual a probabilidade de X valores ocorrerem em T_i ?
 - Note que o resultado será o mesmo para qualquer T_i escolhido, $i=1,\ldots,k$.
 - Temos que X é uma VA binomial com parâmetros n e p=1/k. E portanto, $\mu=n/k$.
- Se o número de intervalos de tamanho L aumentar para ak (a > 1), então a probabilidade de uma observação ocorrer em um determinado intervalo cai para p = 1/(ak).
 - Então, para manter a média de observações nos intervalos constante ($\mu=np=\lambda$), devemos aumentar o número de observações para an.
 - Se aumentarmos indefinidamente o número de intervalos, a distribuição da VA X converge para uma distribuição de "Poisson". Ou seja,

$$f(x) = \lim_{n \to \infty} \binom{n}{x} \left(1 - \frac{\lambda}{n}\right)^{n-x} \left(\frac{\lambda}{n}\right)^x = \frac{\lambda^x e^{-\lambda}}{x!}$$
$$M(t) = e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x e^{tx}}{x!} = e^{(e^t - 1)\lambda}$$

(pois
$$e^x = \sum_{k=0}^{\infty} x^k/k!$$
 – série de Taylor)

$$\mu = M'(t)|_{t=0} = \lambda e^{(e^t - 1)\lambda + t}|_{t=0} = \lambda$$

$$\sigma^2 = M''(t)|_{t=0} - \lambda^2 = \lambda e^{(e^t - 1)\lambda + t} (\lambda e^t + 1)|_{t=0} - \lambda^2 = \lambda$$
 17.2 Normal

• Ex.: (matlab)

l=5; n=15; x=0:n; bar(x, poisspdf(x,l)); grid on

- Esta distribuição é apropriada para modelar casos onde os eventos são produzidos por muitas fontes independentes, e a taxa de ocorrência de eventos é mantida.
 - Ex.: A chegada de clientes em uma fila de banco, em um determinado período do dia. Se os clientes chegam em uma taxa de $\lambda = 2$ cliente por hora, qual a probabilidade de que cheguem 4 cliente na próxima hora (figura 3-14(b))?
- Geração: produze uma sequência $u_i \sim U(0,1)$ até que $u_0 \cdots u_{n-1} > e^{-\lambda} \ge u_0 \cdots u_n$, e retorne n. Em média, $\lambda + 1$ números aleatórios serão necessários.

16.8 Relação entre distribuições

- Figura 29.1, Jain.
- A variância da binomial é sempre menor que a média, a variância da binomial negativa é sempre maior que a média, e a variância da Poisson é sempre igual a média. Esta observação ajuda na escolha da distribuição mais apropriada para o modelo.

16.8.1 Discreta para Contínua: aproximação normal da binomial

17 Distribuições Contínuas

17.1 Uniforme Contínua

 $\bullet\,$ Uma VAXcom densidade de probabilidades

$$f(x) = \frac{1}{b-a}, \quad a < x < b,$$

é "uniforme contínua" com parâmetros a e b.

 Utilizamos quando a VA é limitada e nenhuma outra informação está disponível. Ex.: tempo de acesso ao HD.

$$F(x) = \int_{u=a}^{x} \frac{d_u}{b-a} = \frac{x-a}{b-a}, \quad a < x < b$$

$$\mu = \int_{x=a}^{b} \frac{x}{b-a} dx = \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}$$

$$\sigma^2 = \int_{x=a}^{b} \frac{(x - (a+b)/2)^2}{b-a} dx = \frac{(b-a)^2}{12}$$

- Ex.: figuras 4-8 e 4-9, Mont.
- Geração: x = a + (b a)u.

 $\bullet\,$ Uma VAXcom densidade de probabilidade

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$$

é uma VA "normal" com média μ e desvio padrão $\sigma>0.$

- Esta é a distribuição mais utilizada, pois sempre que um experimento aleatório é repetido, a distribuição da VA que representa o resultado médio deste experimento tende para uma normal (com o aumento do número de repetições) ("Teorema Central do Limite").
- É utilizada sempre que a aleatoriedade é causada por várias fontes independentes atuando aditivamente. Ex.: Erros em medidas. Média amostral de um grande número de observações independentes de uma dada distribuição.

- Ex.: Figuras 4-10, 4-11 e 4-12, Mont.
- Se X tem distribuição normal com parâmetros μ e σ , então

$$Z = \frac{X - \mu}{\sigma}$$

tem distribuição normal com parâmetros $\mu=0$ e $\sigma=1$ (chamada de "normal padrão").

– Portanto, uma VA normal X com parâmetros μ e σ pode ser obtida partindo de uma normal padrão Z:

$$X = \mu + \sigma Z$$
.

