

Handbook of Open Source Tools

Sandeep Koranne

Handbook of Open
Source Tools

Springer New York Dordrecht Heidelberg London

All rights reserved. This work may not be translated or copied in whole or in part without the

New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.

software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,

Library of Congress Control Number:

Use in connection with any form of information storage and retrieval, electronic adaptation, computer

Sandeep Koranne
SW Boeckman Road 8005
97070 Wilsonville Oregon
USA
Sandeep

ISBN 978-1-4419-7718-2 e-ISBN 978-1-4419-7719-9
DOI 10.1007/978-1-4419-7719-9

© Springer Science+Business Media, LLC 2011

.Koranne@gmail.com

2010938855

Preface

The constant and speedy progress made by humankind in the industrial revolution,
and more recently in the information technology era can be directly attributed to
sharing of knowledge between various disciplines, reuse of the knowledge as sci-
ence and technology advanced, and inclusion of this knowledge in the curriculum.
The phrases “do not reinvent the wheel” and “to stand upon the shoulders of giants”
come to our mind as representative of this thought process of using existing solu-
tions and building upon existing knowledge, but at the same time contributing to the
society as a whole.

It was with this intention of documenting existing (circa 2010) Open Source
Tools for Scientists and Engineers, that I set about to write this book. Computer
technology has progressed at such a fast pace that it is difficult (nary impossible) to
catalog all of the existing software systems which are available to us. To simplify
our task I have chosen a representative software to solve a class of problem. Where
space and time permitted I have provided alternatives as well.

A key benefit of using open-source applications is that the code can be compiled
on a system which is non-standard. Or, it can be compiled with CPU specific opti-
mizations which a general purpose binary released from an ISV cannot assume. As
CPU technology advances rapidly, and software has a longer lifespan, the ability to
recompile the source code becomes more and more important. The same can be said
with open-source implementations of data-standard in image processing, and docu-
mentation retrieval. In this media focused era, more and more content is being stored
as digital data. Unlike, paper, whose archival properties have been refined over cen-
turies, digital media has not gone through the same process of archival management.
In situations where data archival is necessary, a key component is the persistence of
the key software components which read and write the digital data files. Since no
one can predict the computers of the next century, open-source software is essential
to long term archival of information.

Rather than duplicate the fine documentation for each package, this book is orga-
nized in sections related to solve a particular problem. This book should be treated
as an “existential quantifier” ∃, rather than ∀, on the information provided for each
task. Once the existence of a solution or software tool to address the problem is

v

vi Preface

known, more details about the solution can be researched. Each software system or
tool is presented in a simple to read manner describing the main problem the system
addresses and the tasks performed. Each chapter is presented in a similar manner to
ease referencing.

Although many of the software mentioned in this book are routinely used in
science and engineering tasks, more and more I have found that students and gen-
eral practitioners from other fields, such as liberal arts, music, statistics, are using
these in their work and study. This book contains references to artificial intelligence
programs and tools which are being widely used in cognitive sciences. Many of
the software tools use libraries and development tools which are themselves open-
source; this synergy is representative of the open-source concept, and a key driver
to its proliferation. As such, any large open-source software is a good learning ex-
ample to study the use of its components. For example the GRASS GIS software
(presented in Section 14.9.1) is itself developed using a number of libraries such as
(i) PROJ4, (ii) HDF5, (iii) MySQL, (iv) FFTW, and many others. To learn how to
use these libraries in a real world example, one only has to study the GRASS GIS
source code. This is a key advantage of open-source tools.

Another argument (made mostly in the context of mathematical proofs) stems
from the scientific validity and acceptance of computer generated, or computer as-
sisted proofs. For such proofs to be included as standard material, the software sys-
tem used to arrive at the result must also be available to researchers, as well as its
own correctness be verified. These goals are readily achieved by open-source math-
ematical software as presented in Chapter 16.

I present a short summary of the book contents:
This book is divided in six parts. The first part describes the open-source operat-

ing systems and user interaction as well as introspection tools. Chapter 1 includes a
discussion on Bash shell, POSIX compliant libraries and open-source programming
languages (including Erlang, Lua and Smalltalk). External utilities (such as tar,
find and rsync) as well as OpenSSH are discussed to ease the users interaction
with a modern GNU/Linux type operating system. Chapter 2 presents several text
processing and document creation and management tools. These include OpenOf-
fice and various LATEXprocessing tools. Software for Wiki management as well as
graphical page layout are also described.

Part II of this book focuses on the process of open-source software creation.
For the reader who wants to know more about the methods and systems used by
the authors to create the open-source tools, this part provides information on the
GNU build system, version control, compilers, APIs and much more. In Chapter 3
I present the GNU Compiler Collection. Commonly used command-line options,
pragmas, pre-processor defines as well as GCC intrinsics are explained. Examples
of using GCC to compile Java and Ada are presented, as well as recent features
of GCC including OpenMP support and C++ advice features. Source code version
control with CVS and SVN is presented with the help of examples; GUI front-ends
for version control (TkCVS) is presented and used in many examples. The GNU
Build system is discussed with the help of examples in Section 3.3. GNU Make as

Preface vii

well as SConstruct are described in Section 3.4. Both GNU make and SConstruct
are also used in many examples in the sequel of this book.

Chapter 3 also contains a description of Bugzilla for defect tracking (Section 3.5)
and a section on various editors and IDEs available on GNU/Linux for editing source
code. Static code checking and analysis of source code is presented in Section 3.8,
while the use of GNU debugger GDB is shown with examples in Section 3.9.1.
Graphical front-ends to GDB (including GDB Insight) are shown in Section 3.9.2.
Code optimization using profiling and cache measurement with GNU profiler and
Valgrind is discussed with examples in Section 3.12. The C standard library and the
C++ standard library (including STL) are discussed in Chapter 4.

In Chapter 5 I describe the Apache Portable Runtime (APR) library. In particular
APR memory pools, APR process library, APR thread and thread pool library, APR
file information and memory mapping library are explained with the help of short
examples. Advanced APR concepts, dealing with the use of Memcache library are
also demonstrated. All examples have been compiled and run on GNU/Linux system
running Fedora Core 12, and thus are known to work. Using the examples presented
in this part of the book, alongwith the documentation for the library, simplifies the
learning process of the API.

Chapter 6 contains a description of the most useful parts of the Boost C++ API.
For lack of space, I had to choose only a small portion of Boost for demonstra-
tion. I depict the design and usage of Boost library with the help of examples in-
cluding Boost smart pointer and memory pool, the Boost asynchronous IO (asio)
framework, Boost data-structures. Boost Graph Library (BGL) is an almost com-
plete graph representation library, which also includes an implementation of many
graph algorithms. BGL is presented with the help of examples in Section 6.4. Boost
multi-threading (like APR) is a portable and integrated (with C++) threading sys-
tem. I have presented examples which the reader can contrast with APR threading
and POSIX pthread examples presented in this book. Python language integration
with C++ can be achieved using SWIG as well as using Boost Python integration
framework, an example of which is presented in Section 6.7. Boost generic im-
age processing library is presented in Section 6.8, while Boost parsing framework
(SPIRIT) is presented in Section 13.4.1 of Chapter 13 on Compiler systems.

Performance optimization of programs using Google perftools memory alloca-
tion and profiler is shown in Chapter 7. This chapter also includes a discussion on
the Boehm garbage-collection system. A related method of memory optimization is
by using compression libraries. Lossless compression engines including ZLIB and
BZIP2 are discussed in Chapter 8. Recent compression implementations of LZMA
and XZ Utils are also discussed.

Till this point, Part II has focused on individual application programming li-
braries. In Chapter 9 I discuss application development frameworks which work
closely together. I first describe the remote procedure call (RPC) system which pro-
vides the user, an integrated and secure method to invoke pre-defined functions and
tools on remote machines. RPC usage is usually accompanies by data transmis-
sion across networks, and endian varying machines. Data integrity is checked and
maintained using a combination of tools. XDR (Section 9.1.1) presents a library for

viii Preface

data representation which is impervious to endian variation and transport across the
network. Data verification using checksum can be computed using MD5 of SHA1
checksums (Section 9.2). OpenSSL implements many of the required tools for se-
cure and verifiable transport of data, examples demonstrating the efficacy and ease
of use of OpenSSL are shown in Section 9.3. Another closely related method of
data representation is XML which is investigated in Section 9.4 with the help of two
APIs, libXML and Expat.

Chapter 9 also contains a description and example use of the Berkeley DB
database system. Section 9.5 describes the embedded database features of Berke-
leyDB with the help of examples written in C++ as well as Python.

A very interesting network caching library, Memcache is presented in Sec-
tion 9.6. The use of Memcache in applications is presented, and the use of the API
is described. The use of the nc tool to check the status of a running memcache
server is highlighted. Many of the examples presented in this book are in Python.
A very common use of Python is in applications which also have compute intensive
portions written in C or C++. The Simplified Wrapper Interface Generator (SWIG)
tool is described in Section 9.7, which simplifies the creation of Python modules
from C/C++ headers. A complete example of this interface generation is presented
in this chapter.

Scientific datasets can be enormously large in size (comprising of many terabytes
of data). It is thus essential that large datasets are transported and accessed in an
efficient and standardized manner (otherwise multiple tools will have to reinvent
the wheel of doing performance optimized IO on large datasets). Since scientific
datasets also have a lot of structure to them, efficient storage policies can be adopted.
An example of such standardization is the HDF5 standard as shown in Chapter 10.

Graphics and Image Processing (not to be confused with graphical interfaces,
which are described separately in Chapter 19) tools and APIs, including vector
graphics rendering library Cairo is shown in Chapter 11. Image processing library
APIs (libPNG and JPEGlib) are described in Section 11.2, while Scalable Vector
Graphics (SVG) files are described in Section 11.2.2.

Part III contains two chapters. Chapter 12 on Parallel programming deals with
multi-processing, and multi-threading. With the advent of multi-core computers,
parallel programming has become essential. In this chapter I discuss the POSIX
threading library (pthread). User annotated compiler supported parallelism with
OpenMP is described with the help of examples in Section 12.2. Examples in
Fortran and C++ are presented. A comparison of various scheduling strategies in
OpenMP is performed and the results are presented in Figure 12.2. OpenMP direc-
tives and control over the visibility of variables is demonstrated with the help of
small and concise examples. The new features of OpenMP version 3.0 (task com-
puting) is presented with the help of examples in Section 12.2.0.3.

In addition to multi-threading, parallel computing has been successfully de-
ployed on cluster grids (called the Beowulf class). The most common API used
in cluster computing is MPI (message passing interface). MPI is described in Sec-
tion 12.3. As before, the examples presented in this chapter were actually executed

Preface ix

on a cluster (albeit small cluster). Examples of using Boost MPI for distributed
computing is also shown.

In addition to these well established parallel programming systems, the rapid rise
of many-core and other forms of parallelism has also created new systems which
have had less exposure. In particular the Intel Thread Building Block library (as
discussed in Section 12.4.1) is described with the help of examples.

Another exciting development in parallel programming has been the emergence
of GPGPU (general purpose computing on graphics processing units) computing.
Using the nVIDIA CUDA and OpenCL libraries, I present several examples of
writing compute kernels in CUDA. Experiments on a GeForce GT 240 card, demon-
strate the power of CUDA and GPGPU for many applications.

The second chapter in Part III is on Compilers. Although many readers will
think that with the availability of compilers for many programming languages, they
themselves may never have to write a compiler for a new language (or an exist-
ing one for that matter); experience has shown, that even if a complete language
need not be required, small components of compiler theory and the open-source
tools which implement that theory is often indispensable. Running with the theme
of this book, Chapter 13 is also an ∃ type chapter (as there have been tomes written
on the theory and practice of writing compilers), I have only illustrated the open-
source tools which perform the task (with small examples where warranted). The
interested reader will surely have access to more detailed documentation on these
tools, which include flex, yacc. More specialized tools include m4, getopt and
gperf. Instruction set manipulation and system utilities (part of GNU binutils) are
also described in this chapter.

Chapter 13 also contains a description of Low Level Virtual Machine (LLVM),
which in our opinion is a very valuable tool for writing compilers or optimization
framework. LLVM is described in Section 13.6. LLVM tools including Clang and
the dragonegg GCC plugin are also described in that section.

The next part (Part IV I discuss the central theme of the book (in a very global
sense), Engineering and Mathematical software (which includes many scientific
software as well). In Chapter 14 I present engineering libraries such as Computer
Vision, CImg and FWTools. Geospatial data abstractions are becoming very impor-
tant with the rise of location aware computing, and several open-source tools such
as GDAL and PROJ4 are described in this chapter. Image processing, audio process-
ing, and computational fluid dynamics (CFD) have been part of many engineering
applications. More recently, molecular dynamics and simulation programs have also
become heavy contenders for the compute time on grids. Molecular dynamics pro-
grams as well molecule viewers are shown in Section 14.7.3. Geographical Infor-
mation Systems (GIS) including GRASS and QGIS are described in Section 14.9.1.

Mechanical engineering, including use of mechanical CAD software in other dis-
ciplines can be accomplished using open-source tools such as QCAD. Solid model-
ing tools BRL-CAD are described in Section 14.11 and Blender 14.12.

VLSI CAD Tools are described in Chapter 15. VLSI tools have a rich history
of open-source tools including schematic capture, Verilog simulation and synthesis.

x Preface

The Alliance CAD system is described in Section 15.7. Magic VLSI system and
NgSpice simulator are also discussed with examples.

A large fraction of engineering tools are based on a fixed set of mathematical
libraries. The most important libraries which implement mathematical features are
described in Chapter 16. In particular the mathematical libraries of BLAS, ATLAS,
LAPACK, NTL, GSL, GMP and MPFR are discussed. The FFTW system for com-
puting FFTs is also described with the help of an image-processing example. Linear
programming has become an important solution method for engineering disciplines
(especially financial applications). The GNU GLPK and COIN-OR systems for lin-
ear programming are discussed in Section 16.10.

In addition to mathematical libraries, there exists a number of open-source math-
ematical software systems which implement complete mathematical framework.
These are described in Chapter 16, and they include Maxima, GNU Octave, R, PSPP,
Pari/GP, Nauty, OpenAxiom, Reduce, Singular, and polymake. Other specialized
math software for algebraic geometry include Macaulay2 and CoCoA. The CGAL
(computer geometry algorithms library) implements many computational geometry
algorithms and data-structures.

Mathematical front-ends to the above mentioned software include TeXMacs and
SAGE. SAGE, in particular combines many of the features of the previously de-
scribed software with uniform notation and the ability to pass data from one tool to
another. SAGE is described in Section 17.14.

A closely related area of mathematical software is artificial intelligence software
which implements expert systems, automatic theorem provers, genetic algorithms,
simulated annealing, machine learning and artificial neural networks. These are de-
scribed in Chapter 18.

Part V discusses scientific visualization software and libraries. Chapter 19 de-
scribes the many GUI libraries on GNU/Linux systems. These include, GTK, Qt, as
well as wxWidget and Fox Toolkit. High-performance 3d graphics applications are
synonymous with OpenGL, and the use of OpenGL for creating rich and appealing
3d graphics is shown in Section 19.2. I present OpenGL through many examples,
which also present GLUT, GLUI and show example of using OpenGL from within
Python. Object-oriented Graphics rendering engines (OGRE) and OpenGL helper
libraries are also discussed.

In addition to 3d graphics, graphics layout are also available using the Graphviz
dot tool. Plotting software Gnuplot, and vector drawing tools Xfig and Inkscape
are discussed. Raytracing with PovRay is shown with the help of examples in Sec-
tion 19.9. Programmatic creation of graphics is shown with the help of gd library,
and the Asymptote library.

Graphics visualization with GeomView, HippoDraw is described in Section 19.15.
Multi-dimensional data visualization with GGobi is discussed. High-performance
scientific data visualization with ParaView and OpenDX are discussed in Sec-
tion 19.17 and Section 19.18.

Chapter 20 describes the use of open-source software for Internet and Database
systems. In particular, the Apache HTTP server is described in the context of the
LAMP (Linux, Apache, MySQL and PHP) stack. Virtualization and cloud com-

Preface xi

puting software is described in Section 20.4. The latter part of this chapter also
describes the open-source database systems such as MySQL, PostgreSQL, SQLite
and CouchDB. I conclude in Chapter 21.

The most glaring omission from this book are Web based software systems,
advanced database concepts, and a detailed study of the programming languages
which are available as Open Source. As cloud based computing and hosted plat-
forms become more common, I plan to address these in an addendum. Moreover,
open-source software which is generally useful (such as Firefox web-browser, Thun-
derbird, GNUcash, or, software used in non-engineering fields, such as music com-
position and notation, library catalog management etc, has not been covered either.
The field of open-source computing is ever-expanding, and selection of which soft-
ware to include was guided by pragmatic choices, but also stayed focused on math-
ematical and engineering fields.

One caveat, which I should mention at this time, is that the software considered
for inclusion in this book has to be Open Source. But that does not imply that it is
free to use, especially in a commercial product. While the code is available to look
at and learn, I would advise the reader to contact the author of the software, and read
the license carefully to determine the responsibility the user has prior to including
the software library, or using the software system.

As with almost all software written on GNU Linux, I gratefully acknowledge the
large part GNU and Linux have played in not only the writing of this text, but also
my programming experience in general. This book is written in Emacs on a Linux
box, using LATEX, xfig, gnuplot and other fine pieces of free software mentioned in
this book. My heartfelt thanks to all the developers of these projects for burning the
midnight oil. I would also like to thank my wife, Jyoti and my 8 year old son Advay
for being patient while this book was written. Its finally done!

West Linn, Oregon, Sandeep Koranne
May 2010

Contents

Part I Fundamentals

1 GNU/Linux Operating System . 3
1.1 Basic GNU/Linux Usage . 5

1.1.1 System Calls . 7
1.1.2 GNU/Linux introspection . 10
1.1.3 GNU coreutils . 10

1.2 Bash shell . 11
1.2.1 Bash shell scripting . 11

1.3 External commands and programs in GNU/Linux 12
1.3.1 GNU regular expression syntax . 13

1.4 Next steps . 15
1.5 OpenSSH: OpenBSD Secure Shell . 18
1.6 Programming Languages . 19

1.6.1 C and C++ . 19
1.6.2 GNU FORTRAN . 20
1.6.3 Ada . 20
1.6.4 Java . 21
1.6.5 Python . 22
1.6.6 Tcl/Tk . 25
1.6.7 Perl . 25
1.6.8 Common Lisp . 26
1.6.9 Scheme . 27
1.6.10 Erlang . 27
1.6.11 Smalltalk . 29
1.6.12 Scala . 30
1.6.13 Google’s GO Programming Language 31
1.6.14 X10 Language . 32
1.6.15 Lua . 33

1.7 Miscellaneous Topics . 34
1.7.1 VNC : Virtual Network Computing . 34

xiii

xiv Contents

1.8 Conclusion . 34

2 Text processing . 35
2.1 OpenOffice.org Suite . 35
2.2 TeX and LaTeX . 37

2.2.1 Lout Typesetting System . 38
2.2.2 SGML Processing . 38
2.2.3 Texinfo : GNU Documentation System 39
2.2.4 LyX Frontend . 39
2.2.5 Texmaker LaTeX Editor . 40
2.2.6 PostScript and PDF Support . 41

2.3 Scribus . 41
2.3.1 Citation management . 42

2.4 Document classification software . 42
2.4.1 GNU locate . 42

2.5 Wiki . 43
2.6 Conclusion . 43

Part II Software Engineering and Libraries

3 Software Engineering . 47
3.1 GCC : GNU Compiler Collection . 47

3.1.1 GCC Command-line Options . 48
3.1.2 GCC Preprocessor . 49
3.1.3 GCC Support of OpenMP . 50
3.1.4 GCC Advice Mode . 51
3.1.5 GCC Attributes . 52
3.1.6 GCC : Inline Assembly . 53
3.1.7 GCC Intrinsics . 56
3.1.8 Compiling Java using GCC . 57
3.1.9 Compiling Ada using GCC . 58
3.1.10 Conclusion . 58

3.2 Source Code Configuration Systems . 59
3.2.1 Introduction to Version Control Systems 59
3.2.2 CVS . 59
3.2.3 SVN . 62
3.2.4 GIT. 64
3.2.5 TkCVS . 64
3.2.6 Tinderbox . 64

3.3 GNU Build System . 66
3.3.1 Autoconf . 66
3.3.2 Automake . 66
3.3.3 Libtool . 69

3.4 Automatic Build Dependency Management . 69
3.4.1 GNU make : automatic build dependency 69

Contents xv

3.4.2 SCONS : A software construction tool 71
3.4.3 CMAKE and QMake . 74

3.5 Bugzilla : Defect Tracking System . 75
3.6 Editing Source Code . 77

3.6.1 Emacs . 77
3.6.2 Eclipse . 78
3.6.3 KDevelop . 79

3.7 Static Checks on Source Code . 81
3.7.1 ctags . 81

3.8 GNU gcov: Test Coverage Program . 82
3.8.1 Compiling programs for gcov . 82
3.8.2 Running gcov . 83

3.9 Debug Tools . 87
3.9.1 GDB . 87
3.9.2 Insight . 89

3.10 Doxygen . 90
3.10.1 Using Doxygen . 91

3.11 Source Navigation . 92
3.12 Profilers . 96

3.12.1 GNU profiler : gprof . 96
3.12.2 Valgrind . 100

3.13 Conclusions . 103

4 Standard Libraries . 105
4.1 GNU C Library . 105
4.2 C++ Library . 110
4.3 Conclusion . 111

5 Apache Portable Runtime (apr) . 113
5.1 APR Memory Pool . 114
5.2 APR Processes . 114
5.3 APR Threads . 116
5.4 APR Thread Pool . 117
5.5 File information, IO, and Memory mapped files 119
5.6 Hash tables . 120
5.7 Using Memcache with APR . 122
5.8 Shared memory with APR . 124
5.9 Conclusion . 126

6 Boost C++ Libraries . 127
6.1 Boost smart pointer and memory pool . 128
6.2 Boost asio framework . 131

6.2.1 Boost IOStreams framework . 132
6.3 Boost data structures . 134
6.4 Boost Graph Library . 135

xvi Contents

6.5 Boost Spirit Framework . 138
6.6 Boost multi-threading . 140
6.7 Boost Python integration . 141
6.8 Boost Generic Image Processing Library (GIL) 141
6.9 Conclusion . 143

7 Performance Libraries . 145
7.1 Google perftools . 145

7.1.1 perftools : tcmalloc . 146
7.1.2 perftools : heap checker . 146
7.1.3 perftools : heap profiler . 148
7.1.4 perftools : cpu profiler . 150

7.2 Boehm GC : garbage collection . 151
7.3 Using Boehm GC . 151
7.4 Conclusion . 154

8 Compression Engines . 155
8.1 ZLIB Compression Library . 156

8.1.1 Compression ratio . 160
8.1.2 gzip file access functions . 160
8.1.3 Integration of zlib and gzip in Python 160

8.2 LIBBZ2 and BZIP2 . 162
8.2.1 Integration of bzip2 in Python . 163

8.3 LZMA and XZ Utils . 163
8.3.1 XZ Utils . 164

8.4 Conclusion . 164

9 Application Development Libraries . 165
9.1 RPC (remote procedure call) library . 165

9.1.1 XDR : External Data Representation Library 169
9.2 Checksum computation . 173

9.2.1 MD5 . 174
9.2.2 SHA1 checksum . 175

9.3 OpenSSL . 177
9.4 XML Processing . 178

9.4.1 Expat : XML processing . 179
9.4.2 libXML : XML processing library . 180

9.5 Berkeley DB . 181
9.5.1 DB open function . 181
9.5.2 Other Berkeley DB functions . 183

9.6 Memcached Library . 185
9.7 SWIG interface generator . 186
9.8 Conclusion . 189

Contents xvii

10 Hierarchical Data Format 5 : HDF5 . 191
10.1 HDF5 files . 191

10.1.1 HDF5 API Naming Conventions . 193
10.2 Example of HDF5 API . 193

10.2.1 Writing and Reading compound datatype in HDF5 199
10.2.2 HDF5 Attributes . 200
10.2.3 References to objects . 200
10.2.4 Conclusion . 200

11 Graphics and Image Processing Libraries . 201
11.1 Cairo: A Vector Drawing Library . 201
11.2 Graphics File Formats . 205

11.2.1 libPNG: library for Portable Network Graphics 205
11.2.2 Scalable Vector Graphics (SVG) . 208
11.2.3 GraphicsMagick and ImageMagick . 209

11.3 Conclusion . 210

Part III Parallel and System Programming

12 Parallel Programming . 213
12.1 POSIX Thread Library (pthreads) . 214

12.1.1 Understanding pthread programming model 214
12.1.2 Pthreads Keys: using thread specific data 216
12.1.3 Pthreads Summary . 216

12.2 OpenMP: Open specification for Multi-processing 218
12.3 MPI: Message Passing Interface . 228

12.3.1 Using Boost.MPI . 230
12.4 Other libraries and tools . 230

12.4.1 Thread Building Blocks . 230
12.4.2 CUDA : C Unified Device Architecture 232
12.4.3 SIMT in CUDA . 234
12.4.4 Compute Kernels in CUDA . 234
12.4.5 Compiling CUDA code with NVCC . 235
12.4.6 OpenCL (Open Compute Language) . 239

12.5 Conclusion . 240

13 Compiler Construction . 241
13.1 Introduction . 241
13.2 Anatomy of a Compiler . 242
13.3 Lexical Analysis . 243

13.3.1 GNU flex . 243
13.3.2 GNU m4 . 248
13.3.3 GNU readline . 249
13.3.4 getopt . 249

13.4 YACC: Yet Another Compiler Compiler . 250
13.4.1 Boost SPIRIT Framework . 253

xviii Contents

13.5 Code Generation . 256
13.5.1 GNU Binutils . 256
13.5.2 GNU Binutils libelf and elfutils . 264
13.5.3 GNU Binutils ld . 266
13.5.4 BFD: Binary File Descriptor Library . 268
13.5.5 GNU lightning . 269
13.5.6 ANTLR . 271

13.6 LLVM: Low Level Virtual Machine . 273
13.6.1 LLVM Core and LLVM IR . 273
13.6.2 LLVM dragonegg . 277
13.6.3 LLVM System . 280
13.6.4 Using Clang . 283

13.7 Conclusion . 284

Part IV Engineering and Mathematical Software

14 Scientific Software . 287
14.1 Computer Vision with OpenCV . 288
14.2 CImg: C Image Processing Toolkit . 289
14.3 Binary Decision Diagram (bdd): CUDD Library 291
14.4 FWTools: Open Source GIS . 295

14.4.1 PROJ4 . 296
14.4.2 GDAL : Geospatial Data Abstraction Library and OGR 297

14.5 GNU Image Manipulation Program
14.6 Computational Fluid Dynamics using OpenFOAM. 300
14.7 Molecular Dynamics . 303

14.7.1 NAMD . 304
14.7.2
14.7.3 Molecular Visualization . 304
14.7.4 Foldng@Home . 305

14.8 Audacity . 306
14.8.1

14.9
14.9.1
14.9.2 Quantum GIS . 308

15
15.1 Algorithmic Design and HDL Capture . 318
15.2 HDL Capture . 318
15.3 BLIF Format in a nutshell . 320
15.4

. 298

GROMACS . 304

Sound Exchange : sox . 306

14.10 QCAD : 2d CAD Tools . 309

VLSI CAD Tools . 317

14.11 BRL-CAD . 311

GRASS GIS . 307

14.12 Blender . 314

Geographical Information Systems . 307

Schematic capture . 323

14.13 Conclusion . 315

Contents xix

15.4.1 Xcircuit . 323
15.4.2 GNU gschem . 324

15.5 Verilog Processing . 325
15.5.1 Icarus Verilog Simulator . 327
15.5.2 Pragmatic GPL cver . 329
15.5.3 GTKWave: Waveform Viewer . 329

15.6 VHDL Processing . 329
15.7 Alliance CAD System . 331

15.7.1 Alliance CAD VHDL processing . 331
15.7.2 Alliance CAD tool asimut . 331
15.7.3 VHDL Logic Synthesis using Alliance CAD tool Boom 332
15.7.4 Alliance CAD tool xsch schematic viewer 335
15.7.5 Gate level processing in Alliance CAD 335
15.7.6 Physical design with Alliance CAD . 339
15.7.7 Alliance CAD tool for standard-cell routing: nero 341
15.7.8 QUCS : Universal Circuit Simulator . 343

15.8 Magic VLSI Editor . 344
15.9 NGSpice SPICE Engine . 345

15.9.1
15.9.2 Performing TRANSIENT analysis . 347
15.9.3 Conclusion . 347

16 Math libraries . 349
16.1 BLAS . 350
16.2 ATLAS . 351
16.3 LAPACK . 351
16.4 NTL
16.5 GSL . 352
16.6 GMP . 353
16.7
16.8 FFTW . 353
16.9

17 Mathematics Software . 357
17.1 Maxima . 358
17.2 GNU Octave . 358
17.3 R : Data analysis and Graphics . 361
17.4
17.5 Pari . 370
17.6 Nauty . 370
17.7 Axiom . 371
17.8 Reduce . 373

. 352

GLPK . 354

MPFR . 353

Elementary devices in SPICE . 346

16.10 COIN-OR: Comp. Infrastructure for OR . 355

PSPP . 365

 16.10.1 Open Solver Interface . 356
16.11 Conclusion . 356

xx Contents

17.9 Singular Computer Algebra System . 375

17.11

17.12
17.13
17.14
17.15

18 Artificial Intelligence and Optimization . 391
18.1
18.2
18.3 ACL2: automatic theorem proving . 394
18.4 . 397
18.5 Representing floor-plans by k− tuples . 398

18.6
18.7
18.8 LIBSVM : Support Vector Machines . 405

18.8.1
18.9 Conclusion . 408

Part V Scientific Visualization

19 Information Visualization . 411
19.1 Graphical User Interfaces . 412

19.1.1 X Window System . 412
19.1.2 GIMP Toolkit: GTK . 413
19.1.3 Qt: Application development framework 414
19.1.4 Qt’s application programming API . 418
19.1.5 Other GUI Toolkits . 418

19.2 OpenGL . 427
19.2.1 GLUT : OpenGL Utility Toolkit . 429
19.2.2 GLUI : GUI for OpenGL . 430
19.2.3 Using OpenGL from Python . 433

19.3 OGRE : OO Graphics Rendering Engine . 434
19.4 Graphviz: dot . 435

19.4.1 DOT Language . 436
19.5 gnuplot . 436
19.6 Grace/Xmgr . 437
19.7 Xfig . 438
19.8 Inkscape . 439
19.9 PovRay : Ray Tracing . 440
19.10

polymake: software to analyze Polytopes . 379

Artificial Neural Networks : FANN . 402

Other Math Systems . 381

SVM Tools . 406

17.10

GAUL : Genetic Algorithms Utility Library

17.11.1 Macaulay 2 . 381
17.11.2 CoCoA . 383
CGAL (Computer Geometry Algorithms and Library) 385
TeXMacs . 387

18.5.1 Sequence-pair Notation . 398

Introduction to AI Problems . 391

ASA : Adaptive Simulated Annealing Library 400

Sage

CLIPS: C Language Integrated Production System 392

. 388
Conclusion . 390

gd (graphics drawing) . 442

Contents xxi

20
20.1 Web Servers . 455

20.1.1
20.1.2 YAWS: Yet Another Web Server . 456
20.1.3 LAMP Stack . 456

20.2 Hadoop . 457
20.3 Content Management with Joomla . 457
20.4 Virtualization and Cloud Computing . 458

20.4.1 Cloud computing . 459
20.4.2 Network and Cluster Monitoring . 460
20.4.3 Ganglia . 460

20.5
20.5.1 Creating database using PostgreSQL . 461

20.6 MySQL . 464
20.7 . 467
20.8

21 Conclusion . 473

A Websites of Open-Source Applications . 475

Index . 481

19.11 asymptote . 443

PostgreSQL . 460
20.4.4

19.12 FreeType : Font Rendering . 445

HTTP Server : Apache . 456

Web and Database Systems . 455

SQLite

19.14 Geomview . 446

Nagios . 460

19.15 HippoDraw. 448

20.9

19.16 GGobi : multi-dimensional visualization . 448

Conclusion . 471

19.17 ParaView and VTK . 449

19.13 Anti-grain geometry : AGG . 446

19.18 OpenDX . 452

CouchDB . 469

19.19 Conclusion . 454

List of Tables

1.1 POSIX.1 variables for sysconf . 5

3.1 Directives in GNU GCC for the preprocessor . 50
3.2 Directives in GNU GCC for the preprocessor . 51

8.1 Major functions of the zlib library . 157
8.2 Major gzip functions of the zlib library . 161
8.3 Major functions of the libbz2 library . 162
8.4 Compression ratio of various tools . 164

9.1 XDR functions for writing primitives . 171
9.2 Berkeley DB functions . 184

12.1 Pthread Functions . 217
12.2 GNU libomp runtime functions . 220
12.3 OpenMP directives . 221

13.1 Data types supported by GNU lightning . 270
13.2 Instruction in GNU lightning . 271
13.3 LLVM Terminator instructions . 276
13.4 LLVM Instructions for computation . 276

14.1 CUDD DdNode Functions . 293

18.1 FANN API Functions . 405

A.1 Open-source software websites . 475
A.2 Open-source software websites . 476
A.3 Open-source software websites . 477
A.4 Open-source software websites . 478
A.5 Open-source software websites . 479

xxiii

List of Figures

1.1 Tux, the Linux mascot . 6
1.2 GNU/Linux desktop showing GNU Image Processing Tool (GIMP) . 16
1.3 GNU/Linux with GNOME Menus . 17
1.4 Example of matplotlib in Python . 23
1.5 Smalltalk-80 programming workspace implemented in Squeak on

GNU/Linux . 30

2.1 OpenOffice.org System . 36
2.2 Example of article written in LATEX . 38
2.3 LyX word processing software using LATEX . 40
2.4 TexMaker LATEXfrontend . 40
2.5 Scribus desktop publishing program . 41

3.1 TkCVS showing log of file . 63
3.2 TkCVS branch and repository . 65
3.3 TkCVS showing TkDiff module with CVS . 65
3.4 Bugzilla screen . 75
3.5 Setting up and using Bugzilla . 76
3.6 EMACS: editor for code editing . 77
3.7 ’speedbar’ in Emacs . 78
3.8 ECLIPSE: editor for code editing . 79
3.9 KDEVELOP: IDE for code editing . 80
3.10 KDEVELOP: Dialog for creating new project . 80
3.11 KDEVELOP: Dialog for project options . 80
3.12 Insight : gdb front end as debugger . 90
3.13 Insight console front end for gdb . 90
3.14 More examples of debugging using Insight . 91
3.15 Insight: register view and memory watch . 91
3.16 Doxygen : document generator . 93
3.17 SourceNavigator : project management for code 94
3.18 SourceNavigator : project management for code 95

xxv

xxvi List of Figures

3.19 Alleyoop: GUI frontend for Valgrind . 103

6.1 Comparison of Boost vs APR memory pool . 129
6.2 Effects of linking with Google’s perftools . 129
6.3 Graph of dependencies using BGL . 135
6.4 Boost Generic Image Library (GIL) computing histograms of JPEG

files . 142

7.1 Performance measurement of GNU C malloc with perftools
tcmalloc. 147

7.2 Google Perftools pprof output graph . 149
7.3 Google Perftools with CPU profiler output graph 150

8.1 Compression ratio for zlib . 161

10.1 Hyperslab data reading in HDF5 . 199

11.1 Cairo graphics with SVG surface, example . 204
11.2 Example of using cairo_rotate . 205

12.1 Example of pthread spawning 2 threads for functions F1 and F2. 214
12.2 Comparing performance in OpenMP using various scheduling and

data chunking strategies. 223
12.3 Task parallelism in OpenMP 3.0 . 227
12.4

13.1 Flow chart of compiler construction . 242
13.2
13.3 ANTLRWorks introductory screen . 272

14.1 OpenCV ‘highgui’ image display example . 290
14.2 BDD produced using CUDD library . 294
14.3

GNU Image Manipulation Program (GIMP) . 298
14.5
14.6 ParaView as a frontend to OpenFOAM. 300
14.7 OpenFOAM block mesh . 302
14.8 JMol : Molecule Viewer application . 305
14.9

14.11
14.12
14.13
14.14
14.15
14.16

14.10 GRASS GIS (geographical information system) 307

Difference between CPU and GPU organization 233

Quantum GIS (geographical information system) 308

OpenEV : Raster/Vector viewer . 295

Portland and surrounding area, urban area, county and dams. 309

Layout of an ELF file . 265

Road network, vector shape file . 309

14.4

QCad: Computer Aided Design . 310
BRL-CAD mged Geometry Editor . 311

Audacity : audio editor . 306

Perspective view, top and front view . 312

GIMP built in tools and filters . 299

List of Figures xxvii

14.18
14.19
14.20
14.21

15.1 . . . 321
15.2
15.3 Xcircuit used for drawing schematic . 325
15.4 gEDA schematic editor gschem . 325
15.5 GTKWave, waveform viewer from VCD files . 330
15.6 Schematic viewer tool in Alliance CAD xsch 336
15.7 Alliance CAD tool graal showing OCP placement 340
15.8 Standard cell placement showing cell blocks and metal interconnect . 341
15.9 Output from nero negotiating router . 342

15.11
15.12

16.1 FFT transformations . 354

17.1
17.2 Maxima software running in wxMaxima . 359
17.3
17.4 Variable view in PSPP . 366
17.5 PSPP software to analyze data . 366
17.6 Statistical analysis function in PSPP . 369
17.7 Graph of 3-simplex . 371
17.8 AXIOM software . 372
17.9 xcocoa : GUI frontend for CoCoA . 384
17.10
17.11
17.12
17.13

18.1 Sequence-pair representation . 398
18.2 Graph representation of floor-plans (transitive edges have been

omitted.) . 399

19.1 Hello, World with GTK showing Pango . 414
19.2 Glade: user interface designer for GTK . 414
19.3 Qt Creator . 415
19.4 Hello World in Qt . 416
19.5 Signals and slots example with spinbox . 417
19.6 QtOctave frontend to Octave . 417
19.7 Hello World with WxWidgets . 420

14.17

Data summary plot using R . 364

15.10

Example machine part in BRL-CAD . 313

Xcircuit : publication quality rendering of circuit schematics 324

Rendering in Blender . 315

TeXMacs software . 387

SAGE mathematical software . 388
SAGE mathematical software . 389

Gate level netlist, schematic is shown after mapping onto library.