• Geração: a média Y de várias observações independentes $u_i \sim U(0,1)$ tende a uma distribuição normal com $\mu = \mu_{u_i} = 1/2$ e $\sigma^2 = \sigma_{u_i}^2/n = 1/(12n)$, onde n é o número de observações. Assim,

$$X = \mu + \sigma \frac{Y - 1/2}{1/\sqrt{12n}} = \mu + \sigma \frac{\sum u_i - n/2}{\sqrt{n/12}}.$$

Exponencial

- Quando os eventos ocorrem de acordo com um processo de Poisson, os tempos entre eventos tem distribuição exponencial.
- Utilizada para modelar o tempo entre chegadas de consumidores, tempo de atendimento/reparo.
- $F(x,a) = 1 e^{-x/a}, a > 0, x \ge 0$

$$f(x,a) = e^{-x/a}/a$$

$$M(t) = \int_0^\infty e^{tx} \frac{e^{-x/a}}{a} dx = \left. \frac{e^{-x/a} e^{tx}}{at - 1} \right|_{x=0}^\infty = \frac{1}{1 - at}$$
$$\mu = -(1 - at)^{-2} (-a) \Big|_{t=0} = a(1 - at)^{-2} \Big|_{t=0} = a$$
$$\sigma^2 + a^2 = 2a^2 (1 - at)^{-3} \Big|_{t=0} = 2a^2$$

• Tem a propriedade sem memória:

$$\Pr[X \ge b + c \mid X \ge b] = \frac{\Pr[X \ge b + c]}{\Pr[X \ge b]} = \frac{e^{-(b+c)/a} \mathbf{F}}{e^{-b/a}}$$
$$= e^{-c/a} = \Pr[X \ge c]$$

Weibull

- Se $Y \sim \text{Exponencial}(\lambda^{-1/b})$, então $X = Y^b$ é uma Weibull(a,b), para $a>0,b>0,x\geq 0$.
- $F(x,a,b) = 1 e^{-(x/a)^b}$.
- Flexível: os parâmetros podem tornar a distribuição mais próxima de uma exponencial ou mais próxima de uma normal.
- \bullet Se b=1, temos uma distribuição exponencial.
- Se b < 1, podemos interpretar como uma exponencial onde a taxa (1/a) cai com o tempo.
- Se b > 1, a taxa da exponencial cresce com o tempo.

Erlang

- Quando os eventos são independentes (processo de Poisson) com taxa λ , o tempo para a ocorrência de k eventos tem distribuição Erlang com parâmetros λ e k
- ullet Ou seja, é a soma de k VAs exponenciais IID.
- Ex.: a soma do tempo de atendimento de k servidores idênticos consecutivos.

Gama

 A distribuição Gama é uma generalização da Erlang, onde o parâmetro k não precisa ser inteiro.

Beta

- Esta distribuição é utilizada para VAs com valores restritos a um intervalo [a,b], e tem forma mais flexível que a uniforme. Ex.: proporções.
- Tem dois parâmetros positivos que determinam a forma da distribuição. Figura Wikipedia.

Cauchy

• Se $Y_1 \sim N(0,1)$ e $Y_2 \sim N(0,1)$ são independentes, então $X = Y_1/Y_2$ tem distribuição de Cauchy.

Chi-quadrada (χ^2)

- Soma dos quadrados de k VAs N(0,1) IID tem distribuição χ^2 com k graus de liberdade.
- Ex.: distribuição da variância amostral de uma VA N(0,1).
- Utilizada também para testar o ajuste dos dados a uma determinada distribuição.
- Se $Y_1 \sim \chi^2(k_i)$ e $Y_2 \sim \chi^2(k_2)$ são independentes, então $X = (Y_1/k_1)/(Y_2/k_2)$ tem distribuição F com k_1 e k_2 graus de liberdade.
- Utilizada em análise de variância e regressão.

t-Student

- Se $Y_1 \sim N(0,1)$ e $Y_2 \sim \chi^2(n)$ são independentes, então $X = Y_1/\sqrt{Y_2/n}$ tem distribuição t com k graus de liberdade.
- Utilizada em testes de hipótese sobre a média, onde a variância também é estimada através da amostra.

17.3 Relação entre distribuições

• Figura 29.2, Jain.

Parte VII

Seleção das distribuições de entrada

18 Verificando independência nos dados

- Algumas técnicas estatísticas assumem independência nos dados.
 - Antes de utilizar esta hipótese, necessário testar.
- Gráfico dos estimadores $\hat{\rho}_j$ das autocorrelações de lag $j=1,\ldots,k.$
 - Se o estimador se afasta muito de zero, então descartamos a independência.
- Gráfico dos pares (x_i, x_{i+1}) .
 - Se as observações são independentes, esperamos que os pontos estejam dispersos aleatoriamente.
 - Quando existe correlação, esperamos encontrar algo próximo a uma reta.
- Ex.: (matlab)

x=normrnd(zeros(100,1),1); autocorr(x)
load carsmall; x = Acceleration; autocorr(x)
scatter(x(2:end), x(1:end-1))

19 Distribuição empírica

- Distribuição obtida diretamente dos dados, ao invés de ajustar os dados a uma dada distribuição teórica.
- Observações: x_1, x_2, \ldots, x_n (v.a. contínua).
- Vamos assumir que a distribuição acumulada é linear por partes. Fig. L6.17.
- Neste caso, a acumulada no ponto x_i vale (i-1)/(n-1).

$$y = ax + b \implies \frac{i-1}{n-1} = ax_i + b, \quad \frac{i}{n-1} = ax_{i+1} + b$$

$$F(x) = \begin{cases} 0 & x < x_1 \\ \frac{i-1}{n-1} + \frac{x - x_i}{(n-1)(x_{i+1} - x_i)} & x_i \le x < x_{i+1} \\ 1 & x \ge x_n \end{cases}$$

- Desvantagens:
 - Números aleatórios gerados a partir desta distribuição não podem assumir valores que não estejam entre o menor e o maior valor observado na amostra.