Main GUI screen of Blender . 314

Example of digital circuit designed in QUCS

Maxima text console . 358

. 343
Magic VLSI layout editor . 344

TeXMacs software calling external math programs 388

Raytracer in BRL-CAD . 313

Example circuit for SPICE analysis

Example machine part in BRL-CAD . 313

. 346

xxviii List of Figures

19.8 glview example for FOX . 420
19.9

19.11
19.12
19.13
19.14
19.15
19.16
19.17
19.18
19.19 gd : graphics library
19.20
19.21
19.22
19.23
19.24
19.25
19.26
19.27
19.28

20.1
20.2

21.1

19.10 Classic example of OpenGL . 427

Example of OpenGL, GLUT and GLUI . 432

Futon: CouchDB web-based administration . 470

GNUPLOT: scientific plotting software . 437

xfig: vector drawing tool . 439
Inkscape: vector drawing tool . 439

Creating databases and documents in CouchDB 471

. 443

Hiearchical OOGL file with INST. 448

Design process for a solution using Open-source tools 473

A polytope browser written in PyQt . 421

Geomview visualization software . 446
Mathematical drawing with asymptote . 444

Grace/XMGR plotting software . 438

ggobi analyzing CSV data . 450
ParaView showing 3d object . 451

Example of scene rendered using POVRAY . 441

Graph of a polytope generated using dot . 435

Asymptote drawing language : xasy tool . 443

Colored square in OOGL format . 447

OpenDX scientific visualization software . 452

OpenGL GLUI examples . 430

Visual program in OpenDX to analyze 2d data 454

Listings

1.1 Using the atexit function . 4
1.2 Example of using resource limits . 7
1.3 Example of getenv function . 8
1.4 Example of signal handling in GNU/Linux . 9
1.5 Example of using Bash scripting . 12
1.6 GNU FORTRAN example with OpenMP . 20
1.7 Compiling Java program with GNU gcj . 21
1.8 Common Lisp functions . 26
3.1 GCC advice . 51
3.2 SCons file for Boost UDP . 73
3.3 Example of using gcov . 83
3.4 gcov generated annotated source code . 84
3.5 Example for debugging with GDB . 87
4.1 Example of scanf . 107
4.2 Example of lseek . 107
4.3 Example of stat . 108
4.4 GNU libc example of passwd structure . 108
4.5 GNU libc example of sysconf . 109
4.6 Using STL std::vector . 110
5.1 APR process running ‘cal’ program . 114
5.2 APR thread example . 116
5.3 APR thread pool example . 117
5.4 Example using APR hash tables for word frequency counting 120
5.5 Using memcache with APR . 122
5.6 Example of using shared memory with APR . 124
5.7 Using shared memory segment with APR . 125
6.1 Example of Boost memory pool . 128
6.2 Example of Boost asio UDP server . 131
6.3 Example of Boost asio UDP client . 131
6.4 Example of Boost IOStreams writer . 132
6.5 Example of Boost IOStreams reader . 133

xxix

xxx Listings

6.6 Example of Boost bimap container . 134
6.7 Example of BGL . 136
6.8 Example of using Boost threads . 140
6.9 Example of using Boost GIL . 141
7.1 Example of using Boehm garbage collection . 152
8.1 Using ZLIB with XDR . 157
9.1 RPC Language description of molecule . 166
9.2 Molecule processing service . 166
9.3 Client for molecule processing service . 169
9.4 XDR writer example . 170
9.5 XDR reader example . 170
9.6 Generated XDR for molecule.x . 170
9.7 XDR file for system load structure . 171
9.8 XDR file system load . 172
9.9 Server RPC file for system load . 172
9.10 Client RPC file for system load . 172
9.11 Example of Boost CRC32 checksum . 173
9.12 Example of computing MD5 checkum using APR 174
9.13 Example of computing SHA1 checkum using APR 175
9.14 Example of using Expat for XML parsing . 179
9.15 Example of using libxml for XML processing . 180
9.16 Example of using Berkeley DB . 182
9.17 Using Berkeley DB with Python . 184
9.18 Example of memcached protocol in Python . 186
9.19 Example of Python binding generation . 186
9.20 SWIG interface file for Python binding . 187
9.21 SWIG Python integration with C++ header file 187
9.22 SWIG Python integration with C++ file . 187
9.23 SWIG interface file for Python binding . 188
10.1 Example of using HDF5 library API for writing dataset 193
10.2 Example of using HDF5 library API for reading dataset 194
10.3 HDF5 API example . 195
10.4 HDF5 C++ API example . 198
11.1 Example of using Xlib with Cairo . 201
11.2 Using SVG surface with Cairo . 204
12.1 Introduction to pthreads . 215
12.2 Parallel matrix multiple . 216
12.3 Hello world style program using OpenMP . 218
12.4 Return count of the Collatz function . 222
12.5 Experimenting with OpenMP scheduling . 223
12.6 OpenMP reduction style min operator . 225
12.7 Example of TASK parallelism in OpenMP . 226
12.8 Example program using MPI . 229
12.9 Example of using Intel TBB . 231
12.10 Lambda expressions in TBB . 232

Listings xxxi

12.11
12.12
12.13
13.1 Lex exampe file for username analysis . 244
13.2 Example gperf input file for Pascal keywords . 246
13.3 Test harness for gperf for Pascal keywords . 247
13.4 Example of using getopt . 249
13.5 Example of GNU bison Yacc file . 252
13.6 Example of using addr2line . 257
13.7 Example of using c++filt for demangling C++ names 258
13.8 Example of using the strings program . 263
13.9 Example of using libelf library . 264

14.1 OpenCV core functionality . 288
14.2 Displaying images using OpenCV . 289
14.3 Example of using CImg Toolkit . 290
14.4 Using CUDD BDD Library . 291
14.5 Example of cartographic projection using PROJ4 296
14.6 Example of using GDAL library . 297
15.1 Verilog design of full adder . 326
15.2
16.1 Example of using BLAS library . 350
16.2 Example of using NTL . 352
16.3 Example of using GNU Scientific Library (GSL) 352
17.1 GNU Octave program script . 361
17.2 Example of using CGAl to compute convex hull 386
18.1 Example of using GAUL for floorplanning . 399
18.2 Example of using FANN neural network library 402
18.3 Using FANN produced ANN for classification 404
19.1 Using GTK GUI Libraries . 413
19.2 Example of using Qt GUI Libraries . 415
19.3 Signal/slot mechanism in Qt . 416
19.4 Using wxWidgets GUI library . 419
19.5 Example of PyQt . 420
19.6 Qt integration with Python, polytope browser . 421
19.7 Drawing graphics with OpenGL . 428
19.8 Example of using OpenGL for graphics . 430
19.9 OpenGL bindings for Python . 433
19.10
20.1 Using MySQL with Python . 466
20.2 Example of SQLite API in C++ . 468

Kernel dimensions in CUDA . 235

13.10

Example of PyCUDA . 237

VHDL example of adder-accumulator . 330

Example of GPUarrays in PyCUDA . 238

Example of using FreeType . 445

Example of using GNU lightning . 270

Part I
Fundamentals

Chapter 1
GNU/Linux Operating System

Abstract In this introductory part we describe the basic GNU/Linux system usage
and the various tools and utilities which are used with it. In particular, the use of
the GNU/Linux command-line, Bash shell scripting, and external programs such as
find, tar etc. are explained. Secure communication tools OpenSSH and VNC
are also described. Since open-source software is written using computer program-
ming languages we describe the commonly used open-source programming lan-
guages, including C/C++, FORTRAN, Ada, Java, Python, Tcl/Tk, Perl, Common
Lisp, Scheme, Erlang, Smalltalk, Ruby, Scala, X10, and Lua in this chapter. Exam-
ple for each of these languages and their salient points are described.

Contents
1.1 Basic GNU/Linux Usage . 5
1.2 Bash shell . 11
1.3 External commands and programs in GNU/Linux 12
1.4 Next steps . 15
1.5 OpenSSH: OpenBSD Secure Shell . 18
1.6 Programming Languages . 19
1.7 Miscellaneous Topics . 34
1.8 Conclusion . 34

We focus on the fundamentals of any Open Source system for Scientists and Engi-
neers. Since this book focuses on the usage of computer tools, the Operating System
(OS) which forms the primary interaction layer with the user, is particularly impor-
tant. We have written the book primarily for a POSIX1 compliant UNIX like system;
but many of the applications described in this book have been ported to other OS as
well.

In Section 1.1 we discuss the GNU/Linux operating system and its relevance to
open source tools for scientists and engineers.

Besides the OS, the compiler used for generating executable binaries from the
source code also has a fundamental impact on the quality, performance and porta-

1 Portable Operating System Interface for UNIX, IEEE 1003.

bility of the application. Especially for Open Source tools, where availability of the

S. Koranne, Handbook of Open Source Tools,
DOI 10.1007/978-1-4419-7719-9_1, © Springer Science+Business Media, LLC 2011

3

4 1 GNU/Linux Operating System

source code is a given, knowing the intricacies of the compiler can be very benefi-
cial. In Section 3.1 we talk about GCC (GNU Compiler Collection) compilers.

GNU/Linux (basically all UNIX derived OS) share a number of common features
and facilities. This include:

1. Files: the OS has several types of files, such as regular files, directories, devices,
symbolic links, named pipes, and sockets. Interaction with kernel, and devices
takes place using special device files. Similarly, a program is a binary file re-
siding on a file-system file which is loaded into memory, combined with other
shared libraries, to form an executable object which the kernel then schedules as
a process,

2. Multi-user: the OS has user id (uid), group id (gid), and process id (pid). These
are used for accounting, where the OS keeps tracks of system usage based on
user accounts, and group quotas,

3. Resource permissions: GNU/Linux is one of the most secure operating systems
(when configured correctly), and modern technologies such as SE Linux have
improved the authentication and security even more. Every resource has permis-
sions set on its use, be it files, directories, and executables. An user can only
perform the action with the resource if the user id has sufficient privilege level.
This prevents misuse of the system, and guards against malicious attempts to
gain access,

4. Multi-tasking: since its conception GNU/Linux was a multi-tasking OS, but
multi-core computers have only recently become commonplace (so much so, that
now in 2010 it is difficult to mind a single core CPU). By design GNU/Linux has
support for multiple processes, and multi-threading. The scheduler in the Linux
kernel has been enhanced to improve the response time on regular desktop work-
loads, while the multi-CPU SMP kernel is already used in many supercomputers
with large number of CPUs. In addition to supporting multiple CPUs, the Linux
kernel also has excellent support for inter-process communication using shared
memory, named pipes (FIFOs), and sockets. All POSIX features for IPC are sup-
ported, and Linux also supports extensions which are not in POSIX,

5. System calls: being POSIX compliant, Linux kernel supports all the POSIX sys-
tem calls. A system call is a facility or functionality provided by the kernel to
the application program through a well defined interface. The use of system
calls provides a layer of abstraction which enables a well written program to
be ported from one POSIX OS to another with minimal change. System calls in
GNU/Linux are provided with a C language API, and are similar in form to the
function APIs provided by the C library. For example a program may register a
cleanup function to be called when the application program exits. An example is
shown in Listing 1.1.

/** \file example_atexit.c
\author Sandeep Koranne (C) 2010
\description Example of using the atexit function

*/
5 #include <stdio.h> /* program IO */

#include <unistd.h> /* POSIX */
#include <stdlib.h> /* atexit */

1.1 Basic GNU/Linux Usage 5

static void CleanupAfterwards(void) {
10 fprintf(stdout, "%s: ", __FUNCTION__);

fprintf(stdout, "Deleting application files...\n");
}

int main(int argc, char* argv[]) {
15 long max_atexit = sysconf(_SC_ATEXIT_MAX);

int rc;
if(max_atexit == 0) perror(" atexit..\n");
rc = atexit(CleanupAfterwards);
if(rc != 0) perror("atexit failed..\n");

20 return (0);
}

Listing 1.1 Using the atexit function

atexit may even be registered for dynamic libraries, to be called when they are
unloaded,

6. Sysconf functionality: the system configuration of the currently running system
can be introspected using the sysconf functionality. Portable programs, or appli-
cation programs that attempt to retune their runtime parameters based on system
configuration can inspect the state of the system. Some parameters, such as page
size can have a large impact on the performance of the program. The most com-
mon system configuration arguments are given in Table 1.1.

Table 1.1 POSIX.1 variables for sysconf

Variable Description
ARG_MAX maximum length of arguments to exec functions,
CHILD_MAX maximum number of simultaneous process per user id,
HOST_NAME_MAX maximum length of a hostname,
LOGIN_NAME_MAX maximum length of login name,
_SC_CLK_TCK number of clock ticks per second,
OPEN_MAX maximum number of open files per process,
PAGESIZE size of page in bytes,
_SC_PHYS_PAGES number of pages of physical memory,
_SC_AVPHYS_PAGES number of pages of memory currently available,
_SC_NPROCESSORS_CONF number of processors configured,
_SC_NPROCESSORS_ONLN number of processors online.

1.1 Basic GNU/Linux Usage

Linux (Figure 1.1 shows the official Linux mascot) is the most popular open source
operating system. Technically, Linux refers to the UNIX-like kernel written by Li-
nus Torvalds, but most users don’t interact with the computer’s kernel, instead they
rely on a host of other software which runs on top of the kernel. It is for this rea-

6 1 GNU/Linux Operating System

Fig. 1.1 Tux, the Linux mas-
cot

son that the operating system described in this book is referred to as GNU/Linux.
It includes the kernel, the C runtime library, GNU utilities and tools, shells, and
graphical windowing systems.

Today GNU/Linux runs on mainframes, personal computers, and even embedded
systems such as cellphones and gaming consoles. GNU/Linux is also a favorite de-
velopment platform for open source systems relevant to scientists and engineers, and
is the epitome of the open source movement. This book was designed and authored
on a number of GNU/Linux systems, using open source tools.

The advantages of GNU/Linux can be summarized as follows:

1. Linux has a stable and efficient kernel which is optimized (and undergoes con-
stant improvement),

2. Complete source code of the kernel and system utilities is available,
3. Its POSIX compliant and thus easy for application developers to port,
4. Since it has the UNIX philosophy, it is resilient against malicious software (to a

large extent), has good security model, is multiuser, and separates the graphical
windowing system from the underlying OS,

5. GNU/GCC and other high quality development tools are readily available,
6. More and more high-performance supercomputers are running GNU/Linux, and

thus systems such as MPI, OpenMP, cluster computing are first available on
GNU/Linux.

GNU/Linux is often available as a distribution which is a packaged, tested and
complete operating system. The distribution can be commercial (open source does
not imply free-of-cost), or it can be free (for example Fedora or Ubuntu). But all
GNU/Linux systems are fundamentally the same, the differences mostly are in the
application packaging, updates, and themes. Some distributions tend to focus on ver-
tical segments such as education, electronics. There is also a distribution dedicated
for scientists and engineers, but many of the software tools are available on all dis-
tributions, or can be compiled on the available distribution. The source code of the
kernel can be found in /usr/src/kernels if the kernel development package
was installed.

1.1 Basic GNU/Linux Usage 7

1.1.1 System Calls

An useful tool to find out which system calls are being issued by a program is
strace, which intercepts the system calls made by its argument program and prints
them either to standard error or to a file (with the -o option). Running strace
uptime gives the following data on a Linux 2.6.31 system:

execve("/usr/bin/uptime", ["uptime"], [/* 86 vars */]) = 0
brk(0) = 0x816c000
mmap2(NULL, 4096, PROT_READ|PROT_WRITE
...
access("/etc/ld.so.preload", R_OK)
mprotect(0xaa7000, 8192, PROT_READ) = 0
mprotect(0x934000, 4096, PROT_READ) = 0
munmap(0xb787d000, 133998) = 0
uname({sys="Linux", node="celex", ...}) = 0
open("/proc/stat", O_RDONLY|O_CLOEXEC) = 3
read(3, "cpu 230207 235 59156 1265206 32"..., 8192) = 2856
close(3) = 0
time(NULL) = 1277426073
brk(0) = 0x816c000
brk(0x818d000) = 0x818d000
open("/etc/localtime", O_RDONLY) = 3
...
open("/proc/uptime", O_RDONLY) = 3
lseek(3, 0, SEEK_SET) = 0
read(3, "119176.07 12652.06\n", 2047) = 19
..
open("/proc/loadavg", O_RDONLY) = 4
lseek(4, 0, SEEK_SET) = 0
read(4, "0.77 1.00 1.17 2/301 5624\n", 2047) = 26
write(1, " 17:34:33 up 1 day, 9:06, 4 us"..., 69) = 69
exit_group(0) = ?

Even without consulting the code for the uptime utility we can garner that it
produces its output by reading various system files in /proc, namely, /proc/stat
and /proc/loadavg.

1.1.1.1 Usage Limits

The functions getrlimit and setrlimit are used to get and set resource limits
respectively. These functions prevent a single rogue process on the machine from
consuming all of the available resources (such as CPU time, memory, files, etc).
Using sensible limits on the resource in your programs is advised. Consider the
small program in the listing below:

///////////////////////////////////
// limitexample.cpp
// (C) Sandeep Koranne, 2010
// Example showing how to put limits on resources

5 ///////////////////////////////////

8 1 GNU/Linux Operating System

#include <iostream>
#include <sys/resource.h>
#include <stdio.h>
void AllocateMemory() {

10 while(true) {
int *n = new int[1024];
if(!n) return;

}
}

15
int main() {
struct rlimit mem;
mem.rlim_cur = mem.rlim_max = 1024000;
int rc = setrlimit(RLIMIT_AS, &mem);

20 if(rc) perror("setrlimit:");
AllocateMemory();
return(0);

}

Listing 1.2 Example of using resource limits

By using the setrlimit function we cap the maximum memory usage by this
program to 10240 bytes. Without this usage restriction, the program would go into
swap, and the whole system becomes unresponsive, until the operating system kills
the offending program, which could be a long time as the virtual memory system is
implemented using disk (which is many orders slower than physical RAM). Thus,
specifying reasonable limits, even then they are computed at runtime (based on in-
put file size), makes for a robust application software. An application program can
inspect the current environment of the user using the getenv function. This provides
a simple way of allowing the user to customize parameters to the program. An ex-
ample is shown in Listing 1.3.

/** \file example_getenv.c
\author Sandeep Koranne, (C) 2010
\description Example of using getenv

*/
5 #include <stdio.h> /* for program IO */

#include <stdlib.h> /* for getenv */
#include <string.h> /* for strcmp */

int main(int argc, char *argv[]) {
10 enum { NO_ALGO=0, LINEAR, BINARY };

int which_algo = NO_ALGO;
const char* use_algo = getenv("USE_ALGORITHM");
if(use_algo == NULL) which_algo = NO_ALGO;
else if(!strcmp(use_algo, "LINEAR"))

15 which_algo = LINEAR;
else if(!strcmp(use_algo, "BINARY"))

which_algo = BINARY;
else {

fprintf(stderr, "Unknown algorithm : %s\n", use_algo);
20 which_algo = NO_ALGO;

}
printf("Using algorithm %d\n", which_algo);
return (0);

}

Listing 1.3 Example of getenv function

Running this program gives us:

./example_getenv

1.1 Basic GNU/Linux Usage 9

Using algorithm 0
$ export USE_ALGORITHM="BINARY"
$./example_getenv
Using algorithm 2
$ export USE_ALGORITHM="RANDOM"
$./example_getenv
Unknown algorithm : RANDOM
Using algorithm 0

1.1.1.2 Signals

Signals in GNU/Linux (and UNIX) are event notifications. The nomenclature has
roots in hardware implementations of control, and even today, actions such as key-
press interrupt of Ctrl-C sends a signal to the application program. The computation
itself may raise a signal from the CPU such a arithmetic divide-by-zero. Signals can
be responding to an external condition, or based on timer intervals (alarm signal).
The key concept to be noted for signals is that they are asynchronous, and a program
using signals should be cognizant that a signal can arrive at any time, and during any
computation. A common use of signals is to intercept the SIGINT signal (which is
the result of Ctrl-C) to perform cleanup actions. We should note that atexit does
not cleanup when the program terminates due to signal. An example of intercepting
Ctrl-C (or the equivalent SIGINT key on the OS) is shown in Listing 1.4.

/** \file example_signal.c
\author Sandeep Koranne, (C) 2010
\description example of using SIGNALS in GNU/Linux

*/
5 #include <stdio.h> /* program IO */

#include <signal.h> /* for sigaction */
#include <stdlib.h> /* for exit */
#include <unistd.h> /* for _exit */
#include <string.h> /* for memset */

10
static void SecondChance(int signal_number) {
int yes_or_no;
fprintf(stderr, "Are you sure ?\n");
fscanf(stdin, "%d", &yes_or_no);

15 if(yes_or_no) _exit(0);
}

int main(int argc, char *argv []) {
int i;

20 struct sigaction action;
memset(&action, 0, sizeof(sigaction));
action.sa_handler = SecondChance;
if(sigaction(SIGINT, &action, NULL)) {

perror("sigaction failed....\n");
25 exit(1);

}
while(1) ;
return 0;

}

Listing 1.4 Example of signal handling in GNU/Linux

10 1 GNU/Linux Operating System

For an user a GNU/Linux is like any other multiuser UNIX system with login
shells, hierarchical file systems, text configuration files, and UNIX development
tools. The shell (which is the program responsible for interaction with the user) sup-
ports job control, scripting, input redirection and other facilities. In the next section
we have discussed briefly the Bash shell.

1.1.2 GNU/Linux introspection

GNU/Linux has a number of system commands which can be used to gather in-
formation about the system. These commands can be useful when discussing or
reporting problems about particular software installations, or runtime problems. We
discuss some of these commands below:

• uname: with the -a option prints detailed information about the system, as:

Linux celex 2.6.31 Wed Dec 9 11:14:59 EST 2009 i686 GNU/Linux

with the -m option prints shorter machine identification which can be used in
compiling machine specific code,

• /proc/cpuinfo: is a /proc file which contains detailed information about the num-
ber and type of CPU(s) in the machine. The instruction set of the CPU can be
checked to see if it has SIMD or advanced instructions,

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 13
model name : Intel(R) Pentium(R) M processor 1.60GHz
stepping : 6
cpu MHz : 600.000
cache size : 2048 KB
...

• /proc/meminfo: similarly contains information about installed memory, also see
the free command.

1.1.3 GNU coreutils

For any GNU/Linux system there is a set of command known as coreutils, these can
be thought of as fundamental user commands which perform common and useful
actions. We list some of these below:

• man: format and display the manual pages. This command can be used to find
more details about the commands listed below. In fact, man man gives you in-
formation about man itself,

1.2 Bash shell 11

• Commands to list output of files: includes cat, od, and nl,
• Formatting: fmt, fold,
• Output parts of files: head,tail, and split,
• Summarizing files: wc, sum, cksum, md5sum, and sha1sum,
• Sorting: sort and uniq,
• Operating on fields within a line: cut, paste, and join,
• Operating on characters: tr, and expand,
• Directory listing: ls, and dir,
• Basic operations: cp, mv, rm, shred, dd, and install,
• Changing file attributes: chown, chmod, chgrp, and touch,
• Disk usage: df, du, stat, truncate, and sync,
• Printing text: echo, printf, and yes,
• Conditions: false, true, test, and expr,
• Redirection: tee,
• File name manipulation: basename, dirname, and pathchk,
• Working context: pwd, tty, and printenv,
• User information: id, logname, whoami, groups, users, and who,
• System context: date, arch, uname, hostname, hostid, and uptime,
• Process control: kill and sleep.

1.2 Bash shell

The Bash shell is an UNIX shell for the GNU system and is often the default shell
on GNU/Linux. Bash is actually an acronym for Bourne-again shell, which is a pun
on the Bourne shell. Bash is POSIX compliant, but also has a number of extensions.
We list some of the important features of Bash below:

• Brace expansion: running:

[skoranne@celex ˜]$ echo a,{b,c,d},e
a,b,e a,c,e a,d,e

• Keyboard shortcuts: supports Emacs style keyboard shortcuts,
• Startup scripts: loads and executes /etc/profile for login, /.bashrc for

interactive shells,
• Redirection: supports input and output redirection.

1.2.1 Bash shell scripting

The Bash shell supports scripting and programming. This feature is very useful in
automating repetitive tasks and system administration. Consider a directory with
JPG files, and that you want to add a prefix to all the filenames, such as “Printed”.

12 1 GNU/Linux Operating System

If there are hundreds of files doing such a task by hand is tedious, and more impor-
tantly, un-necessary on a system like GNU/Linux running Bash.

$for i in $(ls *.jpg);do
mv $i "Printed_$i"

done

Consider a real life example:

for i in $(ls *.png);do
echo "Converting image file $i"
convert $i -colorspace Gray $(basename $i .png)_bw.png

done

This simple program will do the required action. Using the basename command, we
can separate a file name from its designated extension (.png) in this case. The exter-
nal command convert is then called with the two file names, the input and the output
(which has the suffix ‘bw’). The conversion is a grayscale conversion. In addition to
the above mentioned for-do-done loop, there are also if-then-else state-
ments.

A more detailed example of using Bash scripting to perform an experiment is
shown in Listing 1.5.

#!/bin/bash
Sandeep Koranne, (C) 2010
#
Shell script to sweep configuration parameters for OpenMP

5 # we run the program multiple times with different options
and varying the THREAD count

Scalability plot for program on 2-CPU
CMD=./collatz_omp

10 for num_threads in $(seq 1 2); do
export OMP_NUM_THREADS=$num_threads
NUM_TH=$(echo $OMP_NUM_THREADS)
for algo in $(seq 0 5);do
echo "Running algorithm $algo"

15 datFileName="$algo"_"$NUM_TH".dat
echo "Data goes in $datFileName"
for i in $(seq 19 21);do
echo "Running N = " $i
/usr/bin/time -f "%e %U" -o $datFileName -a $CMD $i $algo

20 done
done
done

Listing 1.5 Example of using Bash scripting

1.3 External commands and programs in GNU/Linux

In addition to the GNU coreutils commands, there are a number of external com-
mands which are readily available on GNU/Linux and perform many useful tasks.

1.3 External commands and programs in GNU/Linux 13

The regular expression feature is common to many of these commands, and it is
instructive to list the regular expression syntax.

1.3.1 GNU regular expression syntax

A regular expression is built up from blocks that match single characters, or patterns.
Single characters are patterns which match themselves, any meta-character can be
matched by preceding it with a backslash. The ‘.’ character (period) matches any
single character. Characters listed inside brackets form a list, from which any single
character can be matched. For example:

[school]
[ˆhome]

the first pattern list matches any character in ‘s’, ‘c’, ‘h’, ‘o’, and ‘l’; the second list
has a ’ˆ’ symbol as the first character, implying that characters not in the list can be
matched.

Character ranges can be specified by a hyphen. A + after the list bracket implies
one or more repetition of that class can be matched, while implies a zero or more
match. For example:

[0-9]+ matches any non-empty number
[a-z]* matches any word, even empty
[0-9]{9} matches 9 numbers

Now we discuss some useful commands below:

1. wget: utility to download files from the Internet in a non-interactive manner. It
supports HTTP, HTTPS as well as FTP. wget can work in the background, as
well as resume downloading partially downloaded files. It can also be used for
recursive downloads of sites. Another related program is curl, which is used to
transfer a single URL (see an example of using curl in Section 20.8),

2. find: GNU find searches the directory tree routed at the given path, example:

find /home/skoranne -name ’*.cpp’
find /home/skoranne -name ’*.tar’ | xargs ls -l

find can search for files based on their type, date of modification, etc. Actions
can also be specified for files which match the pattern,

3. grep: program to find regular expression based pattern in files, or standard input.
Some of the important options for grep are:

• -v: negate the matching,
• -m: specify number of matches per file,
• -A: print number of lines after context,
• -B: print number of lines before context,
• -w: match complete words only,

14 1 GNU/Linux Operating System

• -i: case independent matching,
• -n: print line number with match,
• -H: print file name for each match.

4. sed: Sed is a stream editor. A stream editor is used to perform basic text trans-
formations on an input stream, for example:

cat A.txt | sed -e ’s/alpha/beta/g/’ > B.txt

5. awk: GNU awk is an implementation of the awk language. The most common
use of awk is to parse an input file (line by line) into fields. Consider the follow-
ing example:

$cat A.txt
ABC WV 65
DEF SJ 87
GHI MN 18
$cat A.txt | awk ’{print $1}’
ABC
DEF
GHI
$cat A.txt | awk ’{ printf "City " $2 " # " $3 "\n"}’
City WV # 65
City SJ # 87
City MN # 18

There are a number of other features in awk, and a complete list of commandline
options and features can be found by running info awk,

6. rsync: remote file copying and synchronization tool. This tool can be used to
keep two computer’s contents in sync, as is the case when mirroring a website
(for example), or transfering documents from one workstation to another,

7. ssh: is an OpenSSH client and remote login program. SSH has rapidly become
the remote login program of choice since it is much more secure and flexible
than telnet, and rlogin. It provides secure and encrypted communication
capability between two untrusted hosts over an insecure network. It can also be
used to tunnel other protocols such as VPN, X11 and VNC (see Section 1.7.1).
ssh can be configured to use authentication keys in lieu of passwords. A related
program is secure copy, scp. A more detailed description of OpenSSH is given
in Section 1.5,

8. nc: nc (short form of netcat) is a TCP/UDP analysis tool. It can open TCP/UDP
connections, send and listen on ports and deal with IPv4 as well as IPv6,

9. screen: GNU screen is a full-screen window manager that multiplexes a phys-
ical terminal between several processes. When screen is first called it creates a
single window with a shell. To switch between terminals a key combination can
be used, such as Ctrl-a n. A new window can be created using “C-a c”. Using
screen -x a remote second user can attach to a non-detached screen session
(which is a way to share a session),

10. xargs: the xargs programs reads input separated by blanks, and executes
the specified command for each input token. xargs is used in combination

1.4 Next steps 15

with find or other file name listers to perform system administration and disk
cleanup tasks. For example, to check the time stamp for all files which match the
regular expression m[a-e]k we can use the following oneliner2

$ ls | grep -i m[a-e]k | xargs ls -l
2915 2010-06-27 01:26 make.aux
19103 2010-07-31 22:54 make.tex
19099 2010-07-26 00:27 make.tex˜

In the above example we chained the output of ls to grep where we used regular
expression matching. As we know, grep will output only those patterns which
match the expression, and these are passed to xargs; the command to be executed
by xargs is ls -l, which prints the required time stamp information. xargs can
also take the input from a file (in addition to the standard input),

11. tar: GNU tar (acronym for Tape Archive) is used to collect directories and
files into a single file for archival on tape, or backup. It supports a number of
command-line options, the most common ones are:

-c, --create create a new archive
-r, --append append files to the end of an archive
-t, --list list the contents of an archive
-x, --extract, --get extract files from an archive
-p, --preserve-permissions, --same-permissions
-f, --file=ARCHIVE use archive file or device ARCHIVE
-C, --directory=DIR change to directory DIR
-v, --verbose verbosely list files processed

Thus a new archive to contain all files in directory XYZ can be done as tar cvf
xyz.tar XYZ/. Moreover, the archive can be compressed using the following
compression schemes. The compression schemes included in GNU tar are:

a. gzip: using the z option,
b. bzip2: using the j option,
c. lzma: using the J option,

12. diff: the diff command can be used to find differences between files. Espe-
cially for source code, diff is used for version control management and change
control.

1.4 Next steps

As familiarity with GNU/Linux grows, the user can write useful shell scripts, or
one liners, to perform administration work. The software systems presented in the
remainder of this book assumes that the user is able to operate the operating system
to perform the input, output, and file system tasks. Before closing this chapter let me

2 A oneliner in UNIX terminology is a combination of UNIX utilities and shell constructs, which
is created to solve a particular problem, and is often comprised of only one line.

16 1 GNU/Linux Operating System

Fig. 1.2 GNU/Linux desktop showing GNU Image Processing Tool (GIMP)

present the graphical user interface of GNU/Linux as this may be the more common
interaction paradigm for most users today.

Consider the GNU/Linux screenshot of a computer running Fedora 12 as shown
in Figure 1.2. The graphical system is GNOME, and the system menus have a num-
ber of applications for tasks such as system administration, office applications, In-
ternet and networking, and software development. These are shown in Figure 1.3. I
am not listing programs such as Firefox, Thunderbird since these are in popular use.

1.4 Next steps 17

(a) Applications, Internet and Office

(b) Software development and System

Fig. 1.3 GNU/Linux with GNOME Menus

18 1 GNU/Linux Operating System

1.5 OpenSSH: OpenBSD Secure Shell

OpenSSH (OpenBSD Secure Shell) is an open source implementation of the SSH
connectivity tools. As compared to Telnet, Rlogin, and FTP (which transmit their
password and all user data in clear text on the network), SSH encrypts all traffic. This
eliminates the risk of snooping and hijacking, as well as other attacks. OpenSSH
also provides tunneling capabilities over which other protocols such as X11, and
VNC can be used with the same security advantages.

OpenSSH is comprised of a number of tools:

1. sshd: the SSH services daemon (can be compared to ‘telnetd’ daemon),
2. ssh: rlogin and telnet like login client,
3. ssh-keygen: key generator tool,
4. ssh-config: daemon configuration file,
5. scp: secure copy program (like rcp).

1.5.0.1 The ssh client

The ssh client is the primary login and remote execution client for SSH. The usual
manner of using ssh is:

$ssh [options] remote-server

When logging into a remote system, ssh supports a number of command line argu-
ments; the most common and useful ones are listed below:

• -C: requests compression of data using zlib compression,
• -c: selects cipher for encryption, supported ciphers include blowfish, des,
• -F :specify alternative configuration file,
• -f: request ssh to go background just before command execution,
• -i: specify identity file,
• -L: specifies port forwarding,
• -l: specify remote login name,
• -o: specify option,
• -p: specify port on remote server,
• -v: verbose mode (useful for debugging a connection problem),
• -X: enables X11 forwarding,
• -Y: enables trusted X11 forwarding.

ssh exits with the exit status of the remote command or 255 if an error occurred.
Prior to a successful connection, sshd verifies that the client machine is a trusted

party (by checking the name of the host in /etc/hosts.equiv), and that the
user names are same on both machines. Moreover the server must be able to verify
the client’s host key. The file /.ssh/authorized keys on the remote server
lists the public keys that are permitted to login. The ssh program on the client
informs the server of the key pair it is going to be using for the session, and then the
sshd server checks whether the corresponding public key is authorized.

1.6 Programming Languages 19

The user can create a key-pair by running ssh-keygen. If using OpenSSH
protocol 2 with DSA the generated keys are stored in the file /.ssh/id dsa,
when using OpenSSH protocol 2 with RSA the generated keys are stored in the
file /.ssh/id rsa. The corresponding public keys (which must be transmit-
ted to the server and placed in /.ssh/authorized keys) are generated in
/.ssh/id dsa.pub (for DSA) and /.ssh/id rsa.pub (for RSA). Once
the public keys are placed on the server, the ssh client (and any program which
uses ssh) can login to the remote server without giving the password. Although, if
the public keys do not exist, then ssh falls back to password based login.

The ssh client also maintains a database of identifications of all hosts it has
connected to; if the host key changes for some reason (or more commonly if the
host IP address changes), ssh warns about this change.

External tools such as CVS (see Section 3.2.2) and Subversion SVN (see Sec-
tion 3.2.3) also use SSH to perform remote version control through remote reposi-
tories.

1.6 Programming Languages

Since this book is about open-source software, and all software is written in a com-
puter programming language, it behooves us to describe some of the languages and
their implementations which are available as open-source systems themselves. In
this section we discuss some of the popular programming languages available on
GNU/Linux system. Particular programming syntax for each language is not pre-
sented, however the particular strength of the language and its application domain
is mentioned in case the reader wants to investigate the use of a particular language
for a specific task.

1.6.1 C and C++

C and C++ are used as system programming, as well as application programming
languages. Many of the libraries presented in the sequel of this book (see Chap-
ter 4) are written in C/C++. C is especially popular for system programming, writ-
ing system kernels and tools. The function calling conventions of C language are
sufficiently common so as to become the de-facto standard for new languages. Con-
sequently, a number of existing libraries in C can be easily used from other language
using foreign function interface.

A number of compilers for C and C++ are available. These include the GNU
GCC Compiler suite. GCC is discussed in depth in Section 3.1. LLVM (low level
virtual machine) (discussed in Chapter 13, section 13.6) also implements a C and
C++ compiler clang. Open64 group also has an open-source compiler for C and
C++. In recent years, GCC has made promising strides in optimization, better in-

20 1 GNU/Linux Operating System

struction generation on modern processors, automatic parallelization, compiler op-
timizations and error checking, threading support, and support for OpenMP. The
upcoming C++ standard is also supported by GCC’s C++ compiler and standard
library.

1.6.2 GNU FORTRAN

On GNU systems, there exist a number of FORTRAN compilers and source trans-
lators, including g77, f2c and GNU FORTRAN (part of GCC). GNU FORTRAN
has support for FORTRAN 95 and uses the same back end as GCC C/C++ compilers
thus benefiting from portability and integration with libraries written in C and C++.
GNU FORTRAN can be run using the gfortran command and accepts many of
the same general command line arguments as GCC (see Section 3.1 for a detailed
list of GCC’s options). GNU FORTRAN accepts the OpenMP directives as speci-
fied in OpenMP version 3.0. See Section 12.2 for a detailed explanation of OpenMP
support and programming. An example of a short FORTRAN program to print the
number of OpenMP threads is shown in Listing 1.6.

! \file fomp.f
! \author Sandeep Koranne, (C) 2010
! \description Example of using OpenMP in GNU Fortran

PROGRAM FOMP
5 IMPLICIT NONE

INTEGER OMP_GET_MAX_THREADS
INTEGER OMP_GET_THREAD_NUM
write(6, "(a,i3)") " MAX THREADS : ", OMP_GET_MAX_THREADS()
write(6, "(a,i3)") " Thread num : ", OMP_GET_THREAD_NUM()

10 END PROGRAM

Listing 1.6 GNU FORTRAN example with OpenMP

We can compile this program as:

$gfortran fomp.f -o fomp -lgomp
$./fomp
MAX THREADS : 16
Thread num : 0

1.6.3 Ada

The GNU GCC compiler collection also has a compiler for the ADA programming
language. Consider the simple hello, world style program in Ada.

-- this is hello world in Ada
with Text_IO; use Text_IO;
procedure HelloWorld is
begin

1.6 Programming Languages 21

Put_Line("Hello from Ada!");
end HelloWorld;

We create a file helloworld.adb with these content, then we can compile this
Ada program using the GNU gnat system.

$gnatmake helloworld.adb
gcc -c helloworld.adb
gnatbind -x helloworld.ali
gnatlink helloworld.ali
$./helloworld
Hello from Ada!

Later (in Section 15.6) when we discuss the VHDL hardware description language,
its similarities to ADA will be apparent.

1.6.4 Java

Although many Java software development kits are available on GNU/Linux, we
discuss the GNU GCC compiler suite’s gcj Java compiler. GNU gcj is an ahead-
of-time compiler for the Java language. Using the -C option gcj can generate the
Java bytecode, otherwise it will generate native instructions (for the architecture
GCC was compiled for). Consider the small Java program in Listing 1.7.

// \file hw.java
// \author Sandeep Koranne, (C) 2010
// \description Hello world in Java compiled with GNU gcj

5 class hw {
public static void main(String args[]) {

System.out.println(" Hello, World!\n");
}

}

Listing 1.7 Compiling Java program with GNU gcj

The Java language has restrictions on the names of classes present in files, for ex-
ample the file ‘hw.java’ has class hw which has the main function. Compiling this
file using the GNU gcj compiler we get:

$gcj --main=hw hw.java
$ldd a.out
linux-gate.so.1 => (0x00f80000)
libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00603000)
libgcj.so.10 => /usr/lib/libgcj.so.10 (0x0381f000)

Compiling the file using the --main command line argument specifies the class
which contains the main function. This creates an executable file which is linked
with the libgcj runtime library. We can also compile the file to Java bytecode
using the -C argument as:

22 1 GNU/Linux Operating System

$gcj -C hw.java
$ls -l hw.class

413 2010-07-16 20:09 hw.class
$java hw
Hello, World!

The bytecode is executed through the Java Virtual Machine.

1.6.5 Python

The Python programming language implemented on most GNU/Linux is the CPython
reference implementation. The version used for many of the examples in this book
is Python version 2.6.2. Many of software libraries discussed in this book have
been integrated with Python. And even complete tools such as SConstruct (see Sec-
tion 3.4.2) have been constructed around Python. Due to its interactive nature Python
has also been used to develop glue software integrating diverse tools into a complete
package. In fact the SAGE mathematical software system has been written in Python
(see Subsection 17.14), and is developed as a collection of several independent math
software tool, all connected using Python.

Although Python is a general purpose programming language, some features of
Python are especially suited for high-performance scientific computing and solving
engineering problems.

1.6.5.1 NumPY

NumPy is a Python package developed for scientific computing with Python. It con-
tains:

1. N-dimensional array: n-dimensional array object,
2. sophisticated broadcasting functions
3. tools for integrating C/C++ and FORTRAN code
4. linear algebra, Fourier transform: integration with external library codes for lin-

ear algebra, FFT and random number generation.

As an example of NumPy consider:

Python 2.6.2 (r262:71600, Aug 21 2009, 12:22:21)
[GCC 4.4.1 20090818 (Red Hat 4.4.1-6)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from numpy import *

5 >>> a = array([1,2,3,4])
>>> a
array([1, 2, 3, 4])
>>> b = array([5,6,7,8])
>>> a+2*b

10 array([11, 14, 17, 20])

1.6 Programming Languages 23

In the above listing, the use of NumPy arrays as well as functions operating on array
elements can be observed.

NumPy is used effectively with SciPy (a package for scientific computing with
Python). These packages can be imported in Python as:

>>> import numpy as np
>>> import scipy as sp
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

The matplotlib is a general purpose plotting library for Python. SciPy contains
many mathematical functions including optimization, linear interpolation, special
functions and more. Consider an example shown below:

import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
x = np.arange(0,20)

5 y = np.exp(-x/3.0)
f = interpolate.interpolate1d(x,y)
xnew = np.arange(0,20,0.1)
plt.plot(x,y,’o’,xnew,f(xnew),’-’)
plt.title(‘‘Example of interpolation’’)

10 plt.show()

The resulting plot is shown in Figure 1.4.

Fig. 1.4 Example of matplotlib in Python

24 1 GNU/Linux Operating System

Matplotlib has many other features which are shown in Section 19.1.5.5, where
we discuss building graphical user interfaces (GUI) with Python and Qt.

1.6.5.2 PyCUDA

Python has well designed facilities for multi-processing and multi-threading. An
example of calling external processes through Python is shown in Section 19.1.5.5.
In this section we describe a more recent development in the parallel programming
arena, GPGPU (general computing on graphics processing units). A leading soft-
ware library for GPGPU computing is nVidia’s CUDA software. PyCUDA is a
Python module which makes the integration with CUDA simple. Consider the fol-
lowing example:

import numpy as np
import pycuda.driver as cuda
cuda.init()
assert cuda.Device.count() >= 1

5 dev = cuda.Device(0)
contxt = dev.make_context()
func = mod.get_function(‘‘myf’’)
a_on_cpu = np.arange(0,10)
a_on_gpu = cuda.mem_alloc(a_on_cpu.nbytes)

10 cuda.memcpy_htod(a_on_gpu, a_on_cpu)
func(a_on_gpu, block=(1,1,1))
cuda_memcpy_dtoh(a_on_cpu, a_on_gpu)

1.6.5.3 PuLP

SciPy has a number of general-purpose optimization routines including: (i) Nelder-
Mead Simplex algorithm, (ii) Quasi-Newton method, and (iii) Minimize sum-of-
squares. But for general linear problems (LP) formulated using variables and con-
straints, or combinatoric problems modeled as integer linear programs (ILP) the
Python LP modeler (PuLP) can be used. Once the model has been defined in PuLP
a number of linear solvers can be called to solve the problem. See Subsection 16.10
for more details on PuLP, however a simple example is presented below:

x = LpVariable(‘‘x’’,0,10)
y = LpVariable(‘‘y’’,5,20)
problem = LpProblem(‘‘example’’, LpMinimize)
prob += x + 3*y <= 20

5 prob += 2*x+y
status = prob.solve(GLPK(msg = 0))
LpStatus[status]

The above listing creates a LP problem with two variables x and y which has one
constraint, x + 3y ≤ 20, while the objective function is 2 ∗ x + y and the goal is to
minimize the LP. The solver chosen in GLPK (see Section 16.9 for more details on
GNU GLPK and other linear solvers).

1.6 Programming Languages 25

1.6.6 Tcl/Tk

Tcl (Tool control language) and Tk GUI Kit are interactive programming languages
which were designed for embedding into applications. Tcl, however, is a general
purpose programming language which is used for rapid prototyping and has been
used to develop complete applications (see TkCVS in Section 3.2.5). Tk is the GUI
toolkit which is used to design and deploy GUIs written in Tcl and other languages
(such as Python using the Tkinter library). Tcl is designed to be extensible by C,
C++ and other Tcl modules. All expressions in Tcl are written as commands which
are variadic and written in prefix notation. Example:

% set sum [expr 1+2]
3
% puts "Hello"
Hello
pack [button .b -text "Hello"]

Tk provides a number of widgets, including: (i) buttons, (ii) message-box, (iii) tool-
bars, and (iv) drawing canvas. Tcl/Tk are commonly used in providing scripting
capabilities in engineering applications; however, Python is also being used in more
modern applications for the same purpose.

1.6.7 Perl

Perl is a general purpose, high-level computer programming language. It was origi-
nally designed for efficient and easy report generation and processing. Its design was
heavily influenced by C, shell scripting, AWK, and sed. Perl’s handling of regular
expressions and capabilities to process large amounts of textual data, combined with
its rapid use in initial CGI scripting for the Internet caused its exponential rise. Perl
is often used to automate system administration tasks which are too complex for
shell scripting, while not compute intensive enough to warrant a full C/C++ appli-
cation. Moreover, Perl has integrated support for hash-tables, regular-expressions,
string support, and file-handling on most operating systems. With Perl version 5.0,
the language was optimized with a new interpreter, lexical variables, and modules.
Extension modules to Perl (often written in Perl, but possibly in C) are available for
many tasks such as XML processing. Modules are available on CPAN (Comprehen-
sive Perl Archive Network). It is easy to recognize Perl code since it uses symbols to
distinguish major data types. Fundamental data types included in Perl are: (i) scalars
($), (ii) array (), and (iii) associative array (%). Other data-types are: (iv) globs, (v)
file-handles, and (vi) sub-routines. Implementation of Perl on GNU/Linux are ver-
sion 5.10.0. A short example of Perl code using an associative array is shown below:

#!/usr/bin/perl -w
my %days = ("mon" => 1, "tue" => 2, "wed" => 3);

26 1 GNU/Linux Operating System

foreach my $day (keys %days) {
print "$day has $days{$day}\n";

}

1.6.8 Common Lisp

Common Lisp is general purpose programming language which is best associated
with the development of large and complex applications dealing with symbolic
logic and artificial intelligence. Symbolic math software (such as Maxima, see Sec-
tion 17.1) are usually written in Common Lisp. Lisp is an acronym of List Pro-
cessing, although the Common Lisp language has first class support for many data-
structures including arrays, hash-tables, strings, and streams. Common Lisp was
one of the first standardized languages to have a complete object-oriented (OO)
methodology as part of the language. The Common Lisp Object System (CLOS) is
an advanced OO framework which supports inheritance and message dispatch. Lisp
(like Python) has an interpreter (called the REPL (read-eval print loop)), but Com-
mon Lisp implementations have sophisticated compilers which often produce object
code rivaling C and FORTRAN in their number crunching speeds. Lisp also intro-
duced the concept of garbage collected storage, and dynamic type. Open-source
implementations of Common Lisp include GNU Common Lisp (clisp), CMU Lisp,
and SBCL. Consider a Common Lisp function as shown in Listing 1.8.

(defun compute-function (a b)
(if (= 0 (logxor a b)) -1 1))

(defun ck (A n k)
(let ((ans 0)(temp_j 0)

5 (n_temp_k 0)(ub (- n k)))
(dotimes (j ub)

(setf temp_j (aref A j))
(setf n_temp_k (logxor (aref A (+ j k)) 1))
(incf ans (compute-function temp_j n_temp_k)))

10 ans))
(defun cs (A n)
(let ((sum 0))
(dotimes (i (- n 1))

(let ((val (ck A n (1+ i))))
15 (incf sum (* val val))

(format t "˜%c_˜D = ˜D" (1+ i) val)))
sum))

(cs #(1 0 1 0 1) 5)
(quit)

20 (defun merit-factor (A)
(let ((n (length A)))

(* 1.0 (/ (* n n) (* 2 (cs A n))))))
(defun log2 (n)
(dotimes (j 64)

25 (when (> (ash 1 j) n) (return-from log2 j))))
(defun eb (n pos)
(let ((SHIFT (1- (log2 n))))

(ash (logand
n (ash 1 (- SHIFT pos)))

30 (- pos SHIFT))))

1.6 Programming Languages 27

Listing 1.8 Common Lisp functions

1.6.9 Scheme

A closely related language to Common Lisp is the Scheme language which shares
many of the functional programming roots with Lisp. GNU’s Scheme implemen-
tation is called Guile as it is the official scripting language for application exten-
sion of the GNU project. The idea behind using interactive scripting languages for
application extension comes from separating the compute intensive portion of the
application and writing it in a language such as C or C++, while the bulk of the
application can be written (and customized, even by the end-user) using a language
such as Scheme. Towards this end, GNU Guile has a simple integration method
where Guile can be linked with an application and used as the scripting interface.
The wrapper generator SWIG can be used to automate this process; more details on
using SWIG for wrapper interface generation are given in Section 9.7. Python, Tcl
and Lua are also commonly used for application scripting interface. An example of
Scheme code is:

(define sum (lambda (a b) (+ a b)))
guile> (sum 1 2)
3

Scheme, although superficially similar to Lisp, had (prior to Common Lisp, atleast)
fundamental differences surrounding the rules for variable scoping (lexical scoping
for Lisp was first introduced in Scheme), namespaces for functions and implemen-
tation of iterative loops. Even today, Scheme is generally regarded as an elegant
and more research oriented language than Common Lisp, which arguably has many
more features.

1.6.10 Erlang

On GNU/Linux, the Erlang implementation can be run using the erl command-line
which starts the Erlang shell:

Erlang R13B04 (erts-5.7.5) [source] [rq:1]
[async-threads:0]
[kernel-poll:false]

Eshell V5.7.5 (abort with ˆG)
1> % this is a comment
1> 3+3
1> .

28 1 GNU/Linux Operating System

6

The advantages of using Erlang are manifest when programming on multi-processor
machines, or when writing applications for fault-tolerance, as Erlang has single as-
signment variables.

X = 1234.
1234
3> X = 5678.

** exception error: no match of right hand side value 5678

In the above example the variable X was assigned the value 1234; then later when
we try to assign another value 5678 to X , Erlang raises an exception. Since a variable
can be set only once in Erlang, the debugging of programs as well as analyzing the
program for execution on a parallel machine is simplified (as Erlang has no mutable
state in variables, it does not need shared memory locking).

Erlang has enumerated types called atoms defined by the use of lowercase vari-
able names, and a fixed number of items can be collected into a single entity using
tuples. However, unlike C language struct, tuples in Erlang are anonymous, so it is
common to use an atom as the first element in a tuple to denote its intended use in
the program:

Point = {point, {x,10}, {y,20}}.
{point,{x,10},{y,20}}
8> Point.
{point,{x,10},{y,20}}

Erlang uses pattern matching operator to satisfy the equality operator:

{point,CX, CY} = Point.
{point,{x,10},{y,20}}
13> CX.
{x,10}
14> CY.
{y,20}
{another, DX, DY } = Point.

** exception error: no match of right hand
side value {point,{x,10},{y,20}}

By checking the pattern {point,X,Y} against the Point tuple, we assign the variable
CX ,CY to the corresponding elements in the tuple, as the first element in both LHS
and RHS is point. In the second example, when we try to match a pattern with
another as the first element, we get an exception.

Erlang has lists which are very similar to Common Lisp lists:

AL = [1,2,3,4,5].
[1,2,3,4,5]
17> [CAR_AL| CDR_AL] = AL.
[1,2,3,4,5]
18> CAR_AL.

1.6 Programming Languages 29

1
19> CDR_AL.
[2,3,4,5]

The [X|Y] notation denotes the head and tail of the list respectively, and like all
Erlang pattern matchings, can be used to extract the head and tail of the list respec-
tively.

Functions can be defined in Erlang as shown below. The listing is placed in a file
called ‘number theory.erl’:

%% \file number_theory.erl
%% \author Sandeep Koranne, (C) 2010
%% \description Examples in Erlang, for number theory

-module(number_theory).
-export([calc_collatz/1]).
-export([fibonacci/1]).

%% Actual functions
calc_collatz({collatz,1 }) -> 1; % simple case
calc_collatz({collatz,X }) when (X rem 2) == 0

-> calc_collatz({collatz,X div 2});
calc_collatz({collatz,X}) -> calc_collatz({collatz,3*X+1}).

fibonacci(0) -> 0;
fibonacci(1) -> 1;
fibonacci(X) -> fibonacci(X-1) + fibonacci(X-2).

The module declares the number_theory module. It exports the two functions
calc_collatz and fibonacci, both accepting a single input (the arity of the func-
tion is part of the function declaration in Erlang). We can bring this module into a
running Erlang shell by:

c(number_theory).
{ok,number_theory}
>number_theory:fibonacci(6).
8

Similar to Perl, Erlang also has a Comprehensive Erlang Archive Network
(CEAN) which attempts to gather the major applications for Erlang in one com-
mon place. Erlang is commonly used in designing fault-tolerant communication
software. An example of fault-tolerant software is CouchDB (see Section 20.8 for
information).

1.6.11 Smalltalk

Smalltalk-80 is a general purpose programming language which introduced many
concepts in programming language design such as object oriented design, messages,

30 1 GNU/Linux Operating System

and the model-view-controller method of GUI design. Smalltalk-80 is also noted for
its use of a workspace environment for interacting with the user, as compared to the
syntactical text in, object code out view of programming languages. Smalltalk-80 is
implemented on GNU/Linux system using the Squeak software system. A picture
of an actual Smalltalk-80 session in GNU/Linux is shown in Figure 1.5.

Fig. 1.5 Smalltalk-80 programming workspace implemented in Squeak on GNU/Linux

1.6.12 Scala

The design of the Scala programming language started as a research project to de-
velop better language support for component software, where components can be
libraries, modules, classes, frameworks, processes, or even web services. As such,
Scala is by design an amalgamation of object-oriented and functional language de-
sign, with the over riding goal of scalability, that it should be possible to describe
large as well as small systems using the same concepts. Scala has been implemented
on the Java Virtual Machine on GNU/Linux, and Scala programs resemble Java pro-
grams in many ways. However, Scala introduces the concept of singleton class ob-
jects using the Object keyword. Scala also does not distinguish between statements
and expressions, and every function returns a value.

1.6 Programming Languages 31

Scala allows arguments to be passed by name, which can be used to implement
short-circuiting as below. Consider the following user-defined class in Scala:

abstract class Boolean {
def && (x: => Boolean): Boolean;
def || (x: => Boolean): Boolean;
}

The use of => in passing the formal argument allows the parameter to be passed
without evaluation into the function.

Functions in Scala are values (they can be passed as first-class objects) as well
as Objects. The map method applies a given function to every object in a sequence.
Scala’s library defines many types of sequences including: (i) arrays, (ii) lists, (iii)
streams, and (iv) iterators. Like Python, Scala too has list comprehensions which
can succinctly represent code which operates on elements of a sequence:

def sqrts(xs: List[double]): List[double] =
for(val x <- xs; 0 <= x) yield Math.sqrt(x)

Here, the constraint 0 ≤ x acts as a filter to remove negative values from the xs list
of doubles. The values which pass through this filter are used as a generator and
passed to the variable x which is then yielded to form the return sequence (which is
also of type List[double]).

Scala has been used to create interactive and high traffic sustaining websites
which require scalability to 100 million or more transactions per hour. In addition to
the facilities described in this short section, Scala has other features such as pattern
recognition, compositions and XML processing which are also very powerful.

1.6.13 Google’s GO Programming Language

Go is an expressive, concurrent, garbage-collected systems programming language
developed by Google. Consider the following canonical example:

// this is a simple Go Program
package main
func main() {
print("Hello, World! from Go\n")

}

We can compile this program using the 8gGo compiler on an i386 machine running
GNU/Linux as:

$ echo $GOOS
linux
$ echo $GOARCH
386
$../bin/8g -h
gc: usage: 8g [flags] file.go...

32 1 GNU/Linux Operating System

$../bin/8g -V
8g version 5917
$../bin/8g helloworld.go
this produces the file helloworld.8 file
which can be linked using the 8l linker
$../bin/8l -h
usage: 8l [-options] [-E entry] [-H head] [-L dir]

[-T text] [-R rnd] [-r path] [-o out] main.8
$../bin/8l helloworld.8
which produces the file called 8.out
$./8.out
Hello, World! from Go

The Go programming language is already being used for system programming
tasks.

1.6.14 X10 Language

As parallel programming on a large scale (clusters of millions of computers)
becomes a reality, the existing programming paradigms of shared-memory, or
message-passing have shown the limits of their scalability. Towards this end, a new
language, the X10 Programming Language, has been designed with the concept
of partitioned global address space (PGAS). X10 is a modern object-oriented pro-
gramming language in the PGAS family with the goal of enabling scalable and
high-performance programming for next-generation computer systems.

In addition to supporting PGAS semantics, X10 introduces asynchronous actions
and distinguishes between the two views of synchronous execution (defined as ex-
ecuting within a place) and asynchronous execution. Each place runs lightweight
activities which are synchronous and atomic in the memory space of the place they
execute on. Furthermore, data is classified as immutable (in which case no consis-
tency management is necessary, and it can be freely copied) or data consistency
management may require one or more clocks to order the execution. The array data-
type supports parallel collective operation on data.

X10 is object oriented, and like C++ programmers write X10 code by defining
containers for data and behavior called interfaces, e.g.:

interface Diameter {
def compute_diameter() : Double;

}
class SimpleGraph implements Diameter {

var x : Double = 0;
public def isConnected() { }
public def compute_diameter() { }

}
struct DirectedGraph implements Diameter {

public def compute_diameter() {}
}

1.6 Programming Languages 33

In the above listing, both SimpleGraph as well as DirectedGraph implement the
Diameter interface, in that they both implement the compute_diameter method which
returns a Double. When the programmer states that SimpleGraph implements Diameter,
it must implement all the method that the interface demands.

In X10 there is a distinction between class and struct, struct are headerless
values and cannot have mutable fields, like the class SimpleGraph has field x. The
advantage of struct is the methods can be inlined; moreover, struct are immutable.
Although, X10 has no primitive class, the X10 standard library defines classes for:
(i) Boolean, (ii) Byte, (iii) Short, (iv) Integer, (v) Long, (vi) Float, (vii) Double, (viii)
Complex, and (ix) String. X10 is also a functional language, with functions being
first-class objects (functions can be stored and passed to other functions as values).
The GNU/Linux implementation of X10 (which is still considered a research lan-
guage) is available and implements version 2.0 of the X10 language specification.

1.6.15 Lua

Lua is a general purpose programming language designed to be used as a scripting
language for application extension. It is a lightweight language, and is used in ex-
tending game development engines and providing interactive control to users of the
application. In many respects, Lua is similar to Scheme (see Section 1.6.9) as both
languages are used for application extension and scripting. Lua is a dynamically
typed language and supports a small number of fundamental data-types, including:
(i) Boolean, (ii) numbers, and (iii) strings. The native data structure in Lua is the
table from which other data-structures such as list, set, arrays, and records can be
devised. The Lua table is basically an associative array. Like Scheme, Lua also has
support for first class functions, garbage collection, closures, proper tail recursion,
and co-routines. The use of Lua tables is essential to programming in Lua, consider
the following program fragment:

person={name="Jack", age=15,
marks={physics=80, math=75, english=70}}

print(person)
table: 0x84bc578
print(person.marks.physics)
80

Tables in Lua are always passed by reference, so if a table is assigned and modified,
both tables are modified. Tables can be used to implement record structures as shown
in the above example.

Lua is used by video game developers as a scripting language due to its small
embedded footprint, fast execution speed, and relatively small learning curve. As an
application extension language Lua competes with Scheme and Python.

34 1 GNU/Linux Operating System

1.7 Miscellaneous Topics

In addition to the programming languages discussed above, software implementa-
tion can be done using database processing languages such as SQL (structured query
language) (see Chapter 20 for a discussion on open-source database systems).

1.7.1 VNC : Virtual Network Computing

In Section 1.5 we saw the use of OpenSSH for tunneling X11 connections securely
over SSH protocol. VNC provides additional facility for remote X11 connections.
It allows for tunneling using SSH through a trusted intermediary node (often a des-
ignated VPN gateway), allows for sharing of the display (allowing collaborative
work), and persistent display workspace which can be connected from any machine.

VNC comprises of two tools, the VNC server vncserver and the VNC client
viewer vncviewer. The server has to be launched on the remote machine and
is setup to ask for a connection password. The display size, and color depth can
be specified on the vncserver command-line. The display then starts off with a
display number 1 larger than the maximum X11 display. To connect to a VNC server
we can use the vncviewer application. The viewer application also has a number
of command-line options such as: (i) full-screen mode, (ii) JPEG quality level, (iii)
gateway tunnel server, (iv) shared display, (v) viewonly, and (vi) zlib compression
level. Another remote desktop sharing application on GNU/Linux is rdesktop
(remote desktop).

1.8 Conclusion

In this chapter we have provided an overview of the GNU/Linux operating sys-
tem and its shell interface. Commonly used external tools were categorized, as well
as most of the open-source languages in which tools are written. In particular we
discussed GNU FORTRAN, GNU Ada, Java, Python, Tcl/Tk, Perl, Common Lisp,
Scheme, Erlang, Smalltalk, Scala, X10, and Lua. PHP and Ruby are discussed in
Chapter 20 (on web technologies). We have also presented an overview of remote
computing with VNC.

Chapter 2
Text processing

Abstract Text processing and document creation are an important part of the open-
source world. Most open-source tools come with documentation which is written
using SGML or TeXinfo (both described in this chapter). Complete tools such as
OpenOffice, devote significant portion to word processing. In this chapter we de-
scribe open-source tools for text document processing. We discuss OpenOffice,
TEXand LATEX, SGML, and TeXinfo. Page layout tool, Scribus, and document clas-
sification/citation tools are described.

Contents
2.1 OpenOffice.org Suite . 35
2.2 TeX and LaTeX . 37
2.3 Scribus . 41
2.4 Document classification software . 42
2.5 Wiki . 43
2.6 Conclusion . 43

Even with all the advent in graphical user interfaces, electronic document pro-
cessing and production remains an important part of any product development
project. There are many open source document preparation and markup systems;
we discuss some of them in this chapter.

2.1 OpenOffice.org Suite

The OpenOffice.org system is an open-source office software suite which includes
(i) word processing, (ii) spreadsheets, (iii) presentation, (iv) graphics and diagrams,
and (v) database. It is available in many languages and on many platforms. It can
read-write data files from many different software packages. Example of OpenOf-
fice.org tools is shown in Figure 2.1.

S. Koranne, Handbook of Open Source Tools, 35
DOI 10.1007/978-1-4419-7719-9_2, © Springer Science+Business Media, LLC 2011

36 2 Text processing

(a) Writer (word processor) and Calc (spreadsheet)

(b) Impress (presentation software)

(c) OpenOffice Draw

Fig. 2.1 OpenOffice.org System

2.2 TeX and LaTeX 37

2.2 TeX and LaTeX

Consider the example of an article written in LATEX:

%% Simple document in LaTeX
\documentclass{article}[12pt]
\usepackage{a4wide}
\usepackage{amsmath}
\usepackage{times}
\title{Introduction to Writing with \LaTeX}
\author{Sandeep Koranne}
\begin{document}
\maketitle
\begin{abstract}
This short document demonstrates the use of \LaTeX in writing
professional quality typeset articles. In
Section˜\ref{section:math} we give an example
of using \TeX for typesetting mathematics, which was the
reason for its invention. We conclude in
Section˜\ref{section:conclusion}.
\end{abstract}

\section{Introduction}

\section{Typesetting Mathematics}
\label{section:math}
Consider the following quadratic equation in x:
\begin{equation}
axˆ2 + bx + c = 0 \label{eqn:quadratic}
\end{equation}
Equation˜\ref{eqn:quadratic} has exactly two roots
$x = \frac{-b \pm \sqrt{ bˆ2 - 4ac}}{2a}$. The same
solution can be written as:
\begin{eqnarray}
x_1 & = & \frac{-b + \sqrt{ bˆ2 - 4ac}}{2a} \\
x_2 & = & \frac{-b - \sqrt{ bˆ2 - 4ac}}{2a}
\end{eqnarray}

\section{Conclusion}
\label{section:conclusion}
The use of references within the article is made
easier by using labels and references are automatically
generated.
\end{document}

We process this article with LATEXto generate a device independent file (DVI) as
shown in Figure 2.2.