- * Valores altos podem ter impacto grande na simulação. Ex.: tempo de atendimento muito alto pode gerar grande atraso na fila.
- * Alguns autores sugerem colocar uma dist. exponencial no final.
- A média obtida através de F(x) não necessariamente é igual à média da amostra.
- Em alguns casos os dados estão agrupados em intervalos (histograma).
 - Intervalos: $[a_0, a_1), [a_1, a_2), \dots, [a_{k-1}, a_k).$
 - $-n_j$ é o número de observ. no j-ésimo intervalo.
 - $-n = n_1 + n_2 + \dots + n_k.$
 - Acumulada em a_j vale $(n_1 + n_2 + \cdots + n_j)/n$, (vale zero em a_0).

$$F(x) = \begin{cases} 0 & x < a_0 \\ F(a_{j-1}) + \frac{(x - a_{j-1})(F(a_j) - F(a_{j-1}))}{a_j - a_{j-1}} & a_{j-1} \le x < a_j \\ 1 & x \ge a_k \end{cases}$$

- Para distribuições discretas, basta observar a proporção das observações que possuem cada valor.
- Ex.: (matlab)

n=100; close all; rand('seed',12345);
x=normrnd(zeros(n,1),1); ecdf(x); hold on;
x=sort(x); plot(x,normcdf(x,0,1))

20 Seleção de distribuição

- Quando coletamos dados sobre uma v.a. de entrada, podemos especificar a distribuição em uma das formas abaixo (em ordem de preferência):
 - 1. Os dados são usados diretamente na simulação (trace).
 - 2. Geramos uma dist. empírica, e sorteamos valores de acordo com esta distribuição.
 - 3. Utilizamos métodos estatísticos para determinar a distribuição teórica que melhor se ajusta aos dados. Podemos então gerar números aleatórios de acordo com esta distribuição teórica.
- Desvantagens do 1º método: (i) reproduzimos exatamente o que ocorreu no passado, e (ii) podemos não ter dados suficientes.
- Uma dist. teórica é melhor que a empírica, pois
 - A dist. teórica é mais "suave" que a empírica, principalmente para poucos dados.
 - A empírica não permite valores fora da região observada na amostra.
 - A representação da distribuição teórica é mais compacta: armazenamos apenas os parâmetros da distribuição.

- * A empírica exige o dobro dos pontos observados na amostra.
- * Por esta razão, a geração de números aleatórios é menos eficiente.
- Quando nenhuma teórica se ajusta bem aos dados, temos que utilizar a empírica.

21 Identificando o tipo da distribuição

- Inicialmente tentamos identificar o tipo da distribuição (normal, uniforme, exponencial..), para depois determinar os parâmetros da distribuição.
- Em algumas situações temos algum conhecimento prévio sobre a distribuição.
 - Ex.: quando os clientes chegam de forma independente com taxa constante, podemos esperar uma dist. exponencial para o tempo entre chegadas.
 - Ex.: dist. que podem assumir valores negativos (ex.: normal) n\u00e3o servem como tempo de atendimento.
 - Ex.: o percentual de eleitores de um candidato não pode ter dist. exponencial, pois pode assumir valores maiores que 1.
 - Na prática temos pouca informação prévia sobre a distribuição.

21.1 Histogramas

- Quando temos uma dist. contínua, o histograma das observações x_1, x_2, \ldots, x_n fornece uma idéia da forma da distribuição.
 - Dividimos o range de valores observados (menor até o maior) em k intervalos disjuntos $[b_0, b_1), [b_1, b_2), \ldots, [b_{k-1}, b_k)$ de mesmo tamanho Δb .
 - Pode ser necessário descartar alguns outliers (valores muito baixo ou muito alto), para poder visualizar melhor a região de interesse.
 - Se h_j é a proporção das observações no j-ésimo intervalo, então plotamos

$$h(x) = \begin{cases} 0 & x < b_0 \\ h_j & b_{j-1} \le x < b_j \\ 0 & x \ge b_k \end{cases}$$

– Note que $h_j \approx \Pr[b_{j-1} \le X < b_j]$, e para algum $y \in [b_{j-1}, b_j)$,

$$\int_{b_{j-1}}^{b_j} f(x)dx = \Delta b f(y).$$

Ou seja, se Δb é pequeno e temos muitas observações, então o histograma converge para a densidade de probabilidade.

- Comparamos então a gráfico gerado com o shape das dist. teóricas, ignorando os parâmetros de escala e localização.
- Uma dificuldade na construção do histograma é decidir o tamanho Δb .
 - Um Δb pequeno produz um histograma irregular, devido ao aumento da variância de h_j (pois temos menos amostras por intervalo).
 - Um Δb grande compromete o entendimento da forma, devido ao excesso de agrupamento de pontos. Ex.: podemos perder picos próximos a zero.
 - Solução heurística: teste vários tamanhos de intervalo. Não existe um guia para todo caso.

```
x=csvread('service.csv');
hist(x,5), hist(x,20), hist(x,40)
```

- Quando a dist. é discreta, colocamos uma barra para cada valor possível da v.a., ao invés de construir intervalos.
 - Temos então histogramas mais corretos para v.a. discretas, pois nenhum agrupamento é feito.

```
x=csvread('demand.csv');
a=min(x); b=max(x);
for n=a:b, y(n-a+1)=sum(x==n); end;
stem(a:b, y/length(x));
xlim([min(x)-1, max(x)+1])
```