38 2 Text processing

Fig. 2.2 Example of article written in LATEX

2.2.1 Lout Typesetting System

Lout is a typesetting software similar in concept to TEXbut implemented quite differ-
ently. It has a markup language, and can generate PostScript from Lout documents.

2.2.2 SGML Processing

Standard Generalized Markup Language. Most GNU manuals are written using
markup language as opposed to WYSIWYG word processors. Markup language
is identified by the following:

• structure as opposed to formatting: the markup should describe the structure of
the material as opposed to any specific formatting to be applied to it at any given
time,

• automatic processing: the structure imposed on the source document should be
sufficient to allow automated processing of data using software tools. We discuss
such an automated document generator for source code in Section 3.10.

2.2 TeX and LaTeX 39

As a documentation system SGML was designed to enable the sharing of machine
readable large corpus of documents from various agencies of the government, law,
and business applications. SGML is mostly associated with textual data, and XML
and HTML are closely related to SGML.

2.2.3 Texinfo : GNU Documentation System

Texinfo is the official documentation format of the GNU project. It is based on the
concept of markup language, and from a single source document many different
formats, including ‘dvi’, ‘html’, ‘info’, and ‘pdf’ can be automatically generated.
An example of a ‘.texi’ file from GCC is shown below:

@node Compatibility
@chapter Binary Compatibility
@cindex binary compatibility
@cindex ABI
@cindex application binary interface

Binary compatibility encompasses several related concepts:

@table @dfn
@item application binary interface (ABI)
The set of runtime conventions followed by all of
the tools that deal with binary representations of a program

Texinfo files can be converted to output formats using the makeinfo program.
The output format can be specified using the following options:

--docbook : docbook in XML
--html : output in HTML
--xml : Texinfo XML
--plaintext : plain text

The related tool troff generated man pages from descriptions formatted in a sim-
ilar manner.

2.2.4 LyX Frontend

LyX is a word-processor front end to the TEXand LATEXtypesetting systems. Mod-
eled after the WYSIWYG (what you see is what you get) principle, authors who
are not familiar with TEXcan use the GUI and commands of LyX to produce high
quality manuscripts. An example of LyX in action is shown in Figure 2.3.

40 2 Text processing

Fig. 2.3 LyX word processing software using LATEX

2.2.5 Texmaker LaTeX Editor

Another frontend to LATEXis TexMaker; but unlike LyX TexMaker is not a WYSI-
WYG word processor. The author using TexMaker has to be more familiar with
LATEX, although like a good GUI, TexMaker does provide menus and toolbars to
automate and simplify many tasks. An example of TexMaker editing a chapter of
this book is shown in Figure 2.4.

Fig. 2.4 TexMaker LATEXfrontend

2.3 Scribus 41

2.2.6 PostScript and PDF Support

The output of LATEXis a DVI file, but more and more, PDF (portable document
format) and PostScript output is also expected from the tools. There are a num-
ber of open-source programs which can generate and process PostScript and PDF
files. Document viewers such as (i) ghostscript, (ii) evince, and (iii) xpdf are avail-
able. Ghostscript in particular has PostScript processing tools which can manipulate
PostScript data for efficient printing, double-sided printing, and even format conver-
sion from PostScript to PDF.

In a similar vein, the text to PostScript converter program a2ps can be used to
convert TEXT files (including source code listing) to neatly formatted PostScript
data.

2.3 Scribus

Unlike Lyx and TexMaker, Scribus is a desktop publication (DTP) software. Such
software is often used when designing and printing brochures, pamphlets, menus,
and other promotional material. An example of Scribus in designing a library infor-
mation brochure is shown in Figure 2.5.

Fig. 2.5 Scribus desktop publishing program

42 2 Text processing

2.3.1 Citation management

If using TEXor LATEX, the appropriate text citation tool is BibTex, which accepts an
input ‘.bib’ file containing citations of the form:

@ARTICLE{karger,
author = {David R. Karger and Clifford Stein},
title = {A new approach to the minimum cut problem},
journal = {Journal of the ACM},
year = {1996}, volume = {43}, pages = {601--640}

}

This article can be cited in a LATEXsource as:

In his paper Karger˜\cite{karger} presented a

which produces output such as “paper Karger [18] says”, where the number 18 is
automatically calculated based on the citation order. The software also produces the
list of used references for inclusion in the main text.

2.4 Document classification software

In addition to text document creation tools, engineers and scientists also need doc-
ument classification, citation, and search/index tools. We discuss document file
searching tools on GNU/Linux systems. We have already seen the GNU find tool
for searching for file names in a hierarchical path. Since find actually traverses the
file system its performance can be slow for large file systems.

2.4.1 GNU locate

GNU tools locate and its security enhanced version slocate provide an effec-
tive command line file searching tool for GNU/Linux systems. The command line
for locate is:

$locate [options] file-pattern

GNU locate uses database prepared by updatedb, and thus is not bottlenecked
by the file system access speed or size, and is significantly faster than using find
when searching for files. By default locate does not check whether the file re-
ported still exists in the system or not; moreover, locate reports on files which
were present when the last database update was performed. Like many other UNIX
tools, locate exits with status 0 if a match was found, 1 otherwise. The options
accepted by locate are:

1. -b: match basename only (instead of wholename),

2.6 Conclusion 43

2. -c: print count of matching files (instead of names),
3. -e: report only files which still exist,
4. -L: follow symbolic links,
5. -l <n>: limit search to the first n matches only,
6. -S: print statistics about the database,
7. -r: use regex (regular expression) pattern matching.

The default database is located in /var/lib/mlocate/mlocate.db, running
locate -S returns:

Database /var/lib/mlocate/mlocate.db:
65,147 directories
927,777 files
59,636,635 bytes in file names
20,767,916 bytes used to store database

A security enhanced version of locate also exists, and is called slocate. It
only allows searches for files which have appropriate permission for the user who is
performing the search.

2.5 Wiki

A Wiki is described as a collaborative software which is implemented as a website.
A wiki allows multiple users to edit any page or to create new pages which can be
used to maintain collaborative information between groups of users. An example of
Wiki is Wikipedia, which is an encyclopedia maintained by a group of users. Wiki
updates are written with markup languages using web browser. A starting wiki web
page simply contains an Edit as well as a Save button. New pages in the wiki set
can be created by the users and added as a link to existing pages. The singular point
of the Wiki is that it allows any user to edit any page of the wiki website (of course,
this feature can be selectively switched off). This allows for a Wiki to grow as more
and more users add to the collective knowledge. Many wikis are completely open
to the general public, while others may have certain restriction to allow rudimen-
tary quality control on the content. Another very recent open-source addition is the
Eureka Streams open social networking project.

2.6 Conclusion

Information dissemination is an integral part of scientific research and information
science also benefits from the generation of high-quality documents. The software
presented in this chapter can help the scientist present the research in a standardized
and attractive manner. Above, we discussed text processing and document creation
tools including OpenOffice, Wiki, Scribus, SGML, LATEXand its various front-ends

44 2 Text processing

(including LyX and Texmaker). Document management and searching tools, along-
with citation tools were presented with examples.

Part II
Software Engineering and Libraries

Chapter 3
Software Engineering

Abstract In this chapter we discuss software construction tools including the ven-
erable GNU Compiler Collection (GCC) compilers, source code configuration sys-
tems (CVS, SVN and git), as well as the GNU Build Tools. Automatic build man-
agement tools GNU gmake and SCons are described with examples. The Bugzilla
defect tracking system is described; incidentally, this book had a Bugzilla page dur-
ing its development for issue tracking. Source code editors and IDEs (including
Emacs, Kdevelop and Eclipse) are shown as well as debugging, documentation and
profiling tools.

Contents
3.1 GCC : GNU Compiler Collection . 47
3.2 Source Code Configuration Systems . 59
3.3 GNU Build System . 66
3.4 Automatic Build Dependency Management 69
3.5 Bugzilla : Defect Tracking System . 75
3.6 Editing Source Code . 77
3.7 Static Checks on Source Code . 81
3.8 GNU gcov: Test Coverage Program . 82
3.9 Debug Tools . 87
3.10 Doxygen . 90
3.11 Source Navigation . 92
3.12 Profilers . 96
3.13 Conclusions . 103

3.1 GCC : GNU Compiler Collection

GCC stands for the GNU Compiler Collection (and not the GNU C Compiler), as
today it supports many languages in addition to C. In this Section we describe GCC
(as of version 4.5.0), and its command-line options, extensions, and optimizations.
The key features of GCC in the recent years have been support of modern architec-
tures with super-scalar instruction issue, parallelism (auto-SIMD as well as support

S. Koranne, Handbook of Open Source Tools, 47
DOI 10.1007/978-1-4419-7719-9_3, © Springer Science+Business Media, LLC 2011

48 3 Software Engineering

for OpenMP) and more complete support of C++ features, link-time optimization,
and with version 4.5.0, support of plugins. GCC is the official compiler of the GNU
project and is thus used to build the GNU tools, as well as the Linux kernel. It can
generate cross-platform executables, and is instrumental in getting a new chip, or
machine architecture off the ground. Once GCC is self-hosting on the new architec-
ture, many other GNU tools are easy to port to the new architecture.

Currently (as of version 4.5.0), GCC supports the following programming lan-
guages:

1. C/C++/Objective-C
2. GNU FORTRAN
3. Java
4. Ada

For the purposes of this section we are not focusing on the internals of GCC,
although the interested reader is strongly advised to read the ‘GCC Internals’ docu-
ment as well as the source code, as well as refer to Chapter 13 for more information
on compiler construction tools and techniques. Instead, we present the common op-
tions for GCC command-line, extensions and new features which are of interest in
building high-performance, robust applications. It also supports pre-compiled head-
ers, automatic link time instantiation of C++ templates, both features come in handy
when compiling large C++ programs.

3.1.1 GCC Command-line Options

The commonly used options for GCC (which are used in almost all non-trivial com-
pilations) are:

• -v: print version number of GCC,
• -I /directory/: location of additional paths to search for include files

present in the program,
• -L /library/path: location of additional paths to search for library loca-

tions,
• -l libname: additionally link to this library also,
• -o filename: write output to this filename,
• -c: compile only, do not perform linking,
• -D foo: define a pre-processor macro on the command-line,
• -static: link against static libraries,
• -fPIC -shared: link against shared libraries,
• -ggdb: include debugging symbols in the output,
• -On: perform optimization (using -O0 switches off optimization),
• -ansi: support all ANSI standards,
• -pedantic -Wall :turn on warnings,
• -mtune: specify machine architecture for optimizations,
• -fsyntax-only :quick check of syntax only,

3.1 GCC : GNU Compiler Collection 49

• -combine: pass multiple files to compiler at same time,
• -E: pre-process only,
• -S: produce assemble output,
• -frepo: C++ automatic template instantiation at link time,
• -pipe: use pipes instead of temporary disk files,
• -fprofile-arcs: generate profile data for PGO (profile guided optimiza-

tion),
• -fbranch-probabilities: use PGO runtime data to optimize code,
• -fomit-frame-pointer: do not generate stack frames,
• -pg: instrument code for profiling,
• --coverage: instrument code for code coverage,
• -fopenmp: enable handling of OpenMP directives,
• -fstats: generate statistics about compilation,
• -Q: prints each function name during compilation,
• -fverbos-asm: add more text to assembly output,
• -fWeffc++: warn about C++ stylistic problems,
• -fplugin: load the specified plugin.

GCC also has a number of machine target specific command-line options:

• -m128bit-long-long: size of long long is 16,
• -m32: generate 32-bit code,
• -m64: generate 64-bit code,
• -malign-loops: align loop code,
• -mtune: tune code for a specific architecture.

GCC can also be used in defensive programming, by using its options for warning
on suspect code. Some options are:

• -Waddress: warn about suspicious use of memory addresses,
• -Wbuiltin-macro-redefined:
• -Wwrite-strings:

Run gcc --help=warn for a complete list of command-line options for warning
and error generation.

3.1.2 GCC Preprocessor

The preprocessor reads in source code files and performs textual transformations
including text replacement, inclusion, conditional expansion and inclusion, before
passing the source to the compiler proper. The GNU GCC preprocessor is cpp
and operates on directives placed in the source file. We enumerate the important
directives in Table 3.1.

50 3 Software Engineering

Table 3.1 Directives in GNU GCC for the preprocessor

Directive Description
#include inclusion of file into current
#define define pre-processor symbol or macro
#undef undefine the macro or symbol
#ifdef conditional compilation
#else based on defined macro
#endif -do-
#if conditional based on value of variable
#pragma additional hints to the compiler
#warning generate warning message
#error generate error message
#line replace current line number
text concatenation operator

3.1.2.1 GCC Pragmas

The following GCC pragma are useful:

#pragma GCC poison malloc
// produces message whenever malloc is used
#pragma GCC dependency "a.inc"
// adds a.inc to dependency list of current file
#pragma GCC system_header
// treats file as a GCC system header

3.1.2.2 Predefined Macros

A list of the predefined macros in GCC is given below in Table 3.2.

3.1.3 GCC Support of OpenMP

The OpenMP support in GCC is part of the GOMP project. It is an implementation
of OpenMP for GCC supported languages, i.e., C, C++ and GNU FORTRAN. GCC
has supported OpenMP since version 4.2. OpenMP code is added to otherwise stan-
dard C, C++, FORTRAN code using pragmas, or directives to the compiler. The
compiler then uses these hints, and the code to produce parallel programs under
the semantics of the OpenMP specification. GCC OpenMP uses a runtime library
libgomp to facilitate the runtime parallelism requirements of the compiled pro-
gram. The pragmas are written in the form:

#pragma omp parallel for

3.1 GCC : GNU Compiler Collection 51

Table 3.2 Directives in GNU GCC for the preprocessor

Predefined Macro Description
BASE FILE quoted string (full file name)
cplusplus defined when compiling C++
DATE current compilation date
TIME current compilation time
FILE current translation file
LINE current line number
FUNCTION name of function
PRETTY FUNCTION for C++ more decorated name
GNUC major version number of GCC
GNUC MINOR minor version of GCC
VERSION complete version number
OPTIMIZE defined when optimization is on
STDC compiler is conformant to C++

for(i = 0; i < N; ++i)

OpenMP is a shared memory model, and thus the user is responsible for variable
sharing, and avoiding concurrent access situations, called race conditions. Further
details about parallel programming with OpenMP and GNU libgomp are given in
Section 12.2.

3.1.4 GCC Advice Mode

Starting with version 4.5.0 GCC has an advice mode which gives performance im-
provement advice for suboptimal usage of C++ data structures and algorithms from
the C++ standard library. It is an non-intrusive solution, the application code does
not need to be changed, and the advice is call context sensitive. However, to take
benefit of this advice mode the application has to be recompiled and executed on
representative workloads (akin to profile guided optimization, and branch probabil-
ity analysis). Consider the following program fragment from a discrete optimization
application:

std::ifstream ifs(file_name);
std::vector< LONG_WORD* > GraphCollection;
while(ifs) {

LONG_WORD* graph = ParseGraph(ifs, dimension);
5 if(graph == NULL) break;

GraphCollection.push_back(graph);
AnalyzeGraph(graph, dimension);

}
while(graph_display_mode == 1) { // simple printing

10 int which_one = 0;
std::cerr << std::endl << "Which graph to print ?";
std::cin >> which_one;

52 3 Software Engineering

if(which_one < 0) break;
LONG_WORD* graph = GraphCollection[which_one];

15 ConstructIntoGraph(graph, dimension);
PrintAdjacencyGraph(which_one, dimension);

}

Listing 3.1 GCC advice

We compile the full program as follows:

g++ -ggdb -D_GLIBCXX_PROFILE -O0 f.cpp -o f_dbg
$./f_dbg <representative input>
cat libstdcxx-profile.txtvector-size: improvement = 2:
call stack = 0x804abfa 0x94ebb6 0x80499a1 :
advice = change initial container size from 0 to 108
vector-to-list: improvement = -2:
call stack = 0x804abfa 0x94ebb6 0x80499a1 :
advice = change std::vector to std::list

Using the addr2line program (see Section 13.5.1.1 for more details on using
this tool) we can convert the call stack addresses to program line numbers, these
correspond to the definition of GraphCollection as a std::vector< LONG_WORD*>. The
representative input we ran on this program to calculate the advice did not include
the code in the second if clause which uses the data-structure as a random-access
container. Thus, GCC’s profile based advice informs us that (i) an initial size of 108
for the vector is recommended and (ii) replacing the vector (we only use push_back)
with a std::list (this will actually degrade performance as indicated by the negative
score of -2, but can save memory).

3.1.5 GCC Attributes

GCC allows for attributes (additional information) to be added to functions and
data variables. The attributes are defined using attribute keyword. There
are a number of pre-defined attributes in GCC and these are listed below:

• noreturn : specifies that the function does not return to the caller, e.g.,

void fatal_error() __attribute__ ((noreturn));

• align : specifies alignment of data variables, e.g.,

struct GraphNode {
int value;
void* data __attribute__ ((align(4)));

};

• alias: defines a function to be a weak alias of another function,
• always inline: if a function has been declared inline, then with this attribute, it

will be expanded inline even without any optimization,
• noinline: will never be expanded inline,

3.1 GCC : GNU Compiler Collection 53

• pure: a function with this attribute has no side effects whatsoever (no changes of
global variables, but can read global variables),

• const: a pure function with the additional constraint that it does not read global
variables also (function output is dependent on input parameters only),

• constructor: a function which is called before main(),
• destructor: a function called after main() exits,
• format: a function which has a single va arg style argument,
• malloc: a function which can be treated as malloc,
• deprecated: a warning will be issued for every call, or place of reference of this

variable or function,
• packed: a variable with this attribute has the smallest possible alignment (im-

proves memory footprint of structures).

3.1.6 GCC : Inline Assembly

Inline assembly refers to the ability of the GCC compiler to copy and transform
assembly code from the source C/C++ file and insert direct assembly code into the
generated assembler output. This facility is useful when optimizing loops, calling
CPU instructions which have no equivalent in the language, and calling vector CPU
instructions directly. The major differences between writing assembly code versus
writing inline assembly are the following:

1. Operand size is determined by the op-code name,
2. Register naming: register names in inline assembly are prefixed by % symbol,
3. variables references: to C/C++ code variables can be made in the inline code.

It should be noted that GCC uses the AT&T assembler syntax as opposed to the Intel
x86 syntax. The source-destination ordering in At&T is source, destination. Thus

mov %ebx, %eax ; eax <- ebx
movb %al, %bl ; byte move
movw %ax, %bx ; word move
movl %eax, %ebx; longword move
movl $0xAABB, %ecx; immediate operand
movb (%eax), %bl; bl <- byte pointed to by eax

To write inline assembly, the following syntax has to be observed:

asm (assembler template
: output operands
: input operands
: list of clobbered registers
);

example:

54 3 Software Engineering

#include <stdio.h>
int func(void) {
int a=1,b=2,c;
__asm__ ("movl %1, %%eax\n\t"
"movl %2, %%ebx\n\t"
"add %%eax,%%ebx\n\t"
"movl %%ebx,%0\n\t"
: "=r"(c)
: "r"(a),"r"(b)
: "%eax","%ebx"
);
return c;

}

int func2(void) {
int a=1,b=2,c;
__asm__ ("add %1,%2\n\t"
"movl %2,%0\n\t"
: "=r"(c)
: "r"(a),"r"(b)
: /* none */
);
return c;

}

int main() {
printf("%d %d", func(), func2());
return 0;

}

The relevant part of the assembler output is shown below:

func
4 "inl.c" 1
movl %edx, %eax
movl %ecx, %ebx
add %eax,%ebx
movl %ebx,%edx
func2
17 "inl.c" 1
add %eax,%edx
movl %edx,%eax

The critical difference between func and func2 is that, in func2 we did not
specify to GCC which registers are to be used for variables a and b. In register
strapped architectures such as x86, long instruction sequences increase the register
pressure. Unless a specific register is required by the instruction (such as CLD), it is

3.1 GCC : GNU Compiler Collection 55

better to let GCC choose a register. In this case (when GCC automatically chooses
a register), that register need not be added to the list of clobbered registers.

3.1.6.1 cpuid instruction

Above we had mentioned the use of inline assembly in calling CPU instructions
which do not have a C/C++ language equivalent. One such instruction is the cpuid
instruction which returns information about the current CPU. An example of using
inline assembly with this instruction is shown:

/* CPUID instruction,
calling with 0 returns the maximum call value

*/
#include <stdio.h>
int get_max_cpuid_call(void) {
int retval = 0;
__asm__ ("xor %%eax, %%eax\n\t"
"cpuid\n\t"
"movl %%eax,%0\n\t"
: "=r"(retval)
: /* no inputs */
: "%eax"
);
return retval;

}

int print_ids(void) {
int id;
int ax;
for(ax=0; ax < get_max_cpuid_call(); ++ax) {
__asm__ ("movl %1, %%eax\n\t"
"cpuid\n\t"
"movl %%eax,%0\n\t"
: "=r"(id)
: "r"(ax)
: "%eax");

printf("ID[%d] = %d\n", ax, id);
}

}
#define cpuid(func,ax,bx,cx,dx) \
__asm__ __volatile__ ("cpuid": \
"=a" (ax), "=b" (bx), "=c" (cx), "=d" (dx) : "a" (func));

unsigned int get_cpu_information(void) {
unsigned int info = 0x0;
int param = 1;
__asm__ ("movl $1, %%eax\n\t"
"cpuid\n\t"
"movl %%eax,%0\n\t"

56 3 Software Engineering

: "=r"(info)
: "r"(param)
: "%eax");

return info;
}

void print_cpu_information(unsigned int param) {
printf("\n CPU Information = %d", param);
printf("\n Stepping number = %d", (param & 7));
printf("\n Model number = %d", (param & 0x00F0) >> 4);

5 printf("\n Family number = %d",(param & 0x0F00) >> 8);
printf("\n Processor type= %d",(param & 0xA000) >> 12);

}

int main() {
10 printf("Max CPUID call = %d\n", get_max_cpuid_call());

print_ids();
print_cpu_information(get_cpu_information());
printf("\n");
return 0;

15 }

The output of the previous program is shown below:

Max CPUID call = 2
ID[0] = 2
ID[1] = 1750

CPU Information = 1750
Stepping number = 6
Model number = 13
Family number = 6
Processor type= 0

One inherent problem with inline assembly is that, not only is the code now specific
to GCC (or atleast to a compiler which understands GCC style inline assembly), but
more importantly, the code is now specific to an instruction set. Thus, it is a good
idea to encapsulate inline assembly code in functions and for equivalent C/C++
code (if it exists) to be maintained at the same time as assembly. The results of the
C/C++ code should be compared against the inline assembly code as well. In the
next section we discuss GCC intrinsics which in some cases remove the necessity
of using inline assembly, while maintaining some portability.

3.1.7 GCC Intrinsics

GNU GCC contains a number of extensions to the C/C++ language, not the least
of which are the intrinsic functions. Intrinsics are optimized versions of functions
which have been tuned for a particular architecture or instruction set. The extensions
supported by GCC include:

• typeof: returns the type-of (akin to sizeof) an expression,

3.1 GCC : GNU Compiler Collection 57

• long long: double-word integer,
• int128: 128-bit integers,
• Local labels: labels which are local to a block,
• Statement expressions: are permitted with this extension,
• Nested functions: are permitted with this extension,
• Intrinsic functions: discussed below,
• Empty structures: are allowed,
• Thread local variables: using the thread storage class,
• Return address: getting the return address from within the function,
• Offset of: calculates the offset of a particular data member within a structure.

3.1.7.1 X86 builtin functions: intrinsics

The major categories of builtins are:

1. Mathematical functions: such as sin, cos,
2. builtin types compatible p, builtin expect,

builtin constant p, builtin prefetch,
3. Atomic functions: these functions implement atomic operation functions. They

include, fetch-and-add, compare-and-swap, synchronize, and lock-and-test. These
functions are full barrier functions, thus no memory operand will be moved
across the operation. Atomic builtins can be used to implement spin-locks and
other synchronization facilities,

4. Vector arithmetic: SIMD on small size vectors, e.g., fabsq, padd, and psub,
5. Memory load/store, shuffle instructions:
6. CRC32: checksum functions,
7. AES: encryption functions,
8. Bit counting: population count for number of bits set.

3.1.8 Compiling Java using GCC

We can use the gcj GNU Java compiler to compile Java programs. Consider the
pedantic and canonical Java program:

/* helloworld.java */
public class helloworld {

public static void main(String arg[]) {
System.out.println("Hello!\n");

5 }
}

We can compile this program as:

gcj --main=helloworld helloworld.java -o H

Compilation hints: include functions

58 3 Software Engineering

One key distinction between using GNU gcj and other Java compilers such as
javac, is that GNU gcj produces native compiled code binaries, which do not
need to be run on the Java Virtual Machine (JVM). This has advantages of perfor-
mance, but at the same time the compile once, run everywhere facility of Java is
discarded.

3.1.9 Compiling Ada using GCC

Consider the simple hello, world style program in Ada.

-- this is hello world in Ada
with Text_IO; use Text_IO;
procedure HelloWorld is
begin

Put_Line("Hello from Ada!");
end HelloWorld;

We create a file helloworld.adb with these content, then we can compile this
Ada program using the GNU gnat system.

$gnatmake helloworld.adb
gcc -c helloworld.adb
gnatbind -x helloworld.ali
gnatlink helloworld.ali
$./helloworld
Hello from Ada!

3.1.10 Conclusion

Most of the open-source software developed on GNU/Linux is compiled using some
version of GCC, and thus it is an essential part of the open-source software stack.
Using GCC effectively is important, and in this section we have described the im-
portant facets of using GCC and its related tools. In particular, GCC extensions,
pragmas, support for OpenMP, attributes, inline assembly, and builtin intrinsics were
discussed. Using GCC to compile languages other than C/C++ was also briefly dis-
cussed.

3.2 Source Code Configuration Systems 59

3.2 Source Code Configuration Systems

3.2.1 Introduction to Version Control Systems

Software configuration management (SCM) and version control system (VCS) are
used to manage changes to program text, documents and other information stored
in computer files. It is used during the process of writing and developing computer
software, where a number of people working on the same software product are de-
veloping and working on the same set of files. Using SCM and VCS software, the
programmers aim to collaborate on the development, while maintaining the ability
to work on private copies of the shared source code files. Changes are usually re-
ferred to as a version number and are a combination of numeric version numbers
and letters.

As the team continues to develop software it is common to introduce new fea-
tures, and fix bugs existing in previous versions of the software. Since the life of
the deployed software is many years, the software development team must be able
to go back to a snapshot of the released version to reproduce a customer bug, or fix
a problem. Moreover, during development, errors can creep in, and developers can
use the version control system to do a quick analysis of the change they have made
to the code files from the last known good version.

Another common feature of the version control system is the concept of branches,
where the files at some point in time are forked into differing versions, presumably
for experimental development, or feature freeze prior to release. We shall present
the example of the software systems to support branching below. Once the feature
under development has been completed, it is possible to merge the changes back to
the main development line, which is often called the trunk, to take the analogy of
the software development tree further.

Moder software development systems and integrated development environments
(IDEs) have built in features to access version control systems through the user
interface. In this chapter we discuss the common version control systems including
CVS, SVN, and git. We discuss the command line utilities to access the version
control repository, and also discuss some graphical tools.

3.2.2 CVS

As mentioned above CVS (concurrent version system) is a version control system.
The main activities for working with a CVS repository can be divided into two
roles (i) the repository administrator, and (ii) CVS user. CVS allows the following
features:

To begin working with CVS, first the location of the CVS repository has to be
informed to the CVS tools. A common method is to define the CVSROOT environ-

60 3 Software Engineering

ment variable with the location of the repository. If the repository is a local file it
can be specified as:

export CVSROOT=/usr/local/cvsroot

or when working with multiple repositories it can be specified on the command-line
for every CVS tool as:

cvs -d /usr/local/cvsroot diff file.c

Once a local copy of the repository has been checked out, CVS maintains the current
CVSROOT information in the file CVS/Root. It is possible to connect to a remote
repository using the RSH protocol.

• cvs init: this command creates a repository in the named location with access
controls. The choice of the machine and file system to deploy CVS depends on
the expected load on the repository server, concurrent usage, and work load.

• cvs import: given an existing collection of files and directories, these can be
added to the CVS repository using the import command. An example is:

cvs import -m "Import" POLY POLY init

this commands add all the files and directories in the current working directory
as a child directory and files in the POLY directory of the repository. The commit
log is given by the -m argument, and the init tag is specified.

• cvs checkout: copies a copy of the module or file specified on the command line.
Internally, CVS also maintains hidden directories which contain the repository
information for each directory. Example:

$cvs co POLY
cvs checkout: Updating POLY
U POLY/cano_proc.cpp
U POLY/dual.cpp
U POLY/graph_reader.cpp

the directory structure within POLY/CVS is shown below:

drwxrwxr-x. 2 4096 2010-06-13 17:52 .
drwxrwxr-x. 3 4096 2010-06-13 17:52 ..
-rw-rw-r--. 1 150 2010-06-13 17:52 Entries
-rw-rw-r--. 1 5 2010-06-13 17:52 Repository
-rw-rw-r--. 1 24 2010-06-13 17:52 Root

• cvs update: periodically update the local copy of the files to bring in changes
from the repository.

RCS file: /home/skoranne/CVSROOT/POLY/cano_proc.cpp,v
retrieving revision 1.1.1.1
retrieving revision 1.2
Merging differences between 1.1.1.1 and 1.2

into cano_proc.cpp

3.2 Source Code Configuration Systems 61

rcsmerge: warning: conflicts during merge
cvs update: conflicts found in cano_proc.cpp
C cano_proc.cpp

The conflict markers show the difference between the local changes and the mod-
ifications made on the repository copy since the last update.

static void WritePostamble(std::ofstream& ofs) {
<<<<<<< cano_proc.cpp

// this function should have some comments
=======

5 // I also want to add some comments
>>>>>>> 1.2

ofs << std::endl << "\\end{document}" << std::endl;
}

• cvs commit: once changes in the file have been made, to make them apparent to
other users of the CVS system, the changes have to be committed back to the
repository. This is don’t using the cvs commit command; this command requires
an accompanying log for each commit. The log can be specified on the command
line using the -m option, or an editor can be invoked.

$cvs commit -m "Add my comments" cano_proc.cpp
Checking in cano_proc.cpp;
CVSROOT/POLY/cano_proc.cpp,v <-- cano_proc.cpp
new revision: 1.2; previous revision: 1.1
done

• cvs diff: this command runs the diff command on the current version of the file
with the CVS copy. Results are presented in the diff format.

[skoranne@celex POLY]$ cvs diff cano_proc.cpp
Index: cano_proc.cpp
===
RCS file: /home/skoranne/CVSROOT/POLY/cano_proc.cpp,v
retrieving revision 1.1.1.1
diff -r1.1.1.1 cano_proc.cpp
130a131
> // I also want to add some comments

• cvs stat: shows the status of the current files:

==
File: cano_proc.cpp Status: Locally Modified

Working revision: 1.1.1.1 Mon Jun 14 00:50:22 2010
Repository revision: 1.1.1.1 CVSROOT/POLY/cano_proc.cpp,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

• cvs release: removes file from the working copy, if specified using -d option
physically deletes the file from disk as well.

62 3 Software Engineering

A full list of CVS commands is:

add Add a new file/directory
admin Administration front end for rcs
annotate Show last revision
checkout Checkout sources for editing
commit Check files into the repository
diff Show differences between revisions
edit Get ready to edit a watched file
editors See who is editing a watched file
export Export sources from CVS
history Show repository access history
import Import sources into CVS
init Create a CVS repository if it doesn’t exist
log Print out history information for files
login Prompt for password for authenticating server
logout Removes entry in .cvspass for remote repository
pserver Password server mode
release Indicate that a Module is no longer in use
remove Remove an entry from the repository
rtag Add a symbolic tag to a module
server Server mode
status Display status information
tag Add a symbolic tag
unedit Undo an edit command
update Bring work tree in sync
version Show current CVS version(s)
watch Set watches
watchers See who is watching a file

As an alternative to memorizing the CVS command, the graphical tool TkCVS
can be used as shown in Subsection 3.2.5.

3.2.3 SVN

Subversion, or SVN is designed to be a better version control system than CVS, but
for ease of migration it has retained many of the same command-line functions as
CVS. In addition it has the following features:

• Commits as true atomic operations,
• Renamed/copied/moved/removed files retain full revision history,
• The system maintains versioning for directories, renames, and file metadata,
• Branching and tagging as cheap operations,
• Costs proportional to change size,
• XML log output,
• File locking for unmergeable files,
• Path-based authorization.

Running svn stat on a locally checked out revision gives:

3.2 Source Code Configuration Systems 63

Fig. 3.1 TkCVS showing log of file

? build.sh
M graph_reader.cpp

The ‘?’ symbol shows that the file ‘build.sh’ is not in the version control, while
the file graph reader.cpp has been locally modified. We can inspect the changes to
the file using the svn diff command or by using the TkCVS graphical tool.

--- graph_reader.cpp (revision 2)
+++ graph_reader.cpp (working copy)
@@ -96,8 +96,10 @@
GRAPH[i][j] : GRAPH[i][k]+GRAPH[k][j];

Some of the available commands for SVN are given below, by design many of the
commands have similar name and purpose as the above mentioned CVS commands.

add
blame (praise, annotate, ann)
changelist (cl)
checkout (co)
cleanup
commit (ci)

64 3 Software Engineering

copy (cp)
delete (del, remove, rm)
diff (di)
export
import
merge
move (mv, rename, ren)
revert
status (stat, st)
update (up)

3.2.4 GIT

Git is a distributed revision control system with an emphasis on speed. Git was ini-
tially designed and developed by Linus Torvalds for Linux kernel development. Ev-
ery Git working directory is a full-fledged repository with complete history and full
revision tracking capabilities, not dependent on network access or a central server.

3.2.5 TkCVS

TkCVS is a graphical tool which makes it easy to work with diverse version control
systems. It can support CVS, SVN, and other version control systems. TkCVS is
a Tcl/Tk-based graphical interface to the CVS and Subversion configuration man-
agement systems. It displays the status of the files in the current working directory,
and provides buttons and menus to execute configuration-management commands
on the selected files. Limited RCS functionality is also present. TkDiff is bundled in
for browsing and merging your changes.

TkCVS also aids in browsing the repository. For Subversion, the repository tree
is browsed like an ordinary file tree. For CVS, the CVSROOT/modules file is read.
TkCVS extends CVS with a method to produce a browsable listing of modules.
TkCVS is invoked as:

tkcvs [-dir directory] [-root cvsroot]
[-win workdir|module|merge] [-log file]

3.2.6 Tinderbox

Tinderbox is a software suite that provides continuous integration capability. Tin-
derbox allows developers to manage software builds and to correlate build failures
on various platforms and configurations with particular code changes.

3.2 Source Code Configuration Systems 65

(a) TkCVS showing current branch (b) TkCVS showing repository model

Fig. 3.2 TkCVS branch and repository

Fig. 3.3 TkCVS showing TkDiff module with CVS

Tinderbox is described as “a detective tool for software development”. It allows
the developer to see what is happening in the source tree. It shows who checked in
what (by asking Bonsai); what platforms have built successfully; what platforms are
broken and exactly how they are broken (the build logs); and the state of the files
that made up the build (cvsblame). Tinderbox is composed of a server with clients
running builds and reporting status via mail.

66 3 Software Engineering

3.3 GNU Build System

As the reader probably knows already, most GNU software has a traditional way
of installation: (i) download the source TAR file, (ii) untar the archive in a local
directory, and (iii) run:

$./configure
$gmake
$gmake install

The goal of the GNU build system is to simplify the development of portable pro-
grams, as well as encourage the open-source concept by simplifying the process of
releasing products as source code which can then be compiled by the user. More-
over, using the GNU build tools allows for the VPATH build concept where the
source code is placed in a single directory while operating-system or machine de-
pendent variations of the build are carried out in their own directories. In this section
we focus our attention on the configure script which is omnipresent in GNU
software. This script is generated as a part of the GNU Build Tools process which
involves the following tools (i) autoconf, (ii) automake, and (iii) libtool; these are
described below.

3.3.1 Autoconf

autoconf produces a configuration shell script (configure) which probes the
host system for portability related information. This information is then used as part
of the build, but can also be used by the application program. The most common use
of autoconf is to generate customized source code blocks using pre-processor
#define on the computed values.

The version of autoconf can be checked using:

$autoconf --version
autoconf (GNU Autoconf) 2.63

3.3.2 Automake

automake produces make files (see Section 3.4.1 for more information on GNU
gmake). The tool produces the file Makefile.in to be used by autoconf from
a very highlevel specification file called Makefile.am, thus reducing the effort re-
quired.

We use a simple example to describe the use of autoconf and automake.
Before running the GNU build tools the directory containing the example is:

$ ls

3.3 GNU Build System 67

configure.in hello_world.cpp Makefile.am

The files ‘configure.in’ and ‘Makefile.am’ are shown below:

\file configure.in
\author Sandeep Koranne, (C) 2010
\description Example file for autoconf

AC_INIT(hello_world.cpp)
AM_INIT_AUTOMAKE(hello_world,1.0)
AC_PROG_CXX
AC_PROG_INSTALL
AC_OUTPUT(Makefile)

The statements listed in the ‘configure.in’ file above initialize the configuration
system (AC INIT), any source code file name can passed as an argument. The
AM INIT AUTOMAKE denotes the use of automake and also contains the name
of the package and version number. Features on the host system, such as version of
C++ compiler can be checked using AC PROG CXX statement. To check for lex
(see Section 13.3) we can add AC PROG LEX, and AC PROG YACC (for yacc).

\file Makefile.am
\author Sandeep Koranne, (C) 2010
\description Example file for automake

bin_PROGRAMS = hello_world
hello_world_SOURCES = hello_world.cpp

We proceed to run autoconf as:

$aclocal
$ls
aclocal.m4 autom4te.cache configure.in
hello_world.cpp Makefile.am
$autoconf
$ ls
aclocal.m4 configure hello_world.cpp
autom4te.cache configure.in Makefile.am

Finally, we have generated our own ‘.configure’ file, its contents being too numerous
to copy here. Next we run automake -A to get:

$automake -a
configure.in:6: installing ‘./install-sh’
configure.in:6: installing ‘./missing’
Makefile.am: installing ‘./INSTALL’
Makefile.am: required file ‘./NEWS’ not found
Makefile.am: required file ‘./README’ not found
Makefile.am: required file ‘./AUTHORS’ not found

68 3 Software Engineering

Makefile.am: required file ‘./ChangeLog’ not found
Makefile.am: installing ‘./COPYING’ using GNU
General Public License v3 file
$ ls
aclocal.m4 configure COPYING
hello_world.cpp install-sh missing
autom4te.cache configure.in depcomp
INSTALL Makefile.am

To create the required files ‘NEWS’, ‘README’, we can create them in an editor,
or simply call touch NEWS to create an empty file which we promise to fill with
useful and relevant data later on. Thereafter, we have to run automake -a again,
and this time it completes without any error, creating the file ‘Makefile.in’ which is
used by ’configure’. Running ‘./configure’ gets:

$./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking for g++... g++
checking for C++ compiler default output file name... a.out
checking whether the C++ compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C++ compiler... yes
checking whether g++ accepts -g... yes
checking for style of include used by make... GNU
checking dependency style of g++... gcc3
checking for a BSD-compatible install... /usr/bin/install -c
configure: creating ./config.status
config.status: creating Makefile
config.status: executing depfiles commands

This produces the Makefile which can be processed using GNU gmake as:

gmake
g++ -DPACKAGE_NAME=\"\" -DPACKAGE_TARNAME=\"\"

-DPACKAGE_VERSION=\"\" -DPACKAGE_STRING=\"\"
-DPACKAGE_BUGREPORT=\"\" -DPACKAGE=\"hello_world\"
-DVERSION=\"1.0\" -I. -g -O2 -MT hello_world.o
-MD -MP -MF .deps/hello_world.Tpo
-c -o hello_world.o hello_world.cpp

mv -f .deps/hello_world.Tpo .deps/hello_world.Po
g++ -g -O2 -o hello_world hello_world.o

The produced Makefile conforms to the GNU Makefile standard and has the
default targets of ‘clean’, ‘distclean’. An additional target ‘distcheck’ produces a

3.4 Automatic Build Dependency Management 69

TAR gzipped archive of the current sources and proceeds to test it against the listed
regression suite.

3.3.3 Libtool

The libtool tool is a platform independent method of generating shared li-
braries and position independent code. It supports versioning of shared libraries.
The libtool command-line tool can be used independently of automake and
autoconf, but is used by them for compiling position independent code and gen-
erating shared libraries.

The above example may appear contrived and trivial to warrant the use of GNU
Build tools, and indeed it is, as it is an expository and pedantic example. How-
ever, for large and complex software which is expected to be compiled on many
different systems (some of which have not even been invented yet), the separation
between source code and operating system and machine dependencies is very im-
portant. The GNU Build tools help enforce this separation, and indeed the tools are
used in most open-source applications, thus even if the reader does not have to write
a Makefile.am file from scratch, at the very least its purpose and semantics should
be understood.

3.4 Automatic Build Dependency Management

We have already seen example of building source code using the GNU Build tools.
One clear advantage of using automated build tools is the reduction of effort in
making a new binary from source code changes. However, a naive approach to re-
compiling the whole software suite since a single file has been modified does not
scale well beyond small projects. Towards that end, automated build dependency
tools have been developed. In this section we discuss two tools for automated build
dependency, (i) GNU gmake and (ii) SCons.

3.4.1 GNU make : automatic build dependency

GNU Make (gmake) is a utility for automatically building executable programs and
libraries from source code. An input control file (called a Makefile) specifies the
dependencies of the various source files (using gcc -MD, the dependencies based on
inclusion of files can be generated automatically). The make tool then computes the
topological sort of the files and performs the required actions on the dependencies
to produce the target.

70 3 Software Engineering

The control file specifies the relationship between the target and the dependen-
cies. A simple rule looks like:

target: dependencies
action

If the time stamp of the source dependency is more recent than the time stamp of
the target, the target needs to be rebuilt. The procedure for the rebuilding entails the
execution of the commands in the control file. Consider an example where a static
library depends on hundreds of object files (each of which is a compiled C/C++
file); in turn the library contributes to a binary. This can be represented as:

libapp.a: parser.o optimizer.o app.o
$(AR) cr libapp.a parser.o optimizer.o app.o

app.exe: libapp.a main.o
$(CC) $(CFALGS) main.c -lapp -o app.exe

When specifying rules and actions GNU make understands the following features:

• Variables: variables can be defined in the Makefile using

APP_INCLUDE := -I$(apps)

predefined variables for the current rule are:

$< : current list of depencies which changed
$@ : current target
$ˆ : all dependencies of current rule

There are also targets which can be marked as .PHONY implying that they do not
represent real on-disk files, so that even the presence of a real file of that name
does not match the target.

• Pattern substitution:

OBJS = $(patsubst %.cpp,%.o,$(SOURCES))

or pattern substitution based on extension with pre-defined actions:

.cpp.o:
$(CXX) $(CXXFLAGS) -c $< -o $@

• Include files: using include to bring in parts of a global Makefile (containing
rules or dependencies),

• Conditionals: GNU make supports conditional dependencies, consider

ifdef STATIC
CCOPT += -static
endif

Then on the command-line we can say gmake STATIC=1 to enable the vari-
able. The second form of the conditional is based on the value of variables:

3.4 Automatic Build Dependency Management 71

ifeq ($(cc), gcc)
$(CC) -mcpu=pentium -c file.c

else
$(CC) -c file.c

In the above example, if the variable cc has a value gcc then we compile the
source file with the -mcpu command line option.

• Functions for file names and others: GNU make has inbuilt functions which op-
erate on file names. These functions include:

$(dir src/file.c) : produces src
$(suffix src/file.c src/app.h) : produces .c .h
$(basename src/file.c) : produces src/file
$(join a b, .c .o) : produces a.c b.o
$(wildcard src/*.c): produces wildcard expansion
$(foreach) example

files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))
$(call variable,param, param):
$(eval) function

In addition to the Makefile syntax there are a number of commonly used command-
line options to gmake:

-B : unconditionally make all targets
-k : continue despite errors
-d : print lots of debugging information
-f : specify name of Makefile
-n : dry-run, dont perform any action

3.4.2 SCONS : A software construction tool

SCons is a computer software construction tool that automatically analyzes source
code file dependencies. Its function is analogous to the traditional GNU build sys-
tem based on the make utility and the autoconf tools. SCons uses the Python general
purpose programming language as a foundation, so that all software project config-
urations and build process implementations are Python scripts.

Consider a simple program in C/C++ (hw.cpp):

#include <iostream>
int main() {
std::cout << "Hello, World!\n";
return 0;

}

The SCons build file for this application is extremely simple: we create a file called
SConstruct and in it we add

72 3 Software Engineering

$cat SConstruct
Program(’hw.cpp’)
$scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
g++ -o hw.o -c hw.cpp
g++ -o hw hw.o
scons: done building targets.
$./hw
Hello, World!

To build an object file, instead of Program use the Object builder method, and
for building libraries use the Library builder. The SCons tool knows the default
actions it needs to perform for the given builder object. For Program it compiled and
linked the file, for Object it only performs the compilation. The Program construct
can also take the name of the produced binary as the first argument, as:

Program(’new_hello’, ’hello.c’)

Multiple files can be passed as a list to the Python builder object, or by using a
wildcard matching Glob(*.c). Multiple Program builder objects can be placed
in a single file to build more than one program. Since SCons file are Python scripts,
and the Program objects are Python objects, their constructors can accept named
parameters; to link a program with a library we can specify it as:

Library(’compression’, [’lz77.c’, ’file_io.c’])
Program(’main.c’, LIBS=[’compression’], LIBPATH=’.’)

3.4.2.1 The SConstruct file

SConstruct files are not like normal Python programs, in that they are not executed
sequentially. It is after-all a Makefile equivalent, and the order in which the builder
objects are defined in the SConstruct file are independent from the order in which
the targets are built.

Node objects Builder methods return a list of node objects that identify the target
file. These node objects themselves can be passed as arguments to other builder
methods. Moreover, properties on node objects can be used to control various build
options for specific files and targets.

SCons dependencies Just as GNU make can be used to calculate the minimum
set of files which have to be rebuilt to build a target (make uses timestamp informa-
tion to populate the change graph), SCons also calculates the set of files to be rebuilt.
Instead of using the timestamp, SCons uses a MD5 signature or checksum for each
file (although SCons can be configured to use timestamp). It is even possible to spec-
ify a custom Python function to decide if an input file has changed (imagine a tool
where CVS/SVN changes on the repository are automatically inspected to calculate

3.4 Automatic Build Dependency Management 73

change information for some files). SCons MD5 mechanism is robust and supports
include files and symbolic links.

Calculating which files have changed is just part of the dependency analysis. The
main graph of dependencies has to be constructed as well. For this purpose, SCons
uses the CPPPATH variable for every source file. For every include file of the source
file located in the CPPPATH directory, SCons adds a dependency from the included
file to the source file. If the included file has been modified, the source file has to be
recompiled.

For Library builder object a dependency is added from every member of the list
to the library itself. Scanning each source file takes extra time, but as the contents
of the file are being inspected for the MD5 anyway, the include information can
be cached as well. This is performed by using the implicit cache command-line
discussed below.

To explicitly add dependencies, we can use the Depends(‘A’,‘B’) method. Addi-
tionally, we can use GCC’s -MD option to generate the dependencies as:

A = Object(’file.c’,
CCFLAGS=’-MD -MF file.d’,
CPPPATH=’.’)

SideEffect(’file.d’,A)
ParseDepends(’file.d’)

Dependencies (for a specific target) can be ignored using the Ignore method.
SCons Environments An environment defines a related set of option to be used

to build a piece of the software. An environment can be created using:

env = Environment()

method. An easy method to create a custom build environment based on operating
system environment variables is:

import os
env = Environment(CXX = ’g++’, CXXFLAGS = ’-ggdb’)
env.Program(’file.cpp’)

This SConstruct file specifies that file.cpp source should be compiled using the de-
bug option unless the CXXFLAGS variable is defined to some other value in the
OS. The default environment can be set using the DefaultEnvironment function.

In addition to the control file SCONS has a number of command-line options:

-c : remove specified targets
-Q : reduce verbosity of messages
--implicit-cache : cache dependencies
--random : build dependencies in random order

A more detailed example of using SCons is shown in Listing 3.2.

import os
env = DefaultEnvironment()
print "Default CXX = ", env[’CXX’]

5 dbg = Environment(CXXFLAGS=’-O0 -ggdb’)

74 3 Software Engineering

opt = Environment(CXXFLAGS=’-O3 -funroll-loops’)

if ARGUMENTS.get(’opt’, 0):
env = opt

10 else:
env = dbg

env.Program(’udp_server.cpp’, LIBS=[’boost_system’,’pthread’],
CPPPATH=[’/home/skoranne/INCLUDE’],

15 LIBPATH=[’/usr/lib’])
Program(’udp_client.cpp’, LIBS=[’boost_system’,’pthread’])

Listing 3.2 SCons file for Boost UDP

3.4.3 CMAKE and QMake

3.4.3.1 CMake

CMake is a cross platform, open-source make system. CMake generates native
Makefiles (which can be processed with GNU make). Nokia/Trolltech Qt’s qmake
also generates Makefile for the platform. Like SCons, CMake maintains the control
file in a named file, in this case CMakeLists.txt; an example is given below:

project(app)

CMAKE_MINIMUM_REQUIRED(VERSION 2.4.5 FATAL_ERROR)
if (GCC_FOUND)

add_config_flag(CGAL_USE_GMP)
add_config_flag(CGAL_USE_MPFR)

endif()
macro(add_programs subdir target ON_OFF)

cache_set(CGAL_EXECUTABLE_TARGETS "")

endmacro()

Run man cmake for more information on CMake.

3.4.3.2 QMake

QMake is Qt’s build program. An example qmake ‘.pro’ file is shown below:

TEMPLATE = app
TARGET =
DEPENDPATH += .

3.5 Bugzilla : Defect Tracking System 75

INCLUDEPATH += .

Input
SOURCES += qsig.cpp

Unlike SCons or CMake, qmake .pro (for project) file has a simpler keyword-value
syntax. In addition to turning off Qt libraries, it also allows for specifying debug
or release builds, location of Qt resources such as bitmaps, and additional libraries.
Like CMake, qmake also generates platform specific Makefiles, which are then pro-
cessed using GNU make to build the target.

3.5 Bugzilla : Defect Tracking System

Bugzilla is a defect tracking system implemented as a server software featuring
optimized database structure for efficiency, security, advanced query tools, and in-
tegrated email. Bugzilla supports the complete life-cycle of a defect, from ticket
initiation to final resolution. Moreover, it can be used to generate charts and reports
with diverse statistics on the defects stored in its database.

After installation, the initial Bugzilla screen in the browser is shown in Fig-
ure 3.4.

Fig. 3.4 Bugzilla screen

To deploy Bugzilla the system must have:

1. compatible database management system
2. suitable release of Perl 5
3. assortment of Perl modules
4. compatible web server
5. suitable mail transfer agent, or any SMTP server

These requirements are fairly easy to meet on a modern GNU/Linux system, and
deploying Bugzilla is easy, see Figure 3.4 for the main Bugzilla screen where user

76 3 Software Engineering

authentication can be performed. This book maintained its own Bugzilla database
during its authoring. We have added products defining the scope of the book material
and divided the products into components as shown in Figure 3.5.

(a) Adding new product to Bugzilla

(b) Filing a bug

Fig. 3.5 Setting up and using Bugzilla

3.6 Editing Source Code 77

3.6 Editing Source Code

Many disciplines (if not most) of science now routinely use and develop software as
part of the research. Software development systems have been designed to aid the
software engineering process, of which writing the original code is an integral part.
All software starts with some source code written in a file or storage system. In this
section we discuss open-source code editors

3.6.1 Emacs

Emacs (acronym for Editor Macros) is an extensible text editor, however, its use
goes much further than simple editing of code and text. Emacs has more than 1,000
commands for editing, and also allows the user to write new functions using Emacs
Lisp, and to attach these new functions to keyboard shortcuts. Thus, the user can
define keyboard macros to automate repetitive tasks (such as running LATEXon a
section to preview it). An example of using Emacs to edit source code is shown in
Figure 3.6.

Fig. 3.6 EMACS: editor for code editing

As shown in Figure 3.6, Emacs can be used as a syntax highlighting source code
editor. Using Emacs Lisp, various modes have been written which automate tasks
such as indentation, highlighting and even using the C++ compiler to check for
source code errors while typing.

78 3 Software Engineering

Emacs can be used effectively as an IDE (integrated development environment)
as it can read TAGS (see Section 3.7.1) data, as well as having customized interac-
tion capability for source-code editing. Using the speedbar command, relevant
information on files in the current directory of the editor can be inspected, as shown
in Figure 3.7.

Fig. 3.7 ’speedbar’ in Emacs

Emacs also has an interactive front-end to GDB, as well as hooks to popu-
lar version control systems such as CVS (see Section 3.2.2) and Subversion (see
Section 3.2.3). File merging, difference checking, and annotations can also be per-
formed within Emacs.

3.6.2 Eclipse

Some of the tools and development environments which are integrated with Eclipse
are listed below:

• CDT: C and C++ development,
• PTP: Parallel Tools Platform which contains a scalable parallel debugger,
• Cell Broadband Development: environment for developing software on the Cell

Broadband Engine,

3.6 Editing Source Code 79

Fig. 3.8 ECLIPSE: editor for code editing

3.6.3 KDevelop

KDevelop is a free software integrated development environment for the KDE desk-
top environment for Unix-like computer operating systems. See Figure 3.9 for an
example of a session running within kdevelop.

Its features include:

1. Source code editor with syntax highlighting and automatic indentation,
2. Project management for different project types using automake, qmake,
3. Class browser,
4. Integrated debugger (using gdb),
5. Automatic code completion (C/C++), and class definitions,
6. SCM support for CVS, SVN, Perforce.

KDevelop’s dialog for creating a new project is shown in Figure 3.10.
The settings for the project can be changed within KDevelop, as shown in Fig-

ure 3.11.

80 3 Software Engineering

Fig. 3.9 KDEVELOP: IDE for code editing

Fig. 3.10 KDEVELOP: Dia-
log for creating new project

Fig. 3.11 KDEVELOP: Dia-
log for project options

3.7 Static Checks on Source Code 81

3.7 Static Checks on Source Code

In addition to run-time checks (profiling, debugging) another class of checks on
source code which is very helpful in reducing errors are static checks. Static check-
ing involves analysis of source code. In this section we discuss two tools which can
provide analysis on source code.

3.7.1 ctags

The ctags and etags programs generate index file for a number of programming
language files. The index file contains a listing of the various source-code objects
detected in the input files. This index file can thereafter be used by source-code
editors to quickly locate a section of source-code text which contains an object,
such as variable name, or function definition.

The ctags program has a number of command-line options which control its
output. It can be run in the root directory of the source code tree with the -R (recur-
sive) option to generate an index for all known source code files located under the
root. It can also append TAGS to a file. Consider the following example of ctags
being run to produce Emacs (see Section 3.6.1) compliant TAGS index files.

$ctags -e -R --verbose=yes|grep OPEN
OPENING dual.cpp as C++ language file
OPENING build.sh as Sh language file
OPENING large.f as Fortran language file
OPENING jimbo.c as C language file
OPENING poly_utils.C as C++ language file
OPENING enum.scons as Python language file
OPENING graph_reader.cpp as C++ language file

A part of the produced TAGS file (which is a binary file) is also shown; it can be
seen that ctags has encoded information about source-code objects in the file.

dual.cpp,464
typedef std::vector<int> Vector;ˆ?VectorˆA37,653

In Emacs, using tags-apropos we can perform a regular-expression search for
any symbol present in the TAGS file:

Tags matching regexp ‘polytope.*hash’:

[poly_utils.C]: std::set< std::string > GlobalPolytopeHash;
[poly_utils.C]: bool MarkUniquePolytope(const CBPolytope&
[poly_utils.C]: string& CBPolytope::compute_hash_code() const {
[cano_proc.cpp]: PolytopeRepresentation():hash_code(""),

Using the -x option to ctags causes it to produce a tabular, human-readable
cross-reference file instead of the TAGS file. Example:

82 3 Software Engineering

LONG_WORD function 19 gr_reader.cpp LONG_WORD():j1(0x0) {}
LONG_WORD struct 17 gr_reader.cpp struct LONG_WORD {
MAX_DIM macro 29 gr_reader.cpp #define MAX_DIM 10
MAX_N macro 58 gr_reader.cpp #define MAX_N 128
MY_INT_MAX macro 64 gr_reader.cpp #define MY_INT_MAX 10000

The cross-reference file contains the tag-name, type, location in source-code.
This file can be post-processed to produce statistical data about the source-code.
The use of ctags is not limited to source-code for programming, it can also be
used to generate TAGS file for other types of text documents, as ctags supports
many languages, including Bash scripts, and even TEXand LATEX.

3.8 GNU gcov: Test Coverage Program

GNU gcov is a test coverage program. It is used in conjunction with GNU gcc to
analyze the program and to uncover untested parts of the source code. The gcov
tool can be used to analyze which part of the source code is being executed to
better aid and guide algorithmic optimization efforts. It can also be used to discover
portions of the source code which are not covered by the program testbench. When
used alongwith a profiling tool such as gprof (see Section 3.12.1), gcov can be
used to calculate source code metrics such as (i) execution count of each line of
source code, (ii) which source code lines are actually executed, and (iii) compute
time spent in each section of code.

In this section we describe the use of gcov to calculate the test coverage of a
program. We assume that a testbench for the program exists and is representative of
the common usage expected of the program. Ofcourse, gcov is also used to guide
the development of the said testcase, as it can be used to pinpoint source code areas
which are un-stressed. To use gcov effectively, the program should be compiled
without optimization and with debug symbols in place. This can be achieved using
the following command-line for GNU gcc:

$gcc -O0 -ggdb -c <filename>

Moreover, since gcov computes statistics on a line-by-line basis, it works best with
programs which have only one statement per source code line. Similarly, the use
of complex macros causes gcov to report line usage after macro expansion, which
can produce confusing results. A complex macro should be wrapped in an inline
function for this purpose.

3.8.1 Compiling programs for gcov

To use gcov the source must be compiled to report the execution count and branch
probabilities. This is referred to as instrumenting the source code, and is similar to

3.8 GNU gcov: Test Coverage Program 83

the action of compiling with the -pg flag for profiling (see Section 3.12.1). The
GNU gcc command-line options for compiling with gcov are:

$gcc -fprofile-arcs -ftest-coverage <file> -lgcov

The -lgcov argument links the GNU gcov library (which is required for the code
instrumentation to work) with the application.

3.8.2 Running gcov

gcov has a number of command-line options as listed below:

-a --all-blocks: write individual execution counts for every block,
-c --branch-counts: write branch frequencies as number of branches taken
rather than percentage,
-b --branch-probabilities: write branch frequencies to the output file,
and write branch summary information to standard output,
-f --function-summaries: output summaries for each function in addi-
tion to file summary,

Consider the small program shown in Listing 3.3.

// \file gcov_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using GNU gcov program
#include <iostream> // for program IO

5 #include <cassert> // for assertion checking
#include <cstdlib> // for exit

static const unsigned int N = 16;

10 static int gMatrix[N][N];

static void InitMatrix(void) {
for(unsigned int i=0; i < N; ++i)

for(unsigned int j=0; j < N; ++j)
15 gMatrix[i][j] = i + j;

}

int main(int argc, char *argv[]) {

20 std::cout << "Example of using GNU gcov.\n";

return (0);
}

Listing 3.3 Example of using gcov

We compile this program as:

g++ -ggdb -O0 -fprofile-generate -fprofile-arcs \
-ftest-coverage gcov_example.cpp

$ls
a.out gcov_example.cpp gcov_example.gcno

84 3 Software Engineering

We then run the program on representative input:

$./a.out
$ls *.gcda
gcov_example.gcda

The execution of the program produces a binary data file .gcda, which contains
the execution count, branch probabilities, and other information about the program’s
execution. We can now use gcov to analyze this file:

$gcov -a -b -c -l -f -p -u gcov_example.cpp
Function ’_ZStorSt12_Ios_IostateS_’
Lines executed:0.00% of 2
No branches
No calls

Function ’_ZL10InitMatrixv’
Lines executed:0.00% of 5
No branches
No calls

Function ’_ZNKSt9basic_iosIcSt11char_traitsIcEE7rdstateEv’
Lines executed:0.00% of 2
No branches
No calls
....
Function ’main’
Lines executed:100.00% of 3
No branches
No calls

In addition to the report generated on standard output, gcov also creates detailed
reports for each of the translation units and header files it encounters in the source
file. C++ language header files are also annotated, though for the most part (for
application developers) execution counts within these system files can be ignored.

What is important though, is the reported execution count per line for the ap-
plication program source code, as that directly corresponds to the testability of the
program. If a particular section of code has very low execution count, it means that,
the code in question has not been exercised enough in the testbench. The generated
annotation for our original code (from Listing 3.3) is shown in Listing 3.4.

-: 0:Source:gcov_example.cpp
-: 0:Graph:gcov_example.gcno
-: 0:Data:gcov_example.gcda
-: 0:Runs:1

5 -: 0:Programs:1
-: 1:// \file gcov_example.cpp
-: 2:// \author Sandeep Koranne, (C) 2010
-: 3:// \description Example of using GNU gcov program
-: 4:#include <iostream> // for program IO

10 -: 5:#include <cassert> // for assertion checking
-: 6:#include <cstdlib> // for exit
-: 7:
-: 8:static const unsigned int N = 16;
-: 9:

15 -: 10:static int gMatrix[N][N];

3.8 GNU gcov: Test Coverage Program 85

-: 11:
#####: 12:static void InitMatrix(void) {
#####: 13: for(unsigned int i=0; i < N; ++i)
+++++: 13-block 0

20 +++++: 13-block 1
+++++: 13-block 2
#####: 14: for(unsigned int j=0; j < N; ++j)
+++++: 14-block 0
+++++: 14-block 1

25 +++++: 14-block 2
#####: 15: gMatrix[i][j] = i + j;
#####: 16:}
+++++: 16-block 0

-: 17:
30 1: 18:int main(int argc, char *argv[]) {

-: 19:
1: 20: std::cout << "Example of using GNU gcov.\n";
1: 20-block 0
-: 21:

35 1: 22: return (0);
3: 23:}
1: 23-block 0
1: 23-block 1
1: 23-block 2

40 1: 23-block 3

Listing 3.4 gcov generated annotated source code

Since we did not call the function InitMatrix at all in the file, execution count for
the section of code in that function is 0, and the whole section is marked as unused
code. Calling the function, recompiling and re-running the code fixes this problem.

Branch probabilities as calculated by -fprofile-arcs are also used in feed-
back directed optimization in GNU gcc. With the deep pipeline present in current
generation CPUs, such optimization is very effective and can easily reduce runtime
by 15 to 20 percent.

When we run gcov -a to get information for all the blocks we see in the gen-
erated .gcov file the following type of information:

-: 11:
#####: 12:static void InitMatrix(void) {
#####: 13: for(unsigned int i=0; i < N; ++i)
$$$$$: 13-block 0
$$$$$: 13-block 1
$$$$$: 13-block 2
#####: 14: for(unsigned int j=0; j < N; ++j)
$$$$$: 14-block 0

On another code block which has heavy branching, running gcov -b produced:

1117: 586: if(A_set & B_set) assert(A.empty()==false);
branch 0 taken 28% (fallthrough)
branch 1 taken 72%
call 2 returned 100%
branch 3 taken 0% (fallthrough)
branch 4 taken 100%
call 5 never executed
1117: 587: if(A.empty()) assert((A_set&B_set)==0);

call 0 returned 100%

86 3 Software Engineering

branch 1 taken 72% (fallthrough)
branch 2 taken 28%
branch 3 taken 0% (fallthrough)
branch 4 taken 100%
call 5 never executed

We can use the branch counts to optimize the code by introducing GCC’s intrinsic
functions for branch hints; see Section 3.1.7.1. We can add

#if defined (__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
#define PROB1(expr) (__builtin_expect((expr),1))
#define PROB0(expr) (__builtin_expect((expr),0))
#else

5 #define PROB1(expr) (expr)
#define PROB0(expr) (expr)
#endif

Then, whenever we have a condition for which we know the branch probability with
high certainty, we can code it as:

if(PROB0(error_case)) {
std::cerr << ‘‘Unlikely, but has to be handled...\n’’;

}

We performed a simple experiment using this technique on a compute intensive
workload of discrete geometry. We ran the unmodified program first, then we added
PROB0 and PROB1 to a total of 5 conditional branch points (all branch points were
within loops), and we recompiled and reran the program on same input. The results
are shown below:

Before optimization

45.97user 1.96system 0:53.49elapsed 89%CPU
0inputs+7304outputs (0major+20828minor)pagefaults 0swaps

After optimization
41.82user 1.84system 0:46.24elapsed 94%CPU
0inputs+7304outputs (0major+20841minor)pagefaults 0swaps

Ofcourse, this is a very small runtime example, but over longer running programs,
even a 10-15 percentage improvement is substantial.

It should be noted that the execution counts present in the ‘.gcda’ files are cu-
mulative over multiple runs of the program (this is useful in test coverage analysis
where a collection of tests is expected to test the whole program).

3.9 Debug Tools 87

3.9 Debug Tools

3.9.1 GDB

In this section we describe the GNU debugger, gdb. Almost all non-trivial programs
go through a process of finding bugs (see Section 3.8 on code coverage), and this
procedure is called debugging. A good software debugger can reduce the time to
find problems in the code by an order of magnitude. The GNU debugger is called
gdb, and it has the following command-line options:

gdb [options] [exe [core-file or pid]]

• –cd = dir: change current directory to dir,
• –core=COREFILE: analyze the core dump file,
• –directory=dir: search dir for source code,
• –exec=EXECFILE: use EXECFILE as the executable binary,
• –command=FILE, -x: execute gdb commands from file,
• –version: print version and exit.

The main commands of gdb can be found using help command, we list the
important and often used commands below, their usage is described later in this
section.

aliases aliases of other commands
breakpoints making program stop at certain points
data examining data
files specifying files
running Running the program
stack Examining the stack

Consider the program listing shown in Listing 3.5.

// \file number_test.cpp
// \author Sandeep Koranne, (C) 2010
// \description C++ example for GDB
// Fibonacci = (0,1,1,2,3,5,8,13,21,34,55,89)

5 // Sum = prefix-sum of F
// (0,1,2,4,7,12,20,
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

10 /**
\function SumFibonacci
@param s0, s1 contain initial fibonacci numbers
@param N represents how many numbers to sum
@return sum of N fibo numbers from (s0,s1)

15 \description Algorithm is non-recursive

*/
unsigned int SumFibonacci(int s0, int s1, int N) {
int i,j;
unsigned int next=s0+s1;

20 unsigned int sum=0;
for(i=0; i < N; ++i) {

next = s0 + s1;

88 3 Software Engineering

s1 = next;
s0 = s1;

25 sum += next;
}
return sum ;

}

30 int main(int argc, char * argv[]) {
int s0=0, s1=1;
int i,j,rc=0;
unsigned int sum = 0;
for(i=3; i < 8; ++i) {

35 sum = SumFibonacci(0, 1, i);
printf("Sum = %d\n", sum);

}
return (EXIT_SUCCESS);

}

Listing 3.5 Example for debugging with GDB

Listing 3.5 computes the sub of the first N Fibonacci numbers (Fibonacci numbers
are defined by the recurrence Fn = Fn−1 + Fn−2. We compile this program and run
it. We expect the sequence to be (1,2,4,7,12,20,, but there is atleast one error in
the program and we turn to gdb to find it and fix it.

We compile the program using -ggdb option to GCC to produce a binary with
debug symbols. We also turn off optimization using the -O0 option. We then run
gdb number test to run GDB:

(gdb) b main
Breakpoint 1 at 0x80484d3: file number_test.cpp, line 31.
(gdb) list
32 int i,j,rc=0;
33 unsigned int sum = 0;
34 for(i=3; i < 8; ++i) {

We also put a breakpoint on the function SumFibonacci. We can use TAB-
completion to query GDB’s loaded symbol table from the binary to complete the
function name.

(gdb) b SumFibonacci(int, int, int)
Breakpoint 2 at 0x804847a: file number_test.cpp, line 19.