- Quando o histograma apresenta dois ou mais picos, nenhuma dist. teórica poderá ser ajustada. F. L6.24.
 - Em alguns casos podemos dividir as observações entre as distribuições.
 - Ex.: o tempo para consertar um equipamento depende da necessidade de adquirir uma peça.
 - Sejam $f_1(x)$ e $f_2(x)$ as dist. do tempo com e sem aquisição de peça, respectivamente. Se p_1 é a proporção das peças com aquisição, então

$$f(x) = p_1 f_1(x) + (1 - p_1) f_2(x).$$

21.2 Box Plots

• Permite observar a assimetria da distribuição.

```
x=csvread('service.csv');
boxplot(x,'orientation','horizontal')
```

- A caixa indica a região entre o 10 e o 30 quartil (25% e 75% dos dados).
- A linha no centro da caixa indica a mediana (20 quartil, 50% dos dados).
 - Se a mediana não está no centro da caixa, então temos indicação de assimetria.

- São considerados outliers os pontos que estão afastados da caixa mais de 1,5 vezes a largura da caixa. Indicados com uma cruz.
- As linhas que saem das caixas indicam o restante dos pontos.

21.3 Estatísticas

- Quando temos observações x_1, x_2, \ldots, x_n i.i.d., podemos utilizar estatísticas para ajudar a identificar o tipo da distribuição.
- Os valores mínimo e máximo podem sugerir a região de valores possíveis.
- Quando os estimadores para a média e a mediana são aproximadamente iguais, temos uma indicação que a dist. pode ser simétrica.
- \bullet O skewness ν mede a simetria de uma distribuição.

$$\hat{\nu} = \frac{\sum_{i=1}^{n} [x_i - \overline{X}]^3 / n}{[S^2]^{3/2}}$$

- Quando $\nu = 0$, a dist. é simétrica.
- Quando ν < 0, a cauda da esquerda é mais longa, mais observações no lado direito, poucos valores pequenos. Ex.: 1, 100, 101, 102, 103.
- Quando $\nu > 0$, a cauda da direita é mais longa, mais observações no lado esquerdo, poucos valores grandes. Ex.: 1, 2, 3, 4, 100.
- Ex.: $\nu = 2$ para a dist. exponencial.
- Em projetos de simulação encontramos com mais frequência $\nu > 0$.

x=csvread('service.csv'); skewness(x)
x=csvread('demand.csv'); skewness(x)

• Para dist. contínuas, podemos usar o estimador do coeficiente de variação:

$$\hat{cv} = \frac{\sqrt{S^2}}{\overline{X}}.$$

- A dist. exponencial tem cv = 1.
- As dist. gamma e weibull tem cv < 1 para $\alpha > 1$, cv = 1 para $\alpha = 1$, e cv > 1 para $\alpha < 1$.
- Note que a dist. exponencial é um caso particular das dist. gamma e weibull.
- A dist. lognormal sempre tem a forma de uma gamma/weibull com $\alpha > 1$, mas pode assumir qualquer valor de cv.
 - * Então, se a dist. tem esta forma (histograma) com $\hat{cv} > 1$, a lognormal modela melhor os dados que a gamma/weibull.
- O cv não é útil para outras distribuições.
- Não é bem definida para quando $\mu=0$. Ex.: $N(0,\sigma^2),\,U(-c,c)$.

```
x=csvread('service.csv');
min(x), max(x), mean(x), median(x),
mode(x), skewness(x), std(x)/mean(x)
```

• Podemos usar a *razão lexis* τ para diferenciar as dist. discretas poisson, binomial e binomial negativa (a geométrica é um caso particular da binomial neg.).

$$\hat{\tau} = \frac{S^2}{\overline{X}}.$$

 $-\tau = 1 \Rightarrow \text{poisson}.$

 $-\tau < 1 \Rightarrow \text{binomial}.$

 $-\tau > 1 \implies \text{binomial negativa.}$

```
x=csvread('demand.csv'); autocorr(x);
scatter(x(1:end-1),x(2:end));
boxplot(x,'orientation','horizontal');
a=min(x), b=max(x),
for n=a:b, y(n-a+1)=sum(x==n); end;
stem(a:b, y/length(x));
xlim([min(x)-1, max(x)+1]);
mean(x), median(x), mode(x), skewness(x),
var(x)/mean(x)
```

22 Estimativa de parâmetros da distribuição

- As mesmas observações **i.i.d.** $x_1, x_2, ..., x_n$ utilizadas para determinar a forma da dist. podem ser utilizadas para determinar os parâmetros da dist..
- Existem várias formas de estimar parâmetros. Os estimadores de *máxima verossimilhança* (MLE) são os que reunem as melhores propriedades.
- Para dist. discreta, a função de verossimilhança $L(\theta)$ é a probabilidade de observar a amostra dado que θ é o parâmetro da dist.. Como a amostra é i.i.d.:

$$L(\theta) = p_{\theta}(x_1)p_{\theta}(x_2)\cdots p_{\theta}(x_n).$$

- O estimador de máxima verossimilhança $\hat{\theta}$ é o valor de θ que maximiza $L(\theta)$.
 - Ou seja, é o parâmetro com maior chance de produzir a amostra observada!
- Embora a probabilidade de observar x_i seja zero para dist. contínuas, a função de verossimilhança é definida de forma análoga:

$$L(\theta) = f_{\theta}(x_1) f_{\theta}(x_2) \cdots f_{\theta}(x_n).$$

• Para encontrar o θ que maximiza $L(\theta)$ geralmente tiramos o logarítmo de $L(\theta)$, derivamos e igualamos a zero.

- Nem sempre este procedimento fornece uma expressão fechada, sendo necessário utilizar métodos numéricos. Ex.: gamma, weibull, beta.
- Neste caso, temos funções prontas no matlab, R, octave, maple...
- Propriedades dos estimadores MLE:
 - 1. Para a maioria das dist mais comuns, $\hat{\theta}$ é o único valor que maximiza $L(\theta)$.
 - 2. Embora $\hat{\theta}$ seja viesado para algumas dist, $E[\hat{\theta}]$ converge para θ quando $n \to \infty$.
 - 3. O MLE de $\phi = h(\theta)$ vale $h(\hat{\theta})$. Ex.: como Var[expo(β)] = β^2 , o MLE desta variância vale $(\overline{X})^2$.
 - 4. Quando n é grande, temos o seguinte intervalo de confiança para $\hat{\theta}$:

$$\hat{\theta} \pm z_{1-\alpha/2} \sqrt{\frac{\delta(\hat{\theta})}{n}},$$

onde $\delta(\theta) = -n/E[d^2(\log L(\theta))/d\theta^2].$

Ex.: geométrica.

$$L(p) = \prod_{i=1}^{n} p(1-p)^{x_i}$$

$$l(p) = \log(L(p)) = n\log(p) + \log(1-p)\sum_{i=1}^{n} x_i$$

$$\frac{d^2l(p)}{dp^2} = -\frac{n}{p^2} - \frac{\sum_{i=1}^n x_i}{(1-p)^2}$$

$$\mathbf{E}\left[\frac{d^2l(p)}{dp^2}\right] = -\frac{n}{p^2} - \frac{\sum_{i=1}^n \mathbf{E}[x_i]}{(1-p)^2} = -\frac{n}{p^2(1-p)}$$

x=csvread('service.csv'); [p i]=gamfit(x)

- Podemos utilizar este intervalo de confiança para verificar a sensibilidade deste parâmetro na saída do simulador.
 - Simulamos com valores extremos dos intervalos e observamos o impacto nas medidas de performance.
 - Se não for muito sensível, estamos confortáveis em usar o estimador.
 - Caso contrário, deveríamos coletar mais dados para diminuir o intervalo de confiança.

23 Teste de ajuste da distribuição

- Nesta etapa verificamos quão bem a dist teórica se ajusta aos dados.
- Quando várias dist são candidatas, devemos escolher a que melhor se ajusta. Nenhuma terá um ajuste perfeito.

23.1 Métodos gráficos

23.1.1 Comparação de frequências

- Colocamos no mesmo gráfico o histograma h(x) e a proporção $\int_{b_{j-1}}^{b_j} \hat{f}(x)dx$ das observações que devem ocorrer em cada intervalo $[b_{j-1},b_j)$ de acordo com a dist teórica $\hat{f}(x)$.
 - Para dist contínuas, uma alternativa é plotar o histograma e o gráfico de $\Delta b \times \hat{f}(x)$.

```
x=csvread('service.csv'); k=20;
```

```
[h b]=hist(x,k); h=h/length(x); bar(b,h);
hold on; p=gamfit(x); db=b(2)-b(1);
y=b(1)-db/2:0.01:b(end)+db/2;
plot(y,db*gampdf(y,p(1),p(2)))
```

```
figure; bar(b,h); hold on; p=wblfit(x);
plot(y,db*wblpdf(y,p(1),p(2)))
```

```
figure; bar(b,h); hold on; p=lognfit(x);
plot(y,db*lognpdf(y,p(1),p(2)))
```

x=csvread('demand.csv'); a=min(x); b=max(x);
for n=a:b, y(n-a+1)=sum(x==n); end;
stem(a:b, y/length(x)); hold on;
xlim([min(x)-1, max(x)+1]); p=nbinfit(x);
scatter(a:b,nbinpdf(a:b,p(1),p(2)))

23.2 Gráficos de probabilidades

• Podemos comparar o gráfico da acumulada empírica $\hat{F}(x)$ com a acumulada da dist. ajustada F(x). Figura L6.30.

```
x=csvread('service.csv'); ecdf(x); hold on;
p=gamfit(x); x=sort(x);
plot(x,gamcdf(x,p(1),p(2)))
figure; ecdf(x); hold on; p=wblfit(x);
```

```
figure; ecdf(x); hold on; p=lognfit(x);
plot(x,logncdf(x,p(1),p(2)))
```

plot(x, wblcdf(x, p(1), p(2)))

```
figure; ecdf(x); hold on; p=expfit(x);
plot(x,expcdf(x,p(1)))
```

- Como este gráfico é geralmente não linear, temos dificuldade para comparar.
 - Temos mais facilidade para comparar quando o gráfico é uma reta.
 - No gráfico P-P plot (prob-prob) temos os pontos $(F(x), \hat{F}(x))$ para um conjunto de valores de x.