We then start execution of the program by issuing the run command to GDB;
any command line arguments to our program can be added to the run command.
The program starts to execute, and hits our first break point main. We then pro-
ceed to step through the program using the gdb step command, which is aliased
to ’s’; the command next is aliased to ’n’. Since we know the problem is inside the
SumFibonacci function (as the inputs to the function are trivial), and we have a break-
point inside the function we can continue using the continue command, aliased to
conti. By debugging the function we can see that the for-loop is incorrect, and that
the order of the assignments of s0,s1 is incorrect.

The current stack (sequence of functions in last in first out) order is displayed
using where.

3.9 Debug Tools 89

(gdb) where
#0 SumFibonacci (s0=0, s1=1, N=3) at number_test.cpp:23
#1 0x08048519 in main (argc=1, argv=0xbfffec54) at

number_test.cpp:35
(gdb)

To display the value of local and global variables we can use the display and
print functions. We can also dump the content of the binary, a memory location,
and variables to a file. We can inspect the value of CPU registers, and if the pro-
gram under debug is multi-threaded we can switch between threads. If the program
was compiled with debug symbols the current code at the program counter of the
currently debugged thread can be displayed using the list command:

(gdb) list
18 int i,j;
19 unsigned int next=s0+s1;
20 unsigned int sum=0;
21 for(i=0; i < N; ++i) {
22

We can quit GDB using the quit command, aliased to ’q’. GNU gdb also has
remote debugging capabilities where it can connect to a remote system running the
binary, while the source code resides on the host system. It can also connect to a
running process, and analyze crash dump files.

GNU gdb is a versatile tool and recent versions have added significant features,
and more are expected in the future (such as running the program backwards to
debug an error condition). Although GNU gdb itself is a command-line driven text
tool, several frontends and GUIs have been developed around it, and it has been inte-
grated in IDEs such as Eclipse (see Section 3.6.2) and Kdevelop (see Section 3.6.3.
Emacs has a frontend for GDB called gud, see more details on Emacs as an IDE in
Section 3.6.1.

A frontend for GNU gdb is Insight, and we describe it in the next section.

3.9.2 Insight

As mentioned above, Insight is a frontend of GNU gdb. We have already discussed
the command-line usage in Section 3.9.1, and in this section we discuss a graphical
frontend to gdb. Launching Insight on a binary which has debug symbol, we get
the source window with the main function as shown in Figure 3.12.

In addition to the GUI controls, the existing gdb style commands also work; we
can enter them in the console window as shown in Figure 3.13.

In GNU gdb we can display the content of registers and memory locations but
in Insight there is a graphical display which shows data-structures as unions and
classes, as shown in Figure 3.14(a) and (b); registers with their contents are shown
in Figure 3.15.

90 3 Software Engineering

Fig. 3.12 Insight : gdb front end as debugger

Fig. 3.13 Insight console front end for gdb

3.10 Doxygen

Doxygen is an automated document generator for source code written in C/C++,
Java and many other programming languages. It is a document processor and can
generate output in many formats including HTML, RTF, and LATEX(which can then
be converted to PS, PDF). Doxygen uses a control file which specifies the location
of the source code and options for output generation. By default it generates HTML
from source code, but the source code itself can be used to markup aspects of the
program which are of particular interest, such as main algorithms, invariants, pa-
rameters passed to functions. For object oriented languages, Doxygen can generate
class diagrams using the dot graph drawing tool (see Section 19.4). Doxygen is
used for generating, maintaining and writing reference documentation for software.
It is a valuable tool in refactoring, or understanding a complex project.

3.10 Doxygen 91

(a) Local variables and memory (b) Memory dump

Fig. 3.14 More examples of debugging using Insight
.

Fig. 3.15 Insight: register view and memory watch
.

3.10.1 Using Doxygen

Doxygen itself can be used to generate a template configuration file using the
doxygen -g command-line option. An example config file is shown below.

3.10.1.1 Writing .doxy files

DOXYFILE_ENCODING = UTF-8
PROJECT_NAME = polytope
PROJECT_NUMBER = 1.0
OUTPUT_DIRECTORY = Doutput
INPUT = cpp lisp python
FILE_PATTERNS = *.cpp *.h *.c *.py *.lisp

92 3 Software Engineering

CLASS_GRAPH = YES
COLLABORATION_GRAPH = YES
GROUP_GRAPHS = YES
INCLUDE_GRAPH = YES
INCLUDED_BY_GRAPH = YES
CALL_GRAPH = YES
DIRECTORY_GRAPH = YES
DOT_IMAGE_FORMAT = png
DOT_CLEANUP = YES

3.10.1.2 Generating output

Output can now be generated using doxygen Doxyfile command. Doxygen
generates HTML which can be opened using any Web browser, we show an example
in Figure 3.16.

3.10.1.3 Doxygen markup in source code

The quality of the generated document from Doxygen can be enhanced if the au-
thor of the source code adds additional markup to the source code (using special
comments and tags). We describe some of the source code markup for Doxygen
below:

1. @file: name of the file,
2. @author: name of the author,
3. @version: version of the file,
4. @section: part of the source code (or algorithm),
5. @class: name of the class,
6. @param: parameter passed to function,
7. @return: return value from function.

Special comments using ///, and //! can also be used to generate additional in-
formation in the Doxygen output.

3.11 Source Navigation

SourceNavigator is a source code analysis tool. It can be used to edit source, man-
age source code projects, display dependencies between classes and functions, and
display call trees. An example of a project managed by SourceNavigator is shown
in Figure 3.17(a) and Figure 3.17(b).

When importing an existing project into SourceNavigator, the project can be au-
tomatically converted to its native format. To create a new project, individual source
code directories can also be added. The SourceNavigator code analysis engine then

3.11 Source Navigation 93

Fig. 3.16 Doxygen : document generator

94 3 Software Engineering

(a) SourceNavigator file view

(b) SourceNavigator data view

Fig. 3.17 SourceNavigator : project management for code

3.11 Source Navigation 95

(a) SourceNavigator call graph

(b) SourceNavigator file inclusion graph

Fig. 3.18 SourceNavigator : project management for code

parses the code, infers the dependencies and creates the project database. As shown
in Figure 3.18, source code can be analyzed for dependencies within SourceNavi-
gator. Even though SourceNavigator has a code editor, it is also possible to invoke
an external editor such as Emacs (see Section 3.6.1) to edit the source code. As and
when the source code is modified, SourceNavigator updates the project database to
keep the dependencies current.

96 3 Software Engineering

3.12 Profilers

In this section we discuss code profiling. It is widely believed that “premature opti-
mization is evil”, and even when the code is mature and stable, programmers have
a tendency to make mistakes when figuring out which portion of the program is
the performance bottleneck. Towards this end, automatic code profiling tools have
been developed. The work flow for profiling, is to compile the source program with
instrumentation in order to calculate execution counts, as well as measuring the
compute time spent in individual functions. Then, the program should be executed
on a representative workload. During this execution, the program may execute sev-
eral times slower than normal (due to the measurement taking place). Thus, this
technique of instrumented code profiling may not be suitable for all programs, such
as those requiring real-time interaction, as the measurement itself would cause the
program to execute a different code pattern than the normal workload.

But for many other programs, where the program is compute bound, automatic
profiling can quickly identify code sections which should be optimized; either using
better algorithms and data-structures, or by compiler settings such as loop unrolling,
inlining and feedback directed optimization. The two common open-source profilers
are (i) GNU profiler gprof, and (ii) Valgrind. The former is a code instrumentation
based profiler which calculates the amount of time the program counter is located
within the stack frame of a function and calculates cumulative program time using
sampling. Valgrind, on the other hand is not only a code profiler, but also contains
tools for memory error checking, cache trace analysis, and thread error checking.
Valgrind can also analyze programs without code instrumentation. Valgrind actually
simulates an instruction set and can thus perform much greater levels of introspec-
tion on the program. These two profilers are discussed in the following sections.

3.12.1 GNU profiler : gprof

The process of code profiling using GNU gprof can be divided into two parts:
(i) source code instrumentation and execution, and (ii) call graph display using the
gprof program. To instrument the source code for profiling the -pg command-line
argument to GNU gcc has to be used both during compilation as well as linking.
While optimization settings can be left on, it is recommended to include debug sym-
bols (using the -ggdb command-line argument). During the initial phase of the pro-
filing, optimizations can be switched off also, as algorithmic optimizations are not
usually affected by compiler optimizations, and in the first phase, we should strive to
detect algorithmic outliers in the implementation. As stated above, the instrumented
program should now be run on representative workloads. The runtime of this in-
strumented binary is higher than the non-instrumented code. It should also be noted
that multi-threaded sampling is still (as of version 4.5.0 in the GNU compilers) not
reliable, and multi-threaded execution should be switched off during profiling. But,
we expect this problem to be addressed in the short term. On completion of the pro-

3.12 Profilers 97

gram, the program writes out a file (usually called gmon.out) which contains the
summary of the execution data. This file is subsequently analyzed using the gprof
command.

3.12.1.1 gprof - display call graph profile data

As we stated above, after execution of the instrumented binary we get a file,
‘gmon.out’ which is analyzed using gprof. The GNU profiler has a number of
command-line options as listed below. The general command-line syntax for gprof
is:

$gprof <options> <executable> <gmon.out>

-A=symspec: print annotated source listing, example:

template <>
1468 -> inline int ChangeCode< CBTuple >(const CBTuple& v) {

return v.changeCode;
}

...
Top 10 Lines:

Line Count

145 1468
89 404
91 43

151 3
173 3
447 3
320 2
454 2
95 1

103 1

Execution Summary:

22 Executable lines in this file
22 Lines executed

100.00 Percent of the file executed

1934 Total number of line executions
87.91 Average executions per line

-b: be less verbose (the brief mode), see example shown below.
-C: print tally of functions and the number of time each function was called; for
example,

stl_tree.h:249: \
(_ZNKSt23_Rb_tree_iteratorIiEdeEv:0x8051a46)

57004 executions

98 3 Software Engineering

sorting the produced report file on the 3rd column gives us the function which
was invoked the maximum number of times:

$sort -r -n -k 3 profile.txt | more

-i: display information about the profile data:

File ‘gmon.out’ (version 1) contains:
1 histogram record
1984 call-graph records
0 basic-block count records

-p: print the flat profile (see discussion on profile types below),
-P: no flat profile,
--graph: print the call graph analysis; for example:

Call graph (explanation follows)

granularity: each sample covers 4 byte(s)
for 33.33% of 0.03 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00 0.03 main [1]
0.00 0.03 1/1 DP::Run() [2]

...
0.00 0.01 2290/4566 set<int, less<int> ::set() [8]
0.00 0.00 2290/4825 set<int, less<int> ::˜set() [12]

-r: print suggested function ordering for this program; for example:

_ZNSt15insert_iteratorISt3setIiSt4lessIiESaIiEEEppEv
_ZSt16set_intersectionISt23_Rb_tree_const_iteratorIiES1
_ZNKSt23_Rb_tree_const_iteratorIiEneERKS0_

These C++ names can be demangled using the c++filt program as discussed
in Section 13.5.1.3. Using this program we can convert the above names to C++
identifiers:

$c++file < file.txt |more
std::insert_iterator<set<int, less<int> >::operator++()
std::insert_iterator<set<int, less<int>> > > std:: \

__copy_move<false, false, std::bidirectional_iterat
...

-R mapfile: print a suggested ‘.o’ (object file) link line ordering based on
profile data. The mapfile passed to the command-line can be generated using
the nm (see Section 13.5.1.5) GNU binutils tool. The map file has the following
syntax:

CP:08049690 T _init
CP:08049cc0 T _start

3.12 Profilers 99

CP:08049cf0 T __gmon_start__
CP:0804a1cb T _ZlsRSoRK22PolyRep
CP:0804a97c T _ZN22PolyRep13AddToGraphicsEPS
CP:0804b0e4 T _ZN22PolyRep11ComputeRankEv
CP:0804b12a T _ZN22PolyRep19CalculatePropertiesEv
CP:0804dccc T _ZN13DPsor14parse_verticesEj
CP:0804eb1c T _ZN13DPsor22parse_vertices_reducedEj
CP:0804f406 T _ZN13DPsor12new_polytopeEv
CP:0804f424 T _ZN13DPsor3RunEv
CP:0804fe64 T main

The suggested ordering optimizes paging, TLB (translation lookahead buffer)
and instruction cache behavior for the program. To use the -R option, the -a
option is recommended.

gprof calculates the amount of time spent in each function and propagates this
on the edges of the call graph to arrive at cumulative program times. Using gprof
we can generate the following styles of reports:

1. Flat profile: displays how much time was spent in each function, and how many
times that function was called. For each function it prints a tuple of information:

a. percentage of total: running time used by the function,
b. cumulative seconds: running sum of number of seconds,
c. self seconds: number of seconds accounted by this function alone,
d. number of calls: number of times this function was invoked,
e. average number of milliseconds: spent in this function and descendants,
f. name of the function: example is shown below.

Each sample counts as 0.01 seconds.
% cumulative self self total
time sec sec calls Ts/call Ts/call name
0.0 0.0 0.0 22159596 0.0 0.0 ConvertToPolytope

2. Call graph profile: for each function, displays which other functions called the
named function, which functions did the named function call, and also an esti-
mate of how much time was spent in each sub-routine call.

3. Annotated source listing: is a copy of the source code, labeled with the execution
count of each line (similar to GNU gcov, see Section 3.8).

To get a concise overview of the performance of the program, use the flat profile.
To eliminate spurious function calls, use call graph profile, and for a systematic
listing of execution counts alongwith the code, use the annotated source listing.
Each sample counts as 0.01 seconds.

% cumulativef self total
time seconds calls s/call s/call name
8.96 0.12 1632 0.00 0.00 CBPolytope::init(bool)
7.84 0.23 8426811 0.00 0.00 std::vector<std::vector
6.72 0.32 refine1
5.97 0.40 8674249 0.00 0.00 std::vector<int>
3.73 0.45 1960465 0.00 0.00 int const& std::min<int>

100 3 Software Engineering

GNU profiler gprof is a versatile tool and can result in significant performance
improvement. Consider the following sample of a brief profile output (part of the
output have been edited to make the data fit in a reduced number of pages):
Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
17.0 21.43 21.43 29879 0.0 0.0 CBPolytope::init(bool)
11.0 35.35 13.93 1016658200 0.0 0.0 vector<A>::operator[](uint)
9.0 46.75 11.39 1034828918 0.0 0.0 vector::operator[](uint)
4.3 63.24 5.46 244592208 0.0 0.0 int const& std::min<int>

The CBPolytope::init() turned out to be an algorithmic issue, where the data-
structure representing the polytope could simply be copied from a basic initialized
polytope (and need not be initialized per polytope). The remaining are classic C++
member function and STL optimizations. In loops dealing with STL vectors it is
common to write:

for(size_t i=0; i < vec.size(); ++i) {
// process vec[i]

}

Due to C++ semantics, the vector<T>::size() function is called per trip of the for

loop. It is indeed much better to write the code as:

for(size_t i=0, e=vec.size(); i < e; ++i) {
// process vec[i]

}

In this version of the loop, vector<T>::size() is evaluated once. The programmer
must make sure that this is the intended semantics of the loop. Similarly, writing the
min function for references as an inline function will reduce function call overhead
in that example.

3.12.2 Valgrind

Valgrind is a instrumentation framework for building dynamic analysis tools. Val-
grind includes: (i) cache and branch-prediction profiler, (ii) memory error detector,
(iii) two thread error detectors, and (iv) a heap profiler.

3.12.2.1 Cachegrind, a cache and branch-prediction profiler

is the performance analyzer tool of Valgrind. It is invoked with the
Cachegrind, a cache and branch-prediction profiler
Copyright (C) 2002-2009, and GNU GPL’d, by Nicholas Nethercote et al.
Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
Command: ./poly_enum_i686 3 1000 9

I refs: 306,463,674
I1 misses: 346,980
L2i misses: 2,563
I1 miss rate: 0.11%
L2i miss rate: 0.00%

3.12 Profilers 101

D refs: 165,173,691 (106,648,498 rd + 58,525,193 wr)
D1 misses: 503,574 (400,345 rd + 103,229 wr)
L2d misses: 15,407 (4,319 rd + 11,088 wr)
D1 miss rate: 0.3% (0.3% + 0.1%)
L2d miss rate: 0.0% (0.0% + 0.0%)

L2 refs: 850,554 (747,325 rd + 103,229 wr)
L2 misses: 17,970 (6,882 rd + 11,088 wr)
L2 miss rate: 0.0% (0.0% + 0.0%)

The cachegrind tool has the following options:

--I1=<size>,<associativity>,<line size>: specify size, associa-
tivity and line size of level 1 instruction cache,
--D1=<size>,<associativity>,<line size>: specify size, associa-
tivity, and line size of level 1 data cache,
--L2=<size>,<associativity>,<line size>: specify size, associa-
tivity, and line size of level 2 cache,
--branch-sim=no|yes: enables or disables collection of cache access trace.

3.12.2.2 Callgrind, a call-graph generating cache profiler

A sample of the output from callgrind is shown below:

==23126==
==23126== Events : Ir
==23126== Collected : 604392288
==23126==
==23126== I refs: 604,392,288

3.12.2.3 Memcheck, memory error detector

This is the default tool of Valgrind, and performs memory leak detection as well as
memory errors. A sample output is shown below:

HEAP SUMMARY:
in use at exit: 11,852,753 bytes in 36,614 blocks
total heap usage: 388,258 allocs, 351,644 frees,

22,409,570 bytes allocated

LEAK SUMMARY:
definitely lost: 13,834 bytes in 172 blocks
indirectly lost: 280,784 bytes in 3,455 blocks
possibly lost: 7,431 bytes in 195 blocks

still reachable: 11,550,704 bytes in 32,792 blocks
suppressed: 0 bytes in 0 blocks

Rerun with --leak-check=full to see details of
leaked memory

For counts of detected and suppressed errors,
rerun with: -v
ERROR SUMMARY: 0 errors from 0 contexts
(suppressed: 15 from 8)

102 3 Software Engineering

The memcheck tool has the following options:

--leack-check=<no|summary|yes|full>: search for memory leaks
when the program finishes. This argument specifies the details to be computed
for the leak,
--leak-resolution=<low|med|high>: whether to use multiple back-
traces to the same memory,
--show-reachable=<yes|no>: when disabled the checker will only state
“definitely lost”,
--malloc-fill=<hexnumber>: can aid in detecting uninitialized memory
usage by filling allocated memory with prescribed bit-pattern,
--free-fill=<hexnumber>: check against use-after-free type errors.

3.12.2.4 Helgrind, a thread error detector

Consider the thread-pool example of APR code (see Section 5.4) shown in List-
ing 5.3. We can analyze this code for data races, critical section errors, and other
multi-threading problems by running the helgrind thread checker tool from Val-
grind. We invoke the binary as:

valgrind -tool=helgrind ./a.out 2>thread_errors.txt

The output from the checker is shown below:

Helgrind, a thread error detector
Copyright (C) 2007-2009, and GNU GPL’d, by OpenWorks LLP et al.
Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
Command: ./thpool

Thread #1 is the program’s root thread

Thread #2 was created
at 0xA12DB8: clone (in /lib/libc-2.11.1.so)
by 0xAE7FF2: pthread_create@@GLIBC_2.1

(in /lib/libpthread-2.11.1.so)
by 0x400A192: pthread_create_WRK (hg_intercepts.c:229)
by 0x400A225: pthread_create@* (hg_intercepts.c:256)
by 0x4048871: apr_thread_create (thread.c:179)
by 0x403125D: apr_thread_pool_create (apr_thread_pool.c:380)
by 0x8048CB0: main (thpool.cpp:129)

Possible data race during read of size 4 at 0x41fb130 by thread #1
at 0x403C2CE: apr_palloc (apr_pools.c:649)
by 0x40487AC: apr_thread_create (thread.c:154)
by 0x403125D: apr_thread_pool_create (apr_thread_pool.c:380)
by 0x8048CB0: main (thpool.cpp:129)

This conflicts with a previous write of size 4 by thread #2
at 0x403C37B: apr_palloc (apr_pools.c:651)
by 0x4030E2C: thread_pool_func (apr_thread_pool.c:222)
by 0x40484B5: dummy_worker (thread.c:142)
by 0x400A2A4: mythread_wrapper (hg_intercepts.c:201)

3.13 Conclusions 103

by 0xAE7AB4: start_thread (in /lib/libpthread-2.11.1.so)
by 0xA12DCD: clone (in /lib/libc-2.11.1.so)

A detailed analysis of this log can be helpful in uncovering race conditions, and
other errors in multi-threaded applications. Valgrind can also check for self modify-
ing code, which can be present in malicious programs. To enable this check we use
the --smc-check=<stack|all> command-line option. Valgrind can be used
to optimize the program’s performance and check for memory leaks. There are a
number of GUI frontends for Valgrind, one of which is alleyoop, as shown in
Figure 3.19.

Fig. 3.19 Alleyoop: GUI frontend for Valgrind

3.13 Conclusions

In this chapter we have discussed software construction tools. We discussed the
venerable GNU Compiler Collection (GCC) compilers, source code configuration
systems (CVS, SVN and git), as well as the GNU Build Tools. Automatic build man-

104 3 Software Engineering

agement tools GNU gmake and SCons are described with examples. The Bugzilla
defect tracking system is described; incidentally, this book had a Bugzilla page dur-
ing its development for issue tracking. Source code editors and IDEs (including
Emacs, Kdevelop, and Eclipse) are shown as well as debugging, documentation,
and profiling tools.

In many ways, this chapter contains foundational material for starting an open-
source project, and for contributing to an existing project. Reading the documenta-
tion for each of the tools mentioned in this chapter, reading their source code, and
experimenting with it will provide valuable experience to the reader in developing
and using open-source software in the subsequent chapters.

Chapter 4
Standard Libraries

Abstract In this chapter we discuss the GNU C Library and the GNU C++ Stan-
dard library. Almost all open-source applications make use of the standard libraries,
and indeed it is considered good programming practice to use functions wherever
possible from the standard library (unless performance or other criteria clearly dic-
tate otherwise). The important and salient functions of the C standard library are
presented, in particular the use of error return code, regular expressions, and system
configuration functions are presented. In the sequel of the chapter we present some
of the main features of the C++ library including Standard Template Library.

Contents
4.1 GNU C Library . 105
4.2 C++ Library . 110
4.3 Conclusion . 111

In the coming chapters we discuss the various open source software libraries which
are available for common computing tasks. These include the Boost C++ Project,
Google’s Perftools, ZLIB and bzip2 for data compression, HDF (Hierarchical Data
Format), Berkeley db, MD5, Boehm garbage-collector, simplified Wrapper and In-
terface Generator (SWIG), and GNU Scheme.

4.1 GNU C Library

The GNU Standard C library (glibc) is the GNU implementation of the C stan-
dard library. Most C programs (except embedded platforms) use some function of
the C library. C library functions are different from the system calls provided by
the kernel, and execute in user-space. C library functions are provided for many of
the common application processing tasks such as sorting, searching, command-line
processing, FILE I/O, memory allocation, and string processing.

When using the GNU C library we should keep in mind that although it is ANSI
C compliant, it also has extensions and other functions. To restrict only the ANSI

S. Koranne, Handbook of Open Source Tools, 105
DOI 10.1007/978-1-4419-7719-9_4, © Springer Science+Business Media, LLC 2011

106 4 Standard Libraries

subset we have to use the -ansi command-line argument to the compiler. The
C library comprises of the header files, and the object code which implements the
functions. The object codes are archived in the C library which we link against. To
use a specific C library function the corresponding header file should be included
in the application code. Any function name or macro defined in the ANSI standard
should be treated by the application programmer as a reserved keyword, and should
not be used in the application.

We discuss some of the common functions below.

1. Error conditions: C library functions return error codes in the global variable
errno (while it is often described as a variable its implementation is defined as
a modifiable lvalue). Once the application detects that the system function has
encountered an error condition, only then should the error number be inspected
to find out more details about the error. The various error codes are described in
errno.h, and the application can use the perror (print error) function to print a
message describing the error condition,

2. Memory allocation functions: memory can be allocated using the malloc family
of functions which include besides malloc, calloc, realloc, and alloca. Memory
thus allocated has to be freed using the free function. Alignment of memory can
be assured using the memalign function (it takes the alignment as an additional ar-
gument alongwith size). To avoid locking a large memory region between small
ones, very large memory allocations are performed using mmmap (memory map-
ping). A GNU extension called memcheck can check the consistency of the malloc
heap (this checks for write after end, for example). Statistics about allocated
memory can be obtained by using the mallinfo function which populates a struc-
ture of the same name. This structure contains the total number of blocks allo-
cated. To reduce paging, a critical page of memory can be locked using the mlock

function,
3. Character handling: these include the classic predicates of isalpha, islower, etc.

One key addition is the support for wide characters, thus names as the characters
can be wider than 1 byte in length,

4. String processing: another classic set of strlen, strcmp, etc. The memory copy
functions are included in string.h, thus, to use memcpy, the application has to in-
clude string.h. The memory movement functions include, memcpy, memmove, and
memset. String search functions such as strchr are also included. The string tok-
enizer function strtok finds use in lexical processing (see Section 13.3),

5. Searching and sorting: the GNU C library implements a binary search function
and a sorting function. The search functions include linear search, names lfind

and lsearch (lsearch is similar to lfind except that if the element is not present in
the collection, it is added to it). For ordered collections a binary search function
bsearch is implemented. Sorting is implemented using the qsort function which
takes as input a comparison function which imposes a partial order on the ele-
ments in the universe,

6. Pattern matching: the function fnmatch implements pattern matching based on
filenames and other text patterns. For regular expression or regex matching it
uses a special data type regex_t defined in regex.h which has to be used to define

4.1 GNU C Library 107

the pattern as a regular expression (see Section 13.3 for more details on regular
expressions). Once a regular expression is defined it has to be compiled once
before it can be used in multiple searches; compilation is done using the regexcomp

function, while matching is done using the regexec function which returns 0 if the
pattern matches,

7. FILE I/O functions: the GNU C library implements a plethora of functions deal-
ing with IO. These include directory handling, file name query and resolution,
and actual IO using streams (FILE*), which include functions such as fopen,
fclose, fread and fwrite. The function getline reads an entire line from the
stream. In addition to reading and writing raw bytes, the library also has func-
tions for formatted input (scanf) and output (printf), which are well known, still
an example is shown in Listing 4.1.

static int ReadCustomer(FILE* fp,
Customer* customer) {

static const int MAX_LEN = 1024;
char temp[MAX_LEN];

5 int rc = 0;
rc = fscanf(fp, "Customer = [%d %s %f %d]\n",

&customer->number, temp,
&customer->amount, &customer->status);

if(rc < 4) return 0;
10 customer->len = strlen(temp);

customer->name = malloc((customer->len+1)*sizeof(char));
strcpy(customer->name, temp);
return 1;

}

Listing 4.1 Example of scanf

The lower level functions which operate not on streams but on actual files include
open, close read, and write. The function pread and pwrite are similar to read, and
write, but they accept a fourth argument which represents the file offset at which
to perform the action, and these functions do not update the current file offset.
The function lseek updates the current file offset for subsequent operations on
that file descriptor. Consider the example shown in Listing 4.2.

current_offset = lseek(fd, 0, SEEK_SET); /* rewind */
current_offset = lseek(fd, customer->number * RECORD_SIZE, SEEK_SET);
if(current_offset == (off_t) -1) error_exit("lseek failed..\n");
rc = write(fd, &customer->number, sizeof(int));

5 rc += write(fd, &customer->len, sizeof(int));
rc += write(fd, customer->name, customer->len) ;
rc += write(fd, &customer->amount, sizeof(float));
rc += write(fd, &customer->status, sizeof(int));
current_offset = lseek(fd, (RECORD_SIZE - rc -1), SEEK_CUR);

10 write(fd, &customer->number, 1); /* marker */
if(current_offset == (off_t) -1) error_exit("lseek failed..\n");

Listing 4.2 Example of lseek

GNU C library implements fast scatter-gather of data which is spread in mem-
ory but contiguous on the file. Memory mapped file is implemented using mmap

function (and has to be unmapped using the unmap function). A recent addition to
POSIX (POSIX 1b) defines asynchronous IO using the aio_read and aio_write

108 4 Standard Libraries

functions. File control and status modes are also available using functions such
as fstat. An example of using fstat is shown in Listing 4.3.

static void CalculateFileInformation(int fd) {
struct stat sb;
int rc;
rc = fstat(fd, &sb);

5 if((sb.st_mode & S_IFMT) != S_IFREG)
error_exit("db Index should be a regular file.\n");

fprintf(stdout, "Preferred block size = %ld\n",
(long) sb.st_blksize);

fprintf(stdout, "File size = %lld\n",(long long) sb.st_size);
10 fprintf(stdout, "Blocks allocated = %lld\n",

(long long) sb.st_blocks);
fprintf(stdout, "Last file access = %s", ctime(&sb.st_atime));
fprintf(stdout, "Last file modification = %s",

Listing 4.3 Example of stat

Directory information beyond the file level is obtained using file-system infor-
mation functions defined in unistd.h. Files can be renamed (rename), or deleted
(unlink). File size can be obtained using stat, and changed using truncate func-
tions. Temporary files (which is guaranteed to be unique) can be opened using
tmpfile (this function is reentrant). Interprocess communication channels can be
created using pipe, and popen functions. For unrelated processes (which do not
share file descriptors) a file-system file operating as a FIFO can be opened (using
mkfifo). Thus, from shared memory, to pipes (for related processes), to FIFOs
(on common file system) we come to the problem of communication channels
between remote computers. This is implemented using sockets, which provide
networking channels with similar interface as regular file descriptors.

8. Mathematical functions: including trigonometric functions are available upon in-
cluding math.h and linking with libm,

9. System information :this category includes process resource usage, system infor-
mation, job control, user, and groups. We have discussed resource usage func-
tions in Section 1.1.1.1. The functions for querying the system for user, group,
and other service information is done using the Name Service Switch (NSS)
module. The GNU C library has functions to query group id and user id (called
the persona of the process) using similarly named functions (getuid for get user
id). An example is shown in Listing 4.4.

/* \file user_info.c
\author Sandeep Koranne (C) 2010
\description Example of using passwd structure

*/
5 #include <stdio.h> // for program IO

#include <unistd.h> // system functions
#include <string.h> // memory allocation
#include <stdlib.h> // library functions
#include <grp.h> // ’group’ functions

10 #include <pwd.h> // ’passwd’ functions
#include <sys/types.h> // predefined types

/**
\description print information about the process’ user

15 */
static void PrintSelfUserInformation(void) {

uid_t self;

4.1 GNU C Library 109

struct passwd *self_pwd;
struct group *self_grp;

20 char **member_of = NULL;

self = getuid();
printf("Self UID = %d\n", self);
self_pwd = getpwuid(self);

25 if(self_pwd == 0) {
perror("pwd retrieval failed...\n");
exit(1);

}
printf(" Self LOGIN = %s", self_pwd->pw_name);

30 printf(" Name = %s\n", self_pwd->pw_gecos);
printf(" HOME = %s\n", self_pwd->pw_dir);
self_grp = getgrgid(self_pwd->pw_gid);
if(self_grp == 0) {

perror("group retrieval failed..\n");
35 exit(1);

}
printf(" GROUP = %s\n", self_grp->gr_name);
member_of = self_grp->gr_mem;
while(*member_of) {

40 printf("\tmember of %s\n", *(member_of));
}

}

int main(int argc, char *argv[]) {
45

PrintSelfUserInformation();

return (0);
}

Listing 4.4 GNU libc example of passwd structure

Compiling and running this program produces the following output on my
GNU/Linux system:

Self UID = 500
Self LOGIN = skoranne Name = Sandeep Koranne
HOME = /home/skoranne
GROUP = skoranne

System information can be gathered using the sysconf function as shown in List-
ing 4.5.

/* \file page_size.c
\author Sandeep Koranne, (C) 2010
\description Utility to print page size

*/
5 #include <unistd.h>

#include <stdio.h>
int main() {

long sz = sysconf(_SC_PAGESIZE);
long num_phys_pages = sysconf(_SC_PHYS_PAGES);

10 long num_avphys_pages = sysconf(_SC_AVPHYS_PAGES);
printf("\n PAGE_SIZE=%ld NUM_PHYS_PAGES=%ld "

"NUM_AV_PHYS_PAGES=%ld\n",
sz, num_phys_pages, num_avphys_pages);

return 0;
15 }

Listing 4.5 GNU libc example of sysconf

110 4 Standard Libraries

In addition to the functions described above, the GNU C library also supports inter-
nationalization of programs.

4.2 C++ Library

The standard C++ library is called the Standard Template Library (STL). It is a
library of containers, algorithms, iterators, and associated runtime support functions.
STL was designed as a generic library; the data-structures of the containers are
decoupled from the algorithm which operate on them. The various containers in
STL are:

1. vector: template class of resizable array,
2. list: non-intrusive doubly linked list,
3. deque: double ended queue,
4. set: template class of items having partial order (implemented using height bal-

anced trees),
5. multisets: same as above (sets), except allows for more than one item with

the same value,
6. map: dictionary class with key-value semantics, where there is a partial order in

the key,
7. multimap: same as above (map), except allows for more than one key to have

same value,
8. string: venerable character array.

A simple example of using std::vector class is shown in Listing 4.6.

// \file stl_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Standard Template Library (STL)
#include <iostream> // for program IO

5 #include <vector> // Vector class STL
#include <cassert> // assertion checking
#include <cstdlib> // exit

int main(int argc, char *argv[]) {
10

std::vector<int> A(5,1); // initialize contents to 1
std::cout << "sizeof(A) = " << sizeof(A)

<< "\n A.size() = " << A.size()
<< "\nA[0] = " << A[0];

15 std::cout << std::endl;
return (0);

}

Listing 4.6 Using STL std::vector

The design of STL is based on the model of:

1. Concepts: a concept in C++ is a generalization of types to include semantic in-
formation,

4.3 Conclusion 111

2. Containers: abstract data types which are template based, and use the memory
allocator of STL to provide non-intrusive container like data-structures, includ-
ing, list, vectors, sets and maps. Containers in STL have strict requirements on
the amortized runtime for insertion, deletion, and lookup. These requirements
are part of the STL definition of the type, and a compliant implementation will
ensure that the runtime expectations of the containers are met, e.g., std::set has
log(n) requirement for insert and find,

3. Algorithms: algorithms in STL have two flavors. They can be predefined member
functions on the containers (such as std::map<K,V>::find), or they can be generic
functions such as std::reverse(Range A, Range B). Algorithms, like containers,
have strict requirement on runtime and memory, as part of their specification,

4. Iterators: iterators connect data-structures to algorithms (and vice-versa). Itera-
tors also provide a level of indirection in the implementation of STL algorithms,
which is necessary to prevent the combinatorial explosion which would ensue in
its absence. For example, the std::reverse algorithm operates on iterator ranges.
These iterators could be vector iterators, or list iterators. As long as an iterator
meets the requirement (the requirement is presented as a concept) of the algo-
rithm, that iterator can be passed to the algorithm.