- No gráfico Q-Q plot (quartil-quartil) temos os pontos (x,x') tal que $F(x)=\hat{F}(x')$, para um conjunto de probabilidades p=F(x).
- Os gráficos P-P e Q-Q medem as diferenças nos eixos y e x do gráfico das acumuladas, respectivamente.
 - * Portanto, o P-P ajuda a observar diferenças no meio do gráfico, enquanto o Q-Q ajuda a observar diferenças nas caudas.
- Os valores de x e p são distribuídos de tal forma que se as distF(x) e $\hat{F}(x)$ forem aproximadamente iguais, os gráficos P-P e Q-Q se aproximam de uma reta (mesmo que as dist tenham diferença de localização e escala).

```
x=csvread('service.csv');
p=gamfit(x); y=gamrnd(ones(10000,1)*p(1),p(2));
qqplot(x,y); [eF,x]=ecdf(x); tF=gamcdf(x,p(1),p(2));
figure; plot(tF,eF,'+',[0,1],[0,1])

p=wblfit(x); y=wblrnd(ones(10000,1)*p(1),p(2));
figure; qqplot(x,y); tF=wblcdf(x,p(1),p(2));
figure; plot(tF,eF,'+',[0,1],[0,1])

p=lognfit(x); y=lognrnd(ones(10000,1)*p(1),p(2));
figure; qqplot(x,y); tF=logncdf(x,p(1),p(2));
figure; plot(tF,eF,'+',[0,1],[0,1])

p=expfit(x); y=exprnd(ones(10000,1)*p(1));
figure; qqplot(x,y); tF=expcdf(x,p(1));
figure; plot(tF,eF,'+',[0,1],[0,1])
```

• Podemos também comparar os box plots.

```
x=csvread('service.csv'); n=length(x);
p=gamfit(x); y1=gamrnd(p(1)*ones(n,1),p(2));
p=wblfit(x); y2=wblrnd(p(1)*ones(n,1),p(2));
p=lognfit(x); y3=lognrnd(p(1)*ones(n,1),p(2));
p=expfit(x); y4=exprnd(p(1)*ones(n,1));
boxplot([x y1 y2 y3 y4],'orientation','horizontal')
```

23.3 Teste de hipótese

- Hipótese $H_0: x_1, \ldots, x_n$ são observações i.i.d. da dist \hat{F} .
- Vantagem:
 - Forma automática de identificar diferenças grosseiras entre a dist teórica e a observada.
 Diferenças não provocadas pela flutuação dos dados.
 - Não depende do julgamento do avaliador.
- \bullet Desvantagens:
 - Quando temos poucos dados, o teste é pouco sensível (deixa de perceber diferenças, aceitando dist com ajuste ruim).

- Quando temos muitos dados, grande chance de rejeitar todas as dist teóricas. Por que?
- O teste de hipótese permite fixar a confiança α em rejeitar uma dist errada, mas não podemos fixar a confiança em aceitar uma dist correta.

23.3.1 Teste Chi-Quadrado

- Este é o teste mais utilizado para determinar se os dados observados atendem a uma determinada distruição.
- Os passos são:
 - 1. Preparamos um histograma com k intervalos, obtendo assim o percentual de ocorrência o_i em cada intervalo i = 1, ..., k.
 - 2. Com base na distruibuição que estamos testando, determinamos o percentual de ocorrências esperado e_i para cada intervalo i = 1, ..., k.
 - Ex.: dist uniforme, $e_i = 1/k$ para todo i.
 - 3. Calculamos a estatística

$$D = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i},$$

que tem distruibuição chi-quadrada com k-1 graus de liberdade.

- 4. Com significância α , se D é menor que $\chi^2_{1-\alpha,k-1}$ (fornecido em softwares ou tabelas), não podemos rejeitar a hipótese de que os números foram originados da distribuição.
- Como o e_i aparece no denominador, erros em intervalos com e_i menores têm mais peso na estatística D.
 - Portanto, o teste funciona melhor se os intervalos do histograma são escolhidos de tal forma que os e_i 's sejam iguais.
 - Uma forma aproximada de resolver é agrupar cada intervalo com e_i pequeno com algum intervalo vizinho.
 - Note que no caso da distribuição uniforme, basta utilizar um histograma com intervalos de mesmo tamanho.
- Se r parâmetros da distribuição são estimados utilizando a mesma amostra, o número de graus de liberdades cai de k-1 para k-1-r.
 - Ex.: se suspeitamos que os dados formam uma normal, e estimamos a médio e o desvio padrão com base na amostra, devemos subtrair 2 graus de liberdade.
 - No caso da distribuição uniforme entre 0 e 1 nenhum parâmetro precisa ser estimado.