On GNU/Linux, there are atleast two portable implementations of STL, (i) the
GNU C++ library and (ii) STLport.

4.3 Conclusion

In this chapter we discussed the GNU C Library and the GNU C++ Standard library.
The most important functions of the C standard library were presented, in particular
the use of error return code, regular expressions, and system configuration functions.
We also discussed the use of STL and the C++ library.

Chapter 5
Apache Portable Runtime (apr)

Abstract In this chapter we discuss the Apache Portable Runtime (APR) applica-
tion development framework library API. In particular we discuss the APR memory
pool, process, thread, and thread pool. We present example which use these func-
tions in a real-life setting. APR file information functions are used with memory
mapped IO. APR hash tables are used to develop a word frequency counting ap-
plications. We use the Memcache library with APR, and also present an example
which uses APR shared memory.

Contents
5.1 APR Memory Pool . 114
5.2 APR Processes . 114
5.3 APR Threads . 116
5.4 APR Thread Pool . 117
5.5 File information, IO, and Memory mapped files 119
5.6 Hash tables . 120
5.7 Using Memcache with APR . 122
5.8 Shared memory with APR . 124
5.9 Conclusion . 126

The Apache Portable Runtime was written to support the portability of the
Apache HTTP web server, and as such provides an operating system abstraction.
The Subversion (SVN) version control system also uses APR. Another application
development framework is Nokia/Trolltech Qt Framework (see Section 19.1.3 for
more details). APR can be used to provide the application with basic functionali-
ties in a consistent API on multiple platforms. The main functionalities of APR are
shown below:

1. Memory pool,
2. Atomic operations: interface to atomics (see Section 3.1.7.1),
3. Dynamic Object handling,
4. Environment functions,
5. Signal handling,
6. File information and IO,

S. Koranne, Handbook of Open Source Tools, 113
DOI 10.1007/978-1-4419-7719-9_5, © Springer Science+Business Media, LLC 2011

114 5 Apache Portable Runtime (apr)

7. Hash tables,
8. Memory map and allocation, shared memory, network library,
9. Thread and process library,

10. Mutex and condition variables, read/writer locks.

These features are described in detail with the help of examples in this chapter.

5.1 APR Memory Pool

The distinct advantages of using a memory pool over standard malloc, new are the
following:

1. Efficiency: a custom memory pool can be more efficient than standard library
implementation,

2. Resource tracking: a memory pool can be used as a dynamic heap where the
life time of memory is tracked. Once the pool is destroyed all the memory is
automatically reclaimed,

3. Constructor/Destructor: APR memory pools provide raw memory bits, so cost of
constructor is not added (caveat, neither is its convenience of initializing complex
data structures).

The key functions for APR memory pools are:

apr_pool_create(apr_pool_t **pool, apr_pool_t *parent);
apr_allocator_t * apr_pool_allocator_get(apr_pool_t*);
apr_allocator_max_free_set(allocator, 64);
void* apr_palloc(apr_pool_t *pool, apr_size_t size);

5 apr_pool_clear(apr_pool_t *p);
apr_pool_destroy(apr_pool_t *p);

Using a parent pool we can build hierarchy of pools, such that when the parent
pool is destroyed all child pools are destroyed as well. It is also possible to register
a callback function to be called when a pool is destroyed. Examples of using APR
memory pools are presented in the next section.

5.2 APR Processes

Consider the program listing as shown in Listing 5.1.

// \file calendar_proc.pp
// \author Sandeep Koranne (C) 2010
// \description Example of APR process type
#include <iostream>

5 #include <stdlib.h>
#include <assert.h>
#include <apr_general.h>
#include <apr_thread_proc.h>

10 static const char *PROGRAM_ARG[16];

5.2 APR Processes 115

int main(int argc, char *argv[]) {
apr_status_t retval;
apr_pool_t *pool;

15 apr_initialize();
apr_pool_create(&pool, NULL);
apr_procattr_t *attribute;
/* first create the attribute */
retval = apr_procattr_create(&attribute, pool);

20 retval = apr_procattr_io_set(attribute, APR_NO_PIPE,
APR_FULL_BLOCK, APR_NO_PIPE);

//retval = apr_procattr_cmdtype_set(attribute, APR_PROGRAM_ENV);
retval = apr_procattr_cmdtype_set(attribute, APR_PROGRAM_PATH);
apr_proc_t calendar_process;

25 PROGRAM_ARG[0] = "cal";
PROGRAM_ARG[1] = "1";
PROGRAM_ARG[2] = "2010";
PROGRAM_ARG[3] = NULL;
retval = apr_proc_create(&calendar_process, PROGRAM_ARG[0],

30 PROGRAM_ARG, NULL, attribute, pool);
if(retval != APR_SUCCESS) exit(1); //
while(true) { // read data from child process

char buf[1024];
retval = apr_file_gets(buf, sizeof(buf), calendar_process.out);

35 if(APR_STATUS_IS_EOF(retval)) break;
std::cout << buf;

}
apr_file_close(calendar_process.out);
int status;

40 apr_exit_why_e why;
retval = apr_proc_wait(&calendar_process, &status, &

why, APR_WAIT);
if(APR_STATUS_IS_CHILD_DONE(retval)) {

std::cout << "WHY = ";
45 switch(why) {

case APR_PROC_EXIT:
{ std::cout << "APR_PROC_EXIT"; break; }

case APR_PROC_SIGNAL:
{ std::cout << "APR_PROC_SIGNAL"; break; }

50 case APR_PROC_SIGNAL_CORE:
{ std::cout << "APR_PROC_SIGNAL_CORE"; break; }

}
std::cout << " Status = " << status;

} else {
55 std::cout << "still processing...";

}
std::cout << std::endl;
apr_terminate();
return (0);

60 }

Listing 5.1 APR process running ‘cal’ program

In the above listing we see the use of several APR functions and data structures.
Before using APR functionality, APR has to be initialized using: apr_initialize().
APR has a memory pool functionality which is used by most of APR’s functions,
as well as application programs. We create a memory pool using apr_pool_create

function. The next several lines are used to create process attributes which control
the process’s behavior, detach state, and IO. In this case we want to read from the
child process output, thus we use APR_FULL_BLOCK for its output.

We wait for the process to terminate (otherwise we would create a zombie pro-
cess), and print its exit code and reason for exiting.

116 5 Apache Portable Runtime (apr)

5.3 APR Threads

In addition to supporting process based multi-tasking, APR also has support for
multi-threading as shown in Listing 5.2. In this program we create a thread which
prints a message. The thread creation function in APR is shown below:

/**
* Create a new thread of execution
* @param new_thread The newly created thread handle.

* @param attr The threadattr to use to determine how to create the thread
5 * @param func The function to start the new thread in

* @param data Any data to be passed to the starting function
* @param cont The pool to use

*/
apr_thread_create(apr_thread_t **new_thread,

10 apr_threadattr_t *attr,
apr_thread_start_t func,
void *data, apr_pool_t *cont);

// \file tapr.cpp
// \author Sandeep Koranne, (C) 2010
// APR test and thread support

5 #include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <apr_general.h>
#include <apr_thread_proc.h>

10
#define NUM_THREADS 4

static void* APR_THREAD_FUNC comp(apr_thread_t *T, void* arg);

15 int main(int argc, char *argv []) {
apr_status_t retval;
apr_pool_t *pool;
apr_thread_t *THREADS[NUM_THREADS];
apr_threadattr_t *thread_attribute;

20 int i,j;

apr_initialize();
apr_pool_create(&pool, NULL);
apr_threadattr_create(&thread_attribute, pool);

25 for(i=0; i < NUM_THREADS; ++i) {
retval = apr_thread_create(&THREADS[i], thread_attribute,

comp, NULL, pool);
}
for(i=0; i < NUM_THREADS; ++i) {

30 retval = apr_thread_join(&retval, THREADS[i]);
}
apr_terminate();
return 0;

}
35

static void* APR_THREAD_FUNC comp(apr_thread_t *T, void* arg) {
printf("\n Inside apr_thread function: comp");
apr_thread_exit(T, APR_SUCCESS);
return NULL;

40 }

Listing 5.2 APR thread example

5.4 APR Thread Pool 117

5.4 APR Thread Pool

Scheduling jobs such that CPUs are efficiently utilized is a non-trivial problem when
the problem is not uniform, and has data dependent runtime. In such situation it
is often easier to design a pool of threads which can be dynamically assigned to
perform computation. Towards this end, APR has a thread pool facility. An example
of a thread pool to perform compute intensive calculation is shown in Listing 5.3.

/* \file thpool.cpp
\author Sandeep Koranne, (C) 2010
Fibonacci = (0,1,1,2,3,5,8,13,21,34,55,89)
Sum = prefix-sum of F

5 (0,1,2,4,4,12,20,

*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>

10 #include <stdlib.h>
#include <apr_general.h>
#include <apu.h>
#include <apr_reslist.h>
#include <apr_thread_pool.h>

15 #include <cassert>
#include <iostream>

struct Data {
int s0, s1, N;

20 unsigned int sum;
};

unsigned int CountCollatzReturn(unsigned int N) {
unsigned int count = 0;

25 while(1) {
count++;
if(N <= 1) return count;
if(N % 2) N = 3*N+1;
else N = N/2;

30 }
return count;

}

#if 0
35 /**

\function SumFibonacci
@param s0, s1 contain initial fibonacci numbers
@param N represents how many numbers to sum
@return sum of N fibo numbers from (s0,s1)

40 \description Algorithm is non-recursive

*/
unsigned int SumFibonacci(int s0, int s1, int N) {
int i,j;
unsigned int next=s0+s1;

45 unsigned int sum=0;
for(i=0; i < N-2; ++i) {

next = s0 + s1;
s0 = s1;
s1 = next;

50 sum += next;
}
return sum ;

}
#else

55 unsigned int SumFibonacci(int s0, int s1, int N) {
std::cout << "Running function " << __FUNCTION__ << std::endl;

118 5 Apache Portable Runtime (apr)

int i,j;
unsigned int next=s0+s1;
unsigned int sum=0;

60 for(j=0; j < 100000000; ++j) {
sum = 0;
for(i=0; i < N-2; ++i) {

next = s0 + s1;
s0 = s1;

65 s1 = next;
sum += next;

}
}
return sum ;

70 }
#endif

void* APR_THREAD_FUNC FUNCTION(apr_thread_t *thd, void* arg) {
struct Data* data = (struct Data*) arg;

75 data->sum = SumFibonacci(data->s0, data->s1, data->N);
data->sum = CountCollatzReturn(data->sum);
return APR_SUCCESS;

}

80 //#define SERIAL_VERSION
#ifdef SERIAL_VERSION
int main(int argc, char * argv[]) {
apr_status_t retval;
apr_pool_t *pool;

85
const int LOOP_COUNT = 8;
const int Z = 7;
int s0=0, s1=1;
int i,j,rc=0;

90 unsigned int sum = 0;
struct Data data[LOOP_COUNT];
for(i=0; i < LOOP_COUNT; ++i) {

data[i].s0 = i; data[i].s1 = i+1; data[i].N = (i*Z);
}

95
apr_initialize();
apr_pool_create(&pool, NULL);
for(j=0; j < LOOP_COUNT; ++j) {

FUNCTION(NULL, (void*) &data[j]);
100 }

// all work has been done
for(i=0; i < LOOP_COUNT; ++i) {

printf("\n sum (%d,%d,%d) = %d", i,(i+1),(i*Z), data[i].sum);
}

105 printf("\n");
return (EXIT_SUCCESS);

}
#endif

110 #define THREADED_VERSION
#ifdef THREADED_VERSION
int main(int argc, char * argv[]) {
apr_status_t retval;
apr_pool_t *pool;

115
const int LOOP_COUNT = 8;
const int Z = 7;
int s0=0, s1=1;
int i,j,rc=0;

120 unsigned int sum = 0;
struct Data data[LOOP_COUNT];
for(i=0; i < LOOP_COUNT; ++i) {

data[i].s0 = i; data[i].s1 = i+1; data[i].N = (i*Z);

5.5 File information, IO, and Memory mapped files 119

}
125

apr_thread_pool_t *thrp;
apr_initialize();
apr_pool_create(&pool, NULL);
retval = apr_thread_pool_create(&thrp, 2, 4, pool);

130 if(retval != APR_SUCCESS) assert(0 && "apr_thread_pool_create");

for(j=0; j < LOOP_COUNT; ++j) {
retval = apr_thread_pool_push(thrp, FUNCTION, &data[j], 0, NULL);

135 if(retval != APR_SUCCESS)
assert(0 && "apr_thread_pool_push");

}

apr_size_t scount = apr_thread_pool_scheduled_tasks_count(thrp);
140 std::cout << std::endl << scount

<< " tasks have been scheduled..." << std::endl;
scount = apr_thread_pool_tasks_count(thrp);
std::cout << std::endl << scount

<< " tasks are waiting..." << std::endl;
145 scount = apr_thread_pool_tasks_run_count(thrp);

std::cout << std::endl << scount
<< " tasks have completed..." << std::endl;

while(scount != LOOP_COUNT) {
150 scount = apr_thread_pool_tasks_run_count(thrp);

if(scount == LOOP_COUNT) break;
std::cout << std::endl << scount

<< " tasks have completed..." << std::endl;
sleep(5);

155 }
// all work has been done
retval = apr_thread_pool_destroy(thrp);
for(i=0; i < LOOP_COUNT; ++i) {

printf("\n sum (%d,%d,%d) = %d", i,(i+1),(i*Z), data[i].sum);
160 }

printf("\n");
return (EXIT_SUCCESS);

}
#endif

Listing 5.3 APR thread pool example

5.5 File information, IO, and Memory mapped files

APR supports an abstract file type, apr_file_t as well as a file info type, apr_finfo_t.
To open a file for reading we can use the following APR function:

apr_status_t retval;
apr_pool_t *pool;
apr_pool_create(&pool, NULL);
apr_finfo_t file_info;

5 apr_file_t *fp;
retval = apr_file_open(&fp, fileName,

APR_READ|APR_BINARY,
APR_OS_DEFAULT, pool);

retval = apr_file_info_get(&file_info, APR_FINFO_SIZE, fp);

120 5 Apache Portable Runtime (apr)

Moreover, memory mapped files can be created using the apr_mmap_create func-
tion, e.g.:

retval = apr_mmap_create(&mmap, fp, 0, file_info.size,
APR_MMAP_READ, pool);

// .. use the mmap->mm data as const char *
apr_mmap_delete(mmap); // unmap the file

5.6 Hash tables

Hash tables in APR are implemented using APR pools. The following functions are
useful when developing applications using APR hash tables:

apr_hash_t* apr_hash_make(apr_pool_t*);
void* apr_hash_get(apr_hash_t*, void* key, apr_ssize_t keylen, void* val);

A simple word frequency counting application using APR hash tables is presented
in Listing 5.4.

// \file apr_hash_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Use of hash table in APR
#include <iostream> // Program IO

5 #include <fstream> // File IO
#include <cstdlib> // exit
#include <string> // STL string
#include <sstream> // string iterator
#include <cassert> // assertion checking

10 #include <cstring> // memory functions
#include <apr_general.h> // APR basic functions
#include <apr_hash.h> // APR hash tables

static int PrintHashFunction(void* dummy, const void* key,
15 apr_ssize_t klen, const void* val) {

std::cout << (const char*)key << "\t" << (int)val << "\n";
}

static void CountWordFrequency(const char* filename) {
20 std::ifstream ifs(filename);

if(!ifs) {
std::cerr << "Unable to open file: " << filename;
exit(1);

}
25 apr_status_t retval;

apr_pool_t *pool;
apr_pool_create(&pool, NULL);
apr_hash_t *word_hash = apr_hash_make(pool);
assert(word_hash && "Word hash not created.");

30 char line[1024];
while(ifs) {

ifs.getline(line, 1024);
std::istringstream sstr(line);
while(sstr) {

35 std::string word; sstr >> word;
if(word == "") break;
std::cout << "Processing " << word << " " << word.size() << "\n";
char *next_word = new char[word.size()+1];
strcpy(next_word, word.c_str());

40 void* val = apr_hash_get(word_hash, (void*) next_word, word.size());

5.6 Hash tables 121

if(val == NULL) { // first time
apr_hash_set(word_hash, (void*) next_word, word.size(),
(const void*)(1));

} else {
45 int count = int(val) + 1;

apr_hash_set(word_hash, (void*) next_word, word.size(),
(const void*)(count));

}
}

50 }
// now the hash table has been constructed.
std::cout << "Hash has " << apr_hash_count(word_hash) << " elements.\n";
{

apr_hash_index_t *hi;
55 for (hi = apr_hash_first(pool, word_hash); hi; hi = apr_hash_next(hi)) {

void *val;
const void *key_word;
apr_ssize_t key_len;
apr_hash_this(hi, &key_word, &key_len, &val);

60 std::cout << (const char*)(key_word) << "\t" << (int)val << "\n";
}

}
//(void)apr_hash_do(PrintHashFunction, NULL, word_hash);
apr_pool_destroy(pool);

65 }

int main(int argc, char *argv []) {
if(argc != 2) {

std::cerr << "Usage: ./apr_hash_example <file>..\n";
70 exit(1);

}
apr_initialize();
CountWordFrequency(argv[1]);
std::cout << std::endl;

75 apr_terminate();
return (0);

}

Listing 5.4 Example using APR hash tables for word frequency counting

In Listing 5.4 it should be noted that the key to the hash table is the address of
an allocated memory containing the word. Although, the hash function correctly
calculates the hash for different words, reusing the same address as the key for
different words will not work, as the hash table does not store keys inside the hash
table (it only stores the value for that key, indexed by the computed hash function).
Compiling the program shown in Listing 5.4 and running it on a small data set gives
us:

./apr_hash_example small_words.txt
Processing jill 4
Processing the 3
Processing jack 4
Processing jack 4
Processing jill 4
Hash has 3 elements.
the 1
jack 2
jill 2

122 5 Apache Portable Runtime (apr)

The program (in Listing 5.4) also shows the two hash table iteration mechanisms
available in APR; (i) the use of the hash index type and (ii) using the callback func-
tion.

5.7 Using Memcache with APR

As we will discuss in Section 9.6, memcached is a high-performance distributed
memory object caching system. It is designed for reducing the database load in
web applications and speed up dynamic web content generation. It comprises of a
server component which manages the lifetime of the cached objects which can be
accessed on the network. Using APR, we can integrate Memcache functionality in
an application. Ofcourse, a valid running memcached process should be executing
on the server with the port accessible to the client program. An example of using
APR with Memcache is shown in Listing 5.5.

// \file aprcache.cpp
// \author Sandeep Koranne (C) 2010
// \description Use of memcache server with APR
#include <iostream> // Program IO

5 #include <cassert> // assertion checking
#include <cstdlib> // exit
#include <fstream> // C++ STL for file IO
#include <apr_general.h> // APR functions
#include <apr_memcache.h> // memcache client in APR

10 #if 0
echo "stats settings" | nc localhost 11211
#endif
int main(int argc, char *argv []) {
apr_initialize();

15 apr_status_t retval;
apr_pool_t *pool;
apr_pool_create(&pool, NULL);
// create a server object
apr_memcache_server_t *myserver;

20 retval = apr_memcache_server_create(pool, "localhost", 11211,
1, 10, 10, 1000, &myserver);

if(retval != 0)
{ std::cerr << "Unable to create server object..\n"; exit(1); }

25 apr_memcache_t *mycache;
retval = apr_memcache_create(pool, 2, 0x0, &mycache);
if(retval != 0) exit(1);

retval = apr_memcache_add_server(mycache, myserver);
30 if(retval != 0)

{ std::cerr << "Unable to add server object..\n"; exit(1); }

retval = apr_memcache_enable_server(mycache, myserver);
if(retval != 0)

35 { std::cerr << "Unable to enable server object..\n"; exit(1); }

#if 0
retval = apr_memcache_set(mycache, "ABCDE", "KEY", 3, 100, 0x0);
if(retval != 0)

40 { std::cerr << "Unable to store data on server object..\n"; exit(1); }
#endif
// now check to see if you can retrieve this information
char *baton = NULL;

5.7 Using Memcache with APR 123

apr_size_t baton_len = 0;
45 retval = apr_memcache_getp(mycache, pool, "ABCDE",

&baton, &baton_len, 0x0);
// An application which uses memcache must be prepared
// to assume data is not present on the server.
if((retval != 0) || (baton == NULL) || (baton_len == 0)) {

50 std::cout << "Data for key ABCDE does not exist in server.\n";
} else {

std::cout << "Memcache server returned : " << baton << std::endl;
}

55 apr_memcache_server_t *server =
apr_memcache_find_server(mycache, "localhost", 11211);

if(server) {
std::cout << "Found memcached server running...\n";

} else {
60 std::cout << "Unable to find memcached server running...\n";

exit(1);
}

// get server statistics
65 apr_memcache_stats_t *stats;

retval = apr_memcache_stats(myserver, pool, &stats);
if(retval != 0) {

std::cerr << "Unable to collecte memcache server stats..\n";
exit(1);

70 }
std::cout << "\nMemcache server stats...." << std::endl

<< "\nVersion information : " << stats->version
<< "\nPID : " << stats->pid
<< "\nUptime : " << stats->uptime

75 << "\nCurrent items stored : " << stats->curr_items
<< "\nBytes used : " << stats->bytes
<< "\nCurrent connections : " << stats->curr_connections
<< "\nBytes written : " << stats->bytes_written;

80 std::cout << std::endl;
apr_terminate();
return (0);

}

Listing 5.5 Using memcache with APR

Compiling and running this program gives us:

./aprcache
Memcache server returned : KEY
Found memcached server running...
Memcache server stats....
Version information : 1.4.5
PID : 30661
Uptime : 1920
Current items stored : 1
Bytes used : 57
Current connections : 10
Bytes written : 9251

$./aprcache
Data for key ABCDE does not exist in server.
Found memcached server running...
Memcache server stats....
Version information : 1.4.5

124 5 Apache Portable Runtime (apr)

PID : 30661
Uptime : 1991
Current items stored : 0
Bytes used : 0
Current connections : 10
Bytes written : 10050

It can be seen on line 38 of Listing 5.5 that we install the data on the server with a
lifetime of 100 seconds. This means, that after 100 seconds, the data is ejected from
the cache. By compiling the program with and without the data insertion we can see
the effect of cache ejection as shown in the above transcript.

5.8 Shared memory with APR

As we have seen above APR has functions for invoking sub-processes and multi-
processing. Inter-process communication involving large shared data segments is
often accomplished using shared memory. Shared memory segments are memory
locations which can be accessed by multiple processes. All the processes must agree
(or be informed of) the segment name through which the shared memory will be
access. As with any shared resource, critical sections need to be protected against
inadvertent use by another process. The APR functions apr_shm_create creates a
shared segment of the given name and size. Function, apr_shm_destroy destroys the
shared segment. During the time the shared segment is active, its memory address
can be calculated using the apr_shm_baseaddr_get function which returns a handle to
the underlying memory. An example of creating a shared memory segment is shown
in Listing 5.6.

// \file aprshmA.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of shared memory using APR
#include <iostream> // for program IO

5 #include <cstdlib> // for exit
#include <apr_general.h> // APR functions
#include <apr_shm.h> // APR shared memory

static const char SHM_FILE_NAME[] = "SHM1234MHS"; // should be common
10

int main(int argc, char *argv []) {
apr_initialize();
apr_status_t retval;
apr_pool_t *pool;

15 apr_pool_create(&pool, NULL);
apr_shm_t *shm_segment;
retval = apr_shm_create(&shm_segment, 1024, SHM_FILE_NAME, pool);
if(retval != 0) {

std::cerr << "Unable to create shared memory segment..\n";
20 exit(1);

}
int *data = (int*) apr_shm_baseaddr_get(shm_segment);
for(int i=0; i < 10; ++i) data[i] = i;

25 int x;
std::cout << "Enter a number when done with programB:";
std::cin >> x;

5.8 Shared memory with APR 125

std::cout << std::endl;

30 apr_shm_destroy(shm_segment);
apr_pool_destroy(pool);
apr_terminate();
return (0);

}

Listing 5.6 Example of using shared memory with APR

The other process requests access to the shared segment using the apr_shm_attach

function using the same filename as the process which created the shared segment.
Once the segment has been attached the baseaddress and segment size can be in-
spected. An example of creating a shared memory segment is shown in Listing 5.7.

// \file aprshmA.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of shared memory using APR
#include <iostream> // for program IO

5 #include <cstdlib> // for exit
#include <apr_general.h> // APR functions
#include <apr_shm.h> // APR shared memory

static const char SHM_FILE_NAME[] = "SHM1234MHS"; // should be common
10

int main(int argc, char *argv []) {
apr_initialize();
apr_status_t retval;
apr_pool_t *pool;

15 apr_pool_create(&pool, NULL);
apr_shm_t *shm_segment;
retval = apr_shm_attach(&shm_segment, SHM_FILE_NAME, pool);
if(retval != 0) {

std::cerr << "Unable to attach shared memory segment..\n";
20 exit(1);

}
apr_size_t data_size = apr_shm_size_get(shm_segment);
std::cout << "size of shared memory segment = " << data_size << "\n";
int *data = (int*) apr_shm_baseaddr_get(shm_segment);

25 for(int i=0; i < 10; ++i) {
if(data[i] != i) {

std::cerr << "Data corrupted in shared segment..\n";
exit(1);

}
30 }

std::cout << std::endl << "Data in shared segment is valid.\n";
apr_shm_detach(shm_segment);
apr_pool_destroy(pool);
apr_terminate();

35 return (0);
}

Listing 5.7 Using shared memory segment with APR

The Qt library also has shared memory segment functionality available as part of
its application programming API, see Section 19.1.4.1 for more details. For POSIX
shared memory functionality, run man shm overview for an overview of the
shared memory functions in POSIX.

126 5 Apache Portable Runtime (apr)

5.9 Conclusion

Apache Portable Runtime (APR) is indeed a versatile application development li-
brary. It not only provides an operating system independent set of routines with
predetermined semantics on a wide variety of machine, OS combinations, but also
provides useful application development framework utilities such as hash tables,
memory pools, multi-threading and multi-process supports, memory mapping, and
network access.

Chapter 6
Boost C++ Libraries

Abstract In this chapter we discuss the Boost C++ API. Boost is a peer-reviewed
C++ class library which implements many interesting and useful data structures and
algorithms. In particular we discuss the use of Boost smart pointers, Boost asyn-
chronous IO, and IO Streams. Boost also implements many data structures which
are not present in the C++ standard library (e.g. bimap). Boost Graph Library (BGL)
is presented with the help of real-life example. We compare Boost multi-threading
and memory pool performance to APR. We discuss the integration of Python with
C++ using Boost. We conclude the chapter with a discussion of Boost Generic Im-
age Processing Library.

Contents
6.1 Boost smart pointer and memory pool . 128
6.2 Boost asio framework . 131
6.3 Boost data structures . 134
6.4 Boost Graph Library . 135
6.5 Boost Spirit Framework . 138
6.6 Boost multi-threading . 140
6.7 Boost Python integration . 141
6.8 Boost Generic Image Processing Library (GIL) 141
6.9 Conclusion . 143

Boost is a collection of C++ libraries and header files which are peer-reviewed,
portable, and work well with standard C++ libraries. Indeed, some of the Boost
libraries have even become part of the new C++ standard. The main libraries present
in Boost (as of version 1.4.2) are given below:

1. Template meta programming and C++ enhancements: these include (i) any, a
generic container of single values of different types, (ii) array, STL compliant
wrapper for fixed sized arrays, (iii) bimap, bidirectional map for C++, (iv) con-
cept checking tools, (v) foreach in C++, (vi) functional/hash for TR1
C++,

2. Data structures: disjoint sets, date/time, dynamic bitset, property maps, un-
ordered associative containers, universally unique identifier (UUID),

3. Asynchronous IO (asio): see Section 6.2 below,

S. Koranne, Handbook of Open Source Tools, 127
DOI 10.1007/978-1-4419-7719-9_6, © Springer Science+Business Media, LLC 2011

128 6 Boost C++ Libraries

4. Memory Pool and Smart Pointer: flyweight pattern, memory pool, see Section 6.1
below, pointer container, serialization (see also XDR in Section 9.1.1), smart
pointers,

5. Mathematics: linear algebra, quaternions, octonions, interval arithmetic, special
functions (see also GNU scientific library, rational number class, uBLAS, in Sec-
tion 16.5), generic image library,

6. Boost Graph Library (BGL): library for manipulating graphs (vertices and edges),
7. Lexical analysis and parsing: regular expression parsing, Spirit LL parser frame-

work, tokenizer. An example of using Boost Spirit framework is given in Sec-
tion 13.4.1.

8. Multi-threading: interprocess, memory mapped files, shared memory, system in-
terface, threading library interface, timer functions, interface to MPI (see Sec-
tion 12.3.1 for more details on Boost MPI),

9. CRC checksum: see Section 9.2 for a detailed example,
10. Python/C++ integration: see Section 9.7 for an example.

We discuss some of the important Boost C++ libraries below:

6.1 Boost smart pointer and memory pool

Memory pools are an important memory optimization technique. The malloc pro-
vided with the system library has been optimized for best average case performance;
in many situations where the programmer is aware of the number, lifetime, usage
patterns of objects, it is certainly possible to come up with allocation schemes which
either reduce memory consumption, or optimize runtime (or both). We had previ-
ously seen the Apache Portable Runtime library (APR) which has a memory pool
(see Section 5.4). It is instructive to compare performance of Boost memory pool
with that of APR. See Figure 6.1(a) for a runtime comparison. Figure 6.1(b) de-
notes the number of minor page faults associated with the memory allocation. We
will discuss performance optimization tools (perftools) in Section 7.1, and by link-
ing against the provided libtcmalloc we reran the experiments. The compar-
ison with and without libtcmalloc are shown in Figure 6.2(a), for Boost and
Figure 6.2(b) for APR.

The internal memory allocation scheme for Boost and APR is readily apparent
from the graphs.

The source code for this example, which can also be used as a short model of
using Boost pools and APR is given in Listing 6.1.

// \file compare_pool.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of Boost memory pool class
#include <fstream>

5 #include <boost/pool/pool.hpp>
#include <boost/pool/object_pool.hpp>
#include <apr_general.h>
#include <iostream>
#include <cassert>

6.1 Boost smart pointer and memory pool 129

(a) Runtime (b) No. minor faults

Fig. 6.1 Comparison of Boost vs APR memory pool

(a) Boost runtime (b) APR runtime

Fig. 6.2 Effects of linking with Google’s perftools

10
struct MyObject {
int X;
char *p;
MyObject() { std::cout << __PRETTY_FUNCTION__ << "\n"; }

15 ˜MyObject() { std::cout << __PRETTY_FUNCTION__ << "\n"; }
};

int normal_pool() {
boost::pool<> pool(sizeof(double));

20
double *allocated = (double*)pool.malloc();

}

int object_pool() {
25 boost::object_pool<MyObject> pool;

MyObject *A = pool.malloc();
}

30 unsigned long BoostPoolTest(unsigned long N) {
boost::pool<> pool(sizeof(int));

130 6 Boost C++ Libraries

unsigned long sum = 0;
for(unsigned long i=0; i < N; ++i) {

int * const A = (int*) pool.malloc();
35 *A = (int)A;

sum += *A;
}
return sum;

}
40

unsigned long APRPoolTest(apr_pool_t *pool,
unsigned long N) {

unsigned long sum = 0;
for(unsigned long i=0; i < N; ++i) {

45 int * const A = (int*) apr_palloc(pool, sizeof(int));

*A = (int)A;
sum += *A;

}
return sum;

50 }
static size_t GetMemorySize(void)
{

std::ifstream ifs;
ifs.open("/proc/self/statm",std::ios::in);

55 size_t memoryUsed = 0;
ifs >> memoryUsed;
return memoryUsed;

}

60 static void DisplayMemoryUsed(void)
{

size_t memUsed = GetMemorySize();
std::cout << std::endl << "Program consumed "<< memUsed << " kb.\n";

}
65

int main(int argc, char *argv[]) {
static const unsigned long COUNT = atol(argv[1]);
int use_boost = atoi(argv[2]);
apr_status_t retval;

70 apr_pool_t *apr_pool;
normal_pool();
object_pool();
return 0;
if(use_boost) {

75 BoostPoolTest(COUNT);
} else {

apr_initialize();
apr_pool_create(&apr_pool, NULL);
APRPoolTest(apr_pool, COUNT);

80 }
//DisplayMemoryUsed();
return 0;

}

Listing 6.1 Example of Boost memory pool

One important thing to keep in mind when using Boost object pool is that the
destructor of the object in the pool is called automatically when the pool is de-
stroyed. In the above listing we see:

MyObject::˜MyObject()

when the pool goes out of scope.

6.2 Boost asio framework 131

6.2 Boost asio framework

A fundamental component of the Boost asio framework for communication is the
socket which provides an abstraction for the usual networking socket available in
POSIX. The socket as defined in basic_datagram_socket is a template type which
can be instantiated with different protocols. The socket type can be configured to
specify the endpoint-type and other parameters. It supports functions such as bind,
connect, close, receive, receive_from and shutdown.

Consider a UDP server returning the server’s date and time on a specified port.
The code using Boost asio is shown in Listing 6.2. The corresponding client code is
shown in Listing 6.3. We can trivially change the server code to instead return the
load average as shown.