- Este teste é mais indicado para distribuições discretas.
 - No caso de distribuições contínuas, o teste chiquadrado é apenas uma aproximação. E portanto exige mais observações.
 - Pois o teste agrupa (discretiza) os dados em intervalos, unindo valores com probabilidades diferentes (isto pode ser evitado em distribuições discretas).
 - Assim, o nível de significância real apenas se aplica para um número infinito de observações (intervalos).
 - Na prática (amostras finitas), reduzimos este efeito evitando a ocorrência de intervalos com poucas observações: cada intervalo com menos de 5 observações é agrupado com algum intervalo vizinho.
 - Quando o intervalo tem mais observações temos mais confiança da proporção observada.

x=csvread('service.csv'); p=gamfit(x); [h pv]=chi2gof(x,'cdf',@(z)gamcdf(z,p(1),p(2)), 'nparams',2,'alpha',0.05)

p=expfit(x); [h pv]=chi2gof(x,'cdf', @(z)expcdf(z,p(1)), 'nparams',2,'alpha',0.05)

Teste Kolmogorov-Smirnov

- Passos:
 - 1. Determine a função de distribuição acumulada observada $F_o(x)$, e a função de distribuição acumulada esperada $F_e(x)$.
 - 2. Utilizando os n valores da amostra, calcule as estatísticas

$$K^{+} = \sqrt{n} \times \max_{x} \{F_o(x) - F_e(x)\}$$

$$K^{-} = \sqrt{n} \times \max_{x} \{F_e(x) - F_o(x)\},\,$$

que representam as maiores diferenças entre as distribuições para mais e para menos.

- 3. Com significância α , não podemos rejeitar a hipótese de que os dados obedecem a distribuição se K^+ e K^- forem menores que $K_{1-\alpha,n}$ (obtido em tabela).
- A função de distribuição acumulada observada $F_o(x)$ é o percentual de observações com valor menor ou igual a x, ou seja:
 - Sejam $x_1 \leq x_2 \leq \ldots \leq x_n$ os elementos da amostra em ordem crescente. Então,

$$F_o(x) = \begin{cases} 0, & \text{se } x < x_1 \\ i/n, & \text{se } x_i \le x < x_{i+1}, & i = 1, \dots, n-1 \text{ p=expfit(x); y=exprnd(p(1)*ones(10000,1));} \\ 1, & \text{se } x \ge x_n & \text{[h pv]=kstest2(x,y,0.05)} \end{cases}$$

- Existe uma observação importante no cálculo de K^- (figura 27.1, Jain).
 - Toda função de distribuição acumulada é não decrescente.
 - Como $F_o(x)$ se baseia em um conjunto finito de observações, ela possui incrementos discretos (ou seja, $F_o(x)$ é constante entre observações consecutivas $x_i \leq x < x_{i+1}$).
 - Por outro lado, quando a distribuição é contínua, $F_e(x)$ será contínua.
 - Assim, o $\max_x \{F_e(x) F_o(x)\}$ para $x_{i-1} \le$ $x < x_i$ ocorre imediatamente antes de x_i . Ou seja, $\max_{x_{i-1} \le x < x_i} \{ F_e(x) - F_o(x) \}$ converge para $F_e(x_i) - F_o(x_{i-1})$.
- Para a distribuição uniforme entre 0 e 1 temos que $F_e(x) = x$. Portanto,

$$K^{+} = \sqrt{n} \times \max_{i=1,\dots,n} \left\{ \frac{i}{n} - x_i \right\}$$

$$K^{-} = \sqrt{n} \times \max_{i=1,\dots,n} \left\{ x_i - \frac{(i-1)}{n} \right\}$$

- Ex.: tabela 27.2, Jain.
- Comparando com o teste Chi-quadrado, concluimos:
 - Ao contrário do teste Chi-quadrado, que é mais apropriado para distribuições discretas e amostras grandes, o teste K-S foi projetado para distribuições contínuas e amostras pequenas.
 - O teste K-S compara as distribuições acumuladas (teórica e observada), enquanto o teste Chiquadrado compara as densidades de probabilidades.
 - Ao contrário do teste Chi-quadrado, o teste K-S não faz agrupamento de observações. Neste sentido, o teste K-S faz melhor uso dos dados.
 - A escolha dos tamanhos dos intervalos é um problema do teste Chi-quadrado (não existe regras bem definidas para isso). Esta escolha afeta o resultado.
 - O teste Chi-quadrado é sempre aproximado, enquanto o teste K-S é exato sempre que os parâmetros da distribuição são conhecidos.

x=csvread('service.csv'); p=gamfit(x); y=gamrnd(p(1)*ones(10000,1),p(2)); [h pv]=kstest2(x,y,0.05)

[h pv]=kstest2(x,y,0.05)

24 Distribuições deslocadas e truncadas

- Várias dist permitem valores muito próximos de zero, mas nem sempre isso é válido na prática.
 - Ex.: Podemos assumir que n\u00e3o faz sentido tempo de atendimento no banco inferior a 10 segundos.
- Podemos facilmente inserir um parâmetro de localização nas dist que não possuem, mas isso pode tornar o estimador MLE difícil de ser obtido.
 - Trocamos na função de prob x por $x \tilde{\gamma}$.
- Uma estratégia simples é utilizar o estimador proposto em [Dubey67]:

$$\tilde{\gamma} = \frac{x_{(1)}x_{(n)} - x_{(2)}^2}{x_{(1)} + x_{(n)} - 2x_{(2)}},$$

onde $x_{(i)}$ é a i-ésima observação em ordem crescente.

— Subtraimos de $\tilde{\gamma}$ cada observação, e estimamos os outros parâmetros.

x=csvread('service.csv');p=gamfit(x),x=sort(x); g=(x(1)*x(end)-x(2)*x(2))/(x(1)+x(end)-2*x(2)), x=x-g; p=gamfit(x)

- ullet Em alguns casos podemos assumir que a variável aleatória não assume valor maior que U.
- É fácil adaptar o gerador de números aleatórios para ficarem restritos a um intervalo (veremos depois).
 - Note que quando truncamos a dist
 no intervalo [L,U], dividimos a densidade de probabilidade por
 $\int_L^U f(x) dx$.

25 Seleção de distribuição na ausência de dados

- Algumas vezes o sistema não existe, ou o tempo não é suficiente para ajustar todas as dist necessárias.
- Utilizando dist triangular:
 - Podemos perguntar a um especialista quais seriam os valores mínimo a, máximo b e mais comum c da v.a..
- Utilizando a dist beta:
 - Perguntamos ao especialista, além dos valores mínimo a, máximo b e mais comum c, qual seria o valor esperado μ da v.a..

 Neste caso, temos os seguintes parâmetros para a dist beta:

$$\tilde{\alpha_1} = \frac{(\mu - a)(2c - a - b)}{(c - \mu)(b - a)}$$

$$\tilde{\alpha_2} = \frac{(b-\mu)\tilde{\alpha_1}}{(\mu-a)}$$

 Note que quando média μ é maior que a moda c, a dist tem assimetria a direita.

```
x=csvread('service.csv'); a=min(x), b=max(x),
c=mode(x), u=mean(x),
a1=(u-a)*(2*c-a-b)/((c-u)*(b-a)),
a2=(b-u)*a1/(u-a), [h z]=hist(x,15);
h=h/length(x); bar(z,h); hold on; y=a:.01:b;
plot(y,(z(2)-z(1))*betapdf((y-a)/(b-a),a1,a2)/(b-a))
```

26 Verificando homogeneidade entre amostras

- O que fazer quando coletamos dados durante vários período, e achamos que pode haver diferença nas dist destes períodos?
 - Por exemplo, o movimento no banco pode depender do dia do mês.
- Kruskal-Wallis propuseram um teste de hipótese para verificar se k amostras têm a mesma dist.
 - Seja x_{ij} a j-ésima observação da amostra i, n_i o número de observações da i-ésima amostra, $n = \sum_{i=1}^k n_i, R(x_{ij})$ o rank da observação (i,j), e $R_i = \sum_{j=1}^{n_i} R(x_{i,j})$.
 - O rank de uma observação é a posição dela quando ordenamos todas as observações (todas as amostras juntas).
 - Se todas as amostras têm a mesma dist, então estatística abaixo tem dist chi-quadrada com k-1 graus de liberdade:

$$T = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1).$$

– Portanto, rejeitamos (com confiança α) a hipótese de que as dist são iguais se $T > \chi^2_{k-1,1-\alpha}$ (ponto crítico da chi-quadrada).

```
clear all; ni=1000;
x=[exprnd(ones(1,4*ni)) exprnd(2*ones(1,ni))];
[y i]=sort(x); R(i)=1:length(i);
R=reshape(R,ni,5)'; Ri=sum(R'); n=5*ni;
T=(12/(n*(n+1)))*(Ri*Ri')/ni - 3*(n+1),
chi2inv(1-0.05,5-1)
```

27 Ajuste para dados não homogêneos

- O que fazer quando a dist muda com o tempo?
- Uma possibilidade é particionar o tempo em intervalos e ajustar uma dist para cada intervalo.
 - Desvantagem: muitos parâmetros para ajustar (perdemos graus de liberdade).
- Se for possível modelar os dados como um *processo de Poisson não homogêneo*, basta estimar como a taxa de ocorrência do evento evolui com o tempo.
- A chegada de clientes obedeçe um processo de Poisson quando:
 - 1. Os clientes chegam um por vez.
 - 2. O número de clientes que chegam no intervalo (t, t+s] independe do número de clientes que chegam no intervalo (0,t].
 - 3. A dist do número de clientes que chegam no intervalo (t, t + s] independe de t.
 - Quando clientes abandonam o sistema por estar muito cheio, estamos violando ao condição (2).
 - A condição (3) indica que a taxa de chegada é constante, o que normalmente é válido apenas para intervalos pequenos de observação.
 - Quando estas condições são satisfeitas, o número de chegadas em uma unidade de tempo tem dist Poisson, onde λ é a taxa de chegada (chegadas por unidade de tempo).
 - * Além disso, o tempo entre chegadas tem dist exponencial com média $1/\lambda$.
 - * Para saber a dist do número de chegadas em s unidades de tempo, basta substituir λ por $s\lambda$ na densidade de probabilidade da Poisson.
- Quando a chegada satisfaz as condições (1) e (2), mas não necessariamente a condição (3), temos um processo de Poisson não homogêneo.
 - Neste caso, a taxa de chegada $\lambda(t)$ é função do tempo t.
 - A probabilidade de observar x chegadas no intervalo (t, t + s] vale

$$p(x,t,s) = \frac{e^{-b(t,s)}b(t,s)^x}{x!},$$

onde $b(t,s) = \int_t^{t+s} \lambda(x) dx$.

 Na prática, vamos dividir o tempo de observação em intervalos e estimar uma taxa constante em cada intervalo.

- O número de intervalos segue as mesmas recomendações utilizadas para construir um bom histograma.
- A estimativa da taxa de chegada em cada intervalo é o número de observações neste intervalo, dividido pela duração do intervalo.