// \file udp_server.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of Boost ASIO UDP connection
#include <ctime> // for the date/time function

5 #include <iostream> // program IO
#include <fstream> // for ifstream
#include <string> // string to store date
#include <boost/array.hpp> //
#include <boost/asio.hpp>

10
static const int PORT_NUMBER = 8954; // port of server
using boost::asio::ip::udp;

#ifdef PRINT_TIME
15 std::string make_info_string() {

using namespace std; // For time_t, time and ctime;
time_t now = time(0);
return ctime(&now);

}
20 #endif

std::string make_info_string() {
char temp[1024];
std::ifstream ifs("/proc/loadavg");
ifs.getline(temp, 1024);

25 return std::string(temp);
}

int main() {
boost::asio::io_service io_service;

30
udp::socket socket(io_service, udp::endpoint(udp::v4(), PORT_NUMBER));
while(true) {

boost::array<char, 1> recv_buf; // this is just the trigger
udp::endpoint remote_endpoint;

35 boost::system::error_code error;
socket.receive_from(boost::asio::buffer(recv_buf),

remote_endpoint, 0, error);
std::string message = make_info_string();
boost::system::error_code ignored_error;

40 socket.send_to(boost::asio::buffer(message),
remote_endpoint, 0, ignored_error);

}
return 0;

}

Listing 6.2 Example of Boost asio UDP server

132 6 Boost C++ Libraries

// \file udp_client.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of Boost ASIO UDP connection
#include <iostream> // for program IO

5 #include <stdlib.h> // exit
#include <string> // hostname
#include <boost/array.hpp> // boost::array
#include <boost/asio.hpp> // Boost ASIO library

10 using boost::asio::ip::udp;

int main(int argc, char* argv[]) {
std::string hostName;
if (argc != 2) {

15 std::cerr << "Usage: udp_client <host>" << std::endl;
exit(1);

} else {
hostName = argv[1];

}
20 boost::asio::io_service io_service;

udp::resolver resolver(io_service);
// the port number is specified as a string argument
udp::resolver::query query(udp::v4(), hostName, "8954");
udp::endpoint receiver_endpoint = *resolver.resolve(query);

25
udp::socket socket(io_service);
socket.open(udp::v4()); // Use UDP socket

boost::array<char, 1> send_buf = { 0 };
30 socket.send_to(boost::asio::buffer(send_buf), receiver_endpoint);

boost::array<char, 128> recv_buf;
udp::endpoint sender_endpoint;
size_t len = socket.receive_from(

35 boost::asio::buffer(recv_buf),
sender_endpoint);

if(len > 128) len=128;
std::cout.write(recv_buf.data(), len);
return 0;

40 }

Listing 6.3 Example of Boost asio UDP client

Compiling this requires the boost system and pthread library to be linked:

$g++ -o udp_server udp_server.cpp -lboost_system -lpthread

6.2.1 Boost IOStreams framework

The architecture of Boost IOStreams is based on a pipeline of components in which
data is passed from source to sink and undergoes filtering and conversion at each
stage of the pipeline. The source for the stream can be a disk file, memory mapped
file, or array of bytes. The sink can be a disk file, memory-mapped file, or array
of bytes as well. The filters included in the IOStreams library include compression
filters based on zlib. We present an example of a writer and reader based on Boost
IOStreams which store the data on disk in a compressed manner.

The writer is shown in Listing 6.4, while the reader is shown in Listing 6.5.

6.2 Boost asio framework 133

// \file file_io_write.cpp
// \author Sandeep Koranne, (C) 2010
// \description Using Boost IO Streams
#include <boost/iostreams/device/file.hpp>

5 #include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/gzip.hpp>
using namespace boost::iostreams;
int main() {
filtering_ostream out; // STL compliant io stream

10 out.push(gzip_compressor()); // step 1 : compress
out.push(file_sink("am.txt"));// step 2: write to disk
out << 1 << " " << 2 << " " << 3 << " " << "Johnson";
return 0;

}

Listing 6.4 Example of Boost IOStreams writer

// \file file_io_read.cpp
// \author Sandeep Koranne, (C) 2010
// \description Using Boost IO Streams
#include <string>

5 #include <iostream>
#include <boost/iostreams/device/file.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/gzip.hpp>
using namespace boost::iostreams;

10 int main() {
filtering_istream data_in; // STL iostream compliant
data_in.push(gzip_decompressor()); // step 2 : decompress
data_in.push(file_source("am.txt")); // step 1: read from source
int x,y,z; data_in >> x >> y >> z;

15 std::string name; data_in >> name;
std::cout << "Read " << x << " " << y << " " << z

<< " Name = " << name << std::endl;
return 0;

}

Listing 6.5 Example of Boost IOStreams reader

Compiling and running these programs gives:

$g++ file_io_write.cpp -o file_io_write -lboost_iostreams -lz
./file_io_write
$file am.txt
am.txt: gzip compressed data
$g++ file_io_read.cpp -o file_io_read -lboost_iostreams -lz
$./file_io_read
Read 1 2 3 Name = Johnson

Later in Section 8.1 we shall see more examples of using zlib for compression
and decompression.

134 6 Boost C++ Libraries

6.3 Boost data structures

6.3.0.1 Dynamic bitset

Boost dynamic bitset provides a class to represent a set of bits which can be accessed
using the [] operator. It is identical to the std:bitset, except that the size of
underlying container is not fixed at compile time (for std::bitset it has to set
at compile time).

6.3.0.2 Bimap: bidirectional map

Boost Bimap is a map which represents bidirectional relations between elements.
This container is designed to work as two independent maps, from X to Y, and Y to
X can be written as:

typedef boost::bimap<X,Y> XY_BM;

For a given bimap, the left map view represents the X to Y map, while the right map
view represents the Y to X map. For example a representation for a dictionary can
be:

typedef boost::bimap< std::string, int > DICT;
DICT d;
d.insert(DICT::value_type("Jack", 1));

A full example is given in Listing 6.6.

// \file bimap_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of Boost bimap
#include <boost/bimap.hpp>

5 #include <string>
#include <iostream>

typedef boost::bimap< std::string, int > DICT;

10 int main(int argc, char * argv[]) {
DICT d;
d.insert(DICT::value_type("Jack", 1));
d.insert(DICT::value_type("Jane", 2));
d.insert(DICT::value_type("Jill", 3));

15 for(DICT::const_iterator it = d.begin();
it != d.end(); ++it) {

std::cout << it->left << "\t" << it->right << std::endl;
}
std::cout << "-------\n";

20 for(DICT::left_map::const_iterator it=d.left.begin();
it != d.left.end(); ++it) {

std::cout << it->first << "\t" << it->second << std::endl;
}
std::cout << "-------\n";

25 for(DICT::right_map::const_iterator it=d.right.begin();
it != d.right.end(); ++it) {

std::cout << it->first << "\t" << it->second << std::endl;
}
return 0;

6.4 Boost Graph Library 135

30 }

Listing 6.6 Example of Boost bimap container

Compiling and running this program gives us:

Jack 1
Jane 2
Jill 3

Jack 1
Jane 2
Jill 3

1 Jack
2 Jane
3 Jill

6.3.0.3 Array: STL compliant container for fixed size array

boost::array< int, 1024 > integer_buffer;

By providing the type and the length of the array as the template parameter Boost
array provides an abstraction which is STL compliant.

6.4 Boost Graph Library

Fig. 6.3 Graph of dependen-
cies using BGL

We present an example of using Boost Graph Library to solve a real world prob-
lem. Consider the problem of dependency analysis of programs. Given the input
make type file:

136 6 Boost C++ Libraries

begin
D.c : D.h system_lib ;
target_1 : A.c B.c ;
product : target_1 target_2 ;
target_2 : D.c ;
end

the system has to compute the correct order in which to process the files. The
graph of dependencies is shown in Figure 6.3. The C++ program using BGL is
shown in Listing 6.7.

// \file bgl_make.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of BGL for dependency analysis

5 #include <iostream> // messaging
#include <fstream> // reading Make file
#include <cassert> // assertions
#include <vector> // vertices
#include <list> // edges

10 #include <deque> // topological sort
#include <string> // string
#include <sstream> // string parsing
#include <map> // string->id
#include <boost/graph/vector_as_graph.hpp> // BGL

15 #include <boost/graph/topological_sort.hpp>// topological_sort

typedef std::map< std::string, int > FileTable;
FileTable gFileTable;

20 std::vector< std::string > gFileNames;

static int LookupOrAdd(const std::string& Name) {
int retval = gFileTable.size();
if(gFileTable.find(Name) == gFileTable.end()) {

25 gFileTable[Name] = retval;
gFileNames.push_back(Name);
return retval++;

} else {
return gFileTable[Name];

30 }
}

static const size_t MAX_N = 100;
typedef std::vector< std::list< int > > Graph;

35 Graph gDependency(MAX_N);
// the input format is simple
// target : <dep1> <dep2> <dep3>

static void ParseFileAndCreateGraph(const std::string& fileName) {
40 std::ifstream ifs(fileName.c_str());

if(!ifs) { std::cerr << "Unable to open file: " << fileName << std::endl;
exit(1);

}
char a_line[1024];

45 ifs.getline(a_line, 1024);
std::string line(a_line);
if(line != "begin") {

std::cerr << "File: " << fileName << " is not a .mak file\n";
exit(1);

50 }
while(true) { // parse the remaining file

ifs.getline(a_line, 1024);
std::string line(a_line);
if(line == "end") break;

6.4 Boost Graph Library 137

55 // actual parsing
std::istringstream sis;
sis.str(line);
std::string target; sis >> target;
std::string token; sis >> token;

60 if(token != ":") {
std::cerr << "Parsing error: " << token << " expecting : " << std::endl;
exit(1);

}
int target_id = LookupOrAdd(target);

65
while(sis) {

sis >> token;
if(token == ";") break;
int dep_id = LookupOrAdd(token);

70 gDependency[target_id].push_back(dep_id);
}

}
}

75 std::deque<int> t_order;
static void ComputeDependency(void) {
boost::topological_sort(

gDependency, std::front_inserter(t_order),
boost::vertex_index_map(boost::identity_property_map()));

80 }

static void PrintDependency(void) {
for(std::deque<int>::reverse_iterator it=t_order.rbegin();

it != t_order.rend(); ++it) {
85 if(*it >= gFileNames.size()) continue;

std::cout << "Action " << gFileNames[*it] << std::endl;
}
std::cout << std::endl;

}
90

int main(int argc, char * argv[]) {
std::string MakeFileName(argv[1]);
ParseFileAndCreateGraph(MakeFileName);
ComputeDependency();

95 PrintDependency();
return 0;

}

Listing 6.7 Example of BGL

The main features of Boost Graph Library are:

• Graph construction: in BGL graphs can be directed or undirected. Once a graph
has been constructed, vertices and edges can be added into it. The underlying
data-structure for the graph depends on the application, and determines the run-
time complexity of the algorithms using the graph. Graphs can be dense (with
a high ratio of edges (M to N2), where M denotes the number of edges, and N
denotes the number of vertices. For sparse graphs (such as those found in large
networks), a list of nodes per vertex (called an adjacency list) implementation
is efficient. The functions add_vertex adds and returns an opaque handle to the
newly added vertex. Similarly, the add_edge function returns a 2-tuple, a handle
to the edge, and a Boolean to specify whether the edge was actually inserted or
was already present.

• Vertex and Edge descriptors: access to the graph’s nodes and edges is made
through opaque handles called descriptors. Graphs may use arbitrary types for

138 6 Boost C++ Libraries

handles, although integers and pointers are common. The descriptor of a graph
are accessible using the graph_traits class. Vertex descriptors can only be con-
structed, copied and compared for equality. Edge descriptors can return the con-
stituent vertex descriptors.

• Property maps: property maps are a generic method to attach auxiliary informa-
tion to vertices and edges. In most examples the vertices represent and model
some parameter in the system. Without property maps, the programmer must
ensure that the graph, and the model remain in sync, but by using property
maps (which can be as simple as a 1-1 index into the model), this problem
is removed. The 1-1 map is called the identity map, and is a common prop-
erty map for integer typed vertices. BGL has a number of predefined prop-
erty types, such as vertex_name_t, to install an integer as name for each vertex,
property< vertex_name_t, int> Multiple property types can be added to vertices
and edges using the third parameter of property which allows for chaining.

• Algorithms on graphs: Boost graph library has implemented a number of use-
ful graph algorithms which are immediately available to all users of BGL. The
algorithms are based on (i) graph traversal, (ii) graph search, and (iii) graph ma-
nipulation. Graph traversal is performed using iterators, BGL has iterators for
vertices and edges. An example of using graph iterators:

typedef typename graph_traits<G>::vertex_iterator VIT;
std::pair< VIT, VIT > v_of_g = vertices(g);
for(; v_of_g.first != v_of_g.second; ++v_of_g.first)

The vertices(Graph) function returns a 2-tuple (called a tie) as a pair of vertex
iterators. The first points to a valid vertex, while the second points to the end of
the vertex iterator sequence. The algorithms implemented in BGL include:

1. Breadth first search (BFS) and Depth first search (DFS),
2. Shortest path,
3. Minimum spanning tree (MST),
4. Connected components,
5. Maximum flow,
6. Graph search,

• Adapters: graph adapters in BGL are filters on the input graph which produce
another BGL graph (through a transformation), or produce a graph in an external
format such as DOT (using Graphviz .dot, see Section 19.4), or LEDA graphs, or
Stanford GraphBase format.

6.5 Boost Spirit Framework

The Spirit Parser Framework is an object oriented recursive descent parser generator
framework implemented using template meta-programming techniques. Expression
templates allow users to approximate the syntax of Extended Backus Naur Form

6.5 Boost Spirit Framework 139

(EBNF) completely in C++. Parser objects are composed through operator overload-
ing and the result is a backtracking LL(∞) parser that is capable of parsing rather
ambiguous grammars. Spirit can be used for both lexing and parsing, together or
separately.

Consider a parser modeled after the classic recursive descent method for parsing
mathematical expressions of the form:

start <- assignment;
assignment <- lhs ’=’ rhs;
lhs <- literal;
rhs <- expression;
expression <- ’(’ expression ’)’ | term op expression;
op <- XOR | NEG;
term <- term AND factor;
factor <- literal | literal OR factor;

The SPIRIT implementation of this parser is shown below:

struct EqnParser : public grammar<EqnParser> {
template <typename ScannerT>
struct definition {
definition(EqnParser const& /*self*/) {
expression
= str_p("INPUT()") [&do_input]
| str_p("OUTPUT()")[&do_output]
| term
>> *((’#’ >> term) [&do_or]

| (’$’ >> term)[&do_xor]
| (’-’ >> term)[&do_subt]
)

;

term
= factor
>> *((’&’ >> factor)[&do_and]

| (’/’ >> factor)[&do_div]
)

;

factor
= lexeme_d[(+digit_p)[&do_int]]
| lexeme_d[(+(alnum_p|’_’|’[’|’]’))[&do_literal]]
| ’(’ >> expression[&do_expr] >> ’)’
| (’!’ >> factor)[&do_neg]
| (’#’ >> factor)
;

assign
= lexeme_d[(+(alnum_p|’_’|’[’|’]’))[&do_lhs]]
>> ’=’ >> expression[&do_final] >> ’;’
;

}

140 6 Boost C++ Libraries

rule<ScannerT> expression, term, factor, assign;
rule<ScannerT> const&
start() const { return assign; }

};
};

Using Boost SPIRIT framework, the formal grammar is translated to C++ code
using the following conventions: (i) production choices are delineated using the |

operator, (ii) Kleene star closures are defined using the * operator, (iii) the stream
redirection operator >> is overloaded to define production rules, and (iv) the array
index operator [] is overloaded to define the function to be called when the produc-
tion is matched. In the above example, we see that when the operator # is matched
for example, the do_or function is called.

The function to be called is defined to accept the left and right operand, e.g.:

void do_xor(char const* l, char const* r) {
// take the 2 top elements from the stack
// and make their tree and add to sub tree
Tree* pT = new Tree(XOR, GetName());

5 pT->left = treeStack.top(); treeStack.pop();
pT->right = treeStack.top(); treeStack.pop();
treeStack.push(pT);

}

For more details on parsing see Section 13.4.1.

6.6 Boost multi-threading

The boost::thread class is responsible for multi-threading in Boost C++ programs.
The Boost threading interface provides an operating system independent threading
API which is compatible with C++ programming idioms. Threads can be created
with user defined functions and class member functions. The usual POSIX threading
capabilities of critical section protection, using mutex, thread local variables, and
pthread once functions are also supported. An example of using Boost threads with
member functions representing the work function is shown in Listing 6.8.

// \file boost_thread_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Example of using Boost threading API
#include <iostream> // for Program IO

5 #include <cassert> // assertion checking
#include <boost/thread/thread.hpp> // Boost threads

struct MyComputation {
int how_many;

10 void operator()(void) {
std::cout << "Thread function called : " << how_many << "\n";

}
MyComputation(int x): how_many(x) {}

};
15

int main(int argc, char* argv[]) {
MyComputation C1(10), C2(20);

6.8 Boost Generic Image Processing Library (GIL) 141

boost::thread A(C1), B(C2);

20 A.join();
B.join();

std::cout << std::endl;
return (0);

25 }

Listing 6.8 Example of using Boost threads

6.7 Boost Python integration

Boost Python library is a C++ framework for interfacing C++ functions and objects
with the Python language. Using the Boost Python module arbitrary C++ functions
and objects can be interfaced with Python. Consider the following example:

// C++ code
char* PrintHello(void) {
return ‘‘Hello, World!’’;

}
5 #include <boost/python.hpp>

BOOST_PYTHON_MODULE(hello_ext)
{
using namespace boost::python;
def(‘‘hello_world’’, PrintHello);

10 }

Now, we can import this module in Python and issue this function call from Python.

6.8 Boost Generic Image Processing Library (GIL)

Boost also has a generic image processing library (GIL) which implements image
processing functions such as gradient calculation, color space conversion, image
transforms, as well as reading and writing common image file formats such as JPEG.
An example of using Boost GIL to compute the histogram of a given JPEG file is
shown in Listing 6.9. The output histogram is shown in Figure 6.4.

// \file gil_hist_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Example of using Boost GIL (generic image library)
#include <iostream> // for program IO

5 #include <iterator> // ostream iterator
#include <fstream> // reading image files.
#include <cstdlib> // for exit
#include <boost/gil/image.hpp> // GIL image
#include <boost/gil/typedefs.hpp> // GIL typedefs

10 #include <boost/gil/extension/io/jpeg_io.hpp> // reading JPEG files.

using namespace boost::gil;

template <typename GrayView, typename R>
15 void gray_image_hist(const GrayView& img_view, R& hist) {

142 6 Boost C++ Libraries

for (typename GrayView::iterator it=img_view.begin(),
en=img_view.end(); it != en; ++it)
++hist[*it];

}
20

template <typename V, typename R>
void get_hist(const V& img_view, R& hist) {

gray_image_hist(color_converted_view<gray8_pixel_t>(img_view), hist);
}

25
int main(int argc, char *argv[]) {
if(argc != 2) {

std::cerr << "Usage: gil_hist_example <file.jpg>...\n";
exit(1);

30 }
rgb8_image_t img;
jpeg_read_image(argv[1], img);
std::vector<int> histogram(256, 0);

35 get_hist(const_view(img),histogram);
std::fstream output_file("output.txt", std::ios::out);
std::copy(histogram.begin(), histogram.end(),

std::ostream_iterator<int>(output_file, "\n"));
output_file.close();

40 std::cout << std::endl;
return (0);

}

Listing 6.9 Example of using Boost GIL

In addition to reading JPEG files, GIL also supports PNG (portable network
graphics) and TIFF input and output. Using these IO functions pixel data from
JPEG, PNG files can be read into an Image data-structure in memory. Thereafter,
calculations and transforms can be applied to the in-memory representation of the
image. The transformed image can be written back to disk in JPEG, TIFF or PNG
format.

Fig. 6.4 Boost Generic Image Library (GIL) computing histograms of JPEG files

6.9 Conclusion 143

Boost GIL supports many different types of image representations, including: (i)
planar and interleaved, (ii) color space and alpha channel, (iii) multi-depth channels,
of 8-bit, 16-bit and 24-bit colors, (iv) multi-ordered channels, RGB vs BGR, and (v)
row alignment policy.

6.9 Conclusion

Boost C++ libraries provide many well designed data structures and application
framework tools, which are useful in a broad range of applications. Using Boost
libraries, not only can the developer reuse high-quality code, but also adopt an
operating system independent approach. Boost APIs have been effectively used in
many scientific and engineering applications, and with the continued development
of Boost C++ library, this trend is only expected to increase.

Chapter 7
Performance Libraries

Abstract In this chapter we discuss performance optimization libraries which con-
centrate on memory issues. We first describe the Google Perftool set of tools which
include the tcmalloc memory allocation and thread-key based memory alloca-
tion library. Perftools also contains a heap-checker and heap-profiler, their usage
alongwith examples which are optimized by their usage is shown in this chapter.
We compare the performance of perftools memory allocation with APR and the re-
sults are presented in this chapter. Another technique for memory optimization is the
use of garbage collection. This is included in Java and Common Lisp family of lan-
guages, but using the Boehm garbage collector, we also use garbage collection (GC)
in C and C++ programs. Examples using Boehm GC are presented in this chapter,
and we investigate the impact of GC on performance and memory consumption.

Contents
7.1 Google perftools . 145
7.2 Boehm GC : garbage collection . 151
7.3 Using Boehm GC . 151
7.4 Conclusion . 154

7.1 Google perftools

Google’s perftools libraries are an open-source performance enabling API for mem-
ory allocation, leak checking, and profiling. Version 1.5 of Google perftools include:

1. tcmalloc: thread caching memory allocator,
2. heap checker: heap checking and leak detection API,
3. heap profiler: performance monitoring of heap allocation,
4. cpu profiler: performance monitoring for functions.

We discuss these below.

S. Koranne, Handbook of Open Source Tools, 145
DOI 10.1007/978-1-4419-7719-9_7, © Springer Science+Business Media, LLC 2011

146 7 Performance Libraries

7.1.1 perftools : tcmalloc

Google Perftool tcmalloc is designed as a fast, optimized thread aware replace-
ment for C lib standard malloc. On multi-threaded systems, tcmalloc reduces
thread contention by reducing threading overhead for small objects, and by using
fine grained thread aware locking. While standard malloc also uses thread spe-
cific arenas for memory allocation, migration of free space from one thread arena
to another is not implemented in the standard C library, while perftools tcmalloc
reduces this wastage of memory space. Another advantage of tcmalloc is the op-
timized representation of small objects. To make use of tcmalloc in their own
code, the application can either link to -ltcmalloc or use LD PRELOAD to load the
tcmalloc shared library (this is the way to use tcmalloc in applications which
cannot be recompiled to take advantage of tcmalloc, which should not be a prob-
lem for the software considered in this book).

7.1.1.1 Implementation

Perftool tcmalloc assigns each thread a local cache from which small allocations
are directly serviced. A page is divided into a sequence of small objects, while a
large object is allocated directly from the main heap. tcmalloc uses a class of 60
allocatable size-classes. Object size requests outside this range are rounded up to
the nearest available size. Since thread local arenas are available for small objects,
if the free list for an arena is not empty, an object of the appropriate size is returned
directly (no locking is required). If the free list for the requested size class is empty,
a collection of objects from a central free list is requested and placed on the thread
local free list, subsequently an object from this list is returned to the application.
If the central list is also empty, then a run of pages is carved up into objects of the
requested class and placed on the lists. Since the API is identical to malloc for
use, it can be quickly integrated with existing code.

On an existing discrete geometry application using STL in C++, standard GNU
C malloc had a runtime of : 266.12 seconds. Linking the same application with
tcmalloc reduced the runtime to 208 seconds. Another example is shown in Fig-
ure 7.1 where the runtime performance of GNU C malloc is compared to perftools
tcmalloc.

7.1.2 perftools : heap checker

The heap checker heap checker is part of tcmalloc so its use is already pos-
sible by linking the libtcmalloc library with the application. However, linking
to libtcmalloc does not turn on heap checking. The heap checker tracks usage
of memory before main() and confirms that all allocated memory has been freed
at exit(). If the heap checker detects any memory that has been allocated but not

7.1 Google perftools 147

Fig. 7.1 Performance measurement of GNU C malloc with perftools tcmalloc.

freed at exit() it aborts the program and prints a message. It should be noted that
heap checker records the stack trace for each allocation (thus increasing the
memory usage and runtime of the application significantly).

To switch on the heap checker, the environment variable HEAPCHECK should
be set one of the following: (i) minimal, (ii) normal, (iii) strict, and (iv) draconian.
Example of minimal output is shown below:

sizeof(Object) = 72

Leak check _main_ detected leaks of 3120 bytes in 101 objects
The 2 largest leaks:
Leak of 2400 bytes in 100 objects allocated from:
@ 8048979
@ 94ebb6
@ 8048801
Leak of 720 bytes in 1 objects allocated from:
@ 80488e8
@ 94ebb6
@ 8048801

It should be noted that since the heap-checker uses the heap-profiling framework
(see Section 7.1.3) internally, it is not possible to use both tools at the same time. To
disable the heap-checker for a block of code we can use the following method:

148 7 Performance Libraries

// code block has know memory allocation
{
HeapLeakChecker::Disabler myDisabler;
int *n = new int[1024];

5 if(wanted_elsewhere) globalArray = n; //
// Or we can use
IgnoreObject(n); // which also waives the heap error

}

In addition to basic heap-checking, it is possible to check for memory alignment
problems (on modern processors, memory latency can be heavily influenced by
memory alignment). The environment variable HEAP_CHECK_TEST_POINTER_ALIGNMENT

can be set to enable this check.

7.1.3 perftools : heap profiler

The primary uses of heap profiler are to detect places that perform a lot of
memory allocation in C++ program code. It can also be used to detect memory
leaks. Similar to the HEAP checker, the heap profiler does not switch on by default.
To switch on the heap profiler, the environment variable HEAPPROFILE needs to
set to a file location. It is possible to analyze portions of code for heap-profiling as:

// performance sensitive code block
void RegenrateMatrix(double* data, unsigned int N) {
// do computation
#ifdef _ENABLE_PROFILING_

5 if(IsHeapProfilerRunning()) HeapProfilerDump();
#endif

}
void CheckStrata(double* data, unsigned int N) {
#ifdef _ENABLE_PROFILING_

10 HeapProfilerStart(‘‘/tmp/strata_profile’’);
#endif
// algorithm phase I, setup FFT vectors
#ifdef _ENABLE_PROFILING_
HeapProfilerDump();

15 #endif
// call actual complex function
RegenrateMatrix(data, N);
#ifdef _ENABLE_PROFILING_
HeapProfilerStop();

20 #endif
}

The function HeapProfilerStart expects the filename prefix as the argument. The
function IsHeapProfilerRunning can be used to check if the function is already being
profiled. Once the profile data has been generated into a file the pprof tool can be
used to analyze the data and generate reports. The reports can be generated using
TEXT formar, or PostScript output (as shown in Figure 7.2.

The TEXT format report example is shown below:

$ ˜/OSS/bin/pprof --text poly_enum_i686.tcmalloc
/tmp/enum_profile.0001.heap

Total: 6.8 MB

7.1 Google perftools 149

Fig. 7.2 Google Perftools pprof output graph

6.8 100.0% 100.0% 6.8 100.0% CBPolytope::init
0.0 0.0% 100.0% 0.0 0.0% nauty
0.0 0.0% 100.0% 0.0 0.0% refine1
0.0 0.0% 100.0% 0.0 0.0% firstpathnode0
0.0 0.0% 100.0% 0.0 0.0% doref
0.0 0.0% 100.0% 0.0 0.0% bestcell
0.0 0.0% 100.0% 0.0 0.0% CBPolytope::compute_orbits
0.0 0.0% 100.0% 6.8 100.0% CheckPolytope

At least in this example, the polytope init() function does all the memory allo-
cation (which is expected). We can also ask pprof to focus on specific functions
using the --focus=<name> command-line option:

$ ˜/OSS/bin/pprof --focus=nauty --text
poly_enum_i686.tcmalloc /tmp/enum_profile.0001.heap

Total: 6.8 MB
0.0 0.0% 0.0% 0.0 0.0% nauty
0.0 0.0% 0.0% 0.0 0.0% refine1
0.0 0.0% 0.0% 0.0 0.0% firstpathnode0
0.0 0.0% 0.0% 0.0 0.0% doref
0.0 0.0% 0.0% 0.0 0.0% bestcell

150 7 Performance Libraries

7.1.4 perftools : cpu profiler

To add CPU profiling to the application, we have to link with the lprofiler
library of perftools. Similar to the heap profiling, this does not switch on the
profiling code, it only links the code. To enable CPU profiling, the environment
variable CPUPROFILE needs to set to the filename where the cpu profile re-
sults will be generated. The environment variable CPUPROFILE FREQUENCY and
CPUPROFILE REALTIME control the behavior of this profiling. Once the data has
been generated the pprof tool can be used to analyze the trace, as shown below:

Fig. 7.3 Google Perftools with CPU profiler output graph

$ ˜/OSS/bin/pprof --text poly_enum_i686.tcmalloc
/tmp/enum_profile

Removing _init from all stack traces.
Total: 156 samples

48 30.8% 30.8% 48 30.8% __mcount_internal
25 16.0% 46.8% 71 45.5% mcount
12 7.7% 54.5% 12 7.7% _init
8 5.1% 59.6% 49 31.4% CBPolytope::init
5 3.2% 62.8% 5 3.2% __i686.get_pc_thunk.bx
5 3.2% 66.0% 5 3.2% std::vector::operator[]
3 1.9% 67.9% 3 1.9% std::_Rb_tree_increment
3 1.9% 69.9% 6 3.8% std::__copy_move::__copy_m
3 1.9% 71.8% 17 10.9% std::__copy_move_a2
2 1.3% 73.1% 2 1.3% refine1
2 1.3% 74.4% 4 2.6% std::_Rb_tree::_M_destroy_node
2 1.3% 75.6% 11 7.1% std::_Rb_tree::_M_insert_unique
2 1.3% 76.9% 2 1.3% std::_Rb_tree::_S_value

7.3 Using Boehm GC 151

2 1.3% 78.2% 8 5.1% std::set_difference

As with the heap-profiler, it is possible to restrict the report to match a regular
expression string using the --focus command-line option. We can generate the
graphical report for the CPU profiler as well, as shown in Figure 7.3.

7.2 Boehm GC : garbage collection

Boehm Garbage Collector (GC) is a conservative garbage collection for C and C++.
Garbage collection can be defined as the automatic reclaiming of dynamic memory
which is no longer in use (referenced) by any object in the program. Use of garbage
collection was pioneered in the Common Lisp community, which also contributed
large advances in the field of garbage collection, mostly in performance and capa-
bilities.

GNU Compiler Collection uses the Boehm GC internally. The Java language also
uses garbage collection. The use of garbage collection not only frees the developer
from the responsibility of keeping track of dynamic variable lifetime, as well as
prevent leaks and improves system performance (when used properly). When the
developer understands that dynamic memory can be reclaimed automatically, better
algorithms can be chosen (which without GC would be too complicated to imple-
ment correctly). This can counteract the slight performance and capacity hit that GC
entails. Since the system has to recognize all dynamic memory as alive or not, extra
information (meta-data) has to be kept for dynamic memory. Boehm GC is imple-
mented to reduce this impact. Moreover, the Boehm GC can also be used as a leak
detector.

7.3 Using Boehm GC

Boehm GC’s API have been designed as a replacement for the C library malloc.
The basic idea behind garbage collection is that all valid dynamic memory must be
pointed to by some object in the program. Such an object can be (i) other dynamic
memory, (ii) stack variables, (iii) data, (iv) statically allocated BSS segments, or
(v) registers. Pointer recognition is a fundamental problem, and Boehm GC is a
conservative GC (which means that it errs on the side of caution) when deciding
which memory to reclaim. Memory allocated by system malloc are not seen by
the GC so mixing memory allocations is not a good idea.

The C interface of the allocator is listed below:

• GC malloc:
• GC malloc atomic:
• GC realloc:
• GC free:

152 7 Performance Libraries

A simple way to use Boehm GC is to define:

#define malloc(n) GC_malloc(n)
#deine calloc(m,n) GC_malloc((m)*(n))

There is also a C++ interface to the garbage collector. A garbage collector is
most useful when the lifetime of the object cannot be easily tracked. Maintaining
reference count within objects makes the code complicated and error prone. Using
automatic garbage collection can solve this problem. Consider a small simulation
kernel as shown in Listing 7.1.

// \file unknown_lifetime.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using garbage-collection as object
// life time is not known apriori

5 #ifdef USE_GC
#include <gc.h> // Boehm garbage collector
#endif
#include <fstream> // reading /proc/self/statm
#include <iostream> // program IO

10 #include <cassert> // assertion checking
#include <cstdlib> // exit
#include <cstdio> // perror
#include <sys/resource.h> // setrlim

15 static unsigned long num_mallocs = 0;
#ifdef USE_GC
#define MALLOC GC_malloc

#else
#define MALLOC malloc

20 #endif

struct Node {
struct Node *left, *right;
int data;

25 int mark;
char BUF[10240];
Node() : left(NULL), right(NULL), data(0), mark(0) {}
void reset() { left = right = NULL; data = mark = 0; }

};
30

std::ostream& operator<<(std::ostream& os, const Node& N) {
return os << N.data << "\t" << N.mark;

}

35 Node ** ConstructNodes(unsigned int N) {
Node ** retval = (Node**)MALLOC(N * sizeof(Node *));
assert((retval != NULL) && "retval allocated");
for(int i=0; i < N; ++i) {

retval[i] = (Node*)MALLOC(sizeof(Node));
40 retval[i]->reset();

retval[i]->data = i;
}
return retval;

}
45

static void PrintNodeData(Node **data, unsigned int N) {
for(int i=0; i < N; ++i)

std::cout << (*data[i]) << std::endl;
}

50
static void RunSimulation(Node **data,

unsigned int N,
unsigned int LOOP_COUNT) {

for(int i=0; i < LOOP_COUNT; ++i) {

7.3 Using Boehm GC 153

55 unsigned int source_id = rand() % N;
unsigned int dest_id = rand() % N;
assert((data[source_id] != NULL) && "source is invalid");
assert((data[dest_id] != NULL) && "dest is invalid");
Node *source = data[source_id], *dest = data[dest_id];

60 Node *temp = (Node*) MALLOC(sizeof(Node));
num_mallocs++;
temp->reset();
temp->data = source->data + dest->data;
if(source->data < dest->data) {

65 source->mark |= 0x01;
source->right = temp;
data[dest_id] = temp;

} else if(source->data > dest->data) {
dest->mark |= 0x01;

70 dest->left = temp;
data[source_id] = temp;

} else {
data[source_id] = data[dest_id] = temp;

}
75 }

}
static size_t GetMemorySize(void) {

std::ifstream ifs;
ifs.open("/proc/self/statm",std::ios::in);

80 size_t memoryUsed = 0;
ifs >> memoryUsed;
return memoryUsed;

}

85 static void DisplayMemoryUsed(void) {
size_t memUsed = GetMemorySize();
std::cout << std::endl << "Program consumed "<< memUsed << " kb.\n";

}

90 int main(int argc, char *argv []) {
struct rlimit mem;
mem.rlim_cur = mem.rlim_max = 102400;
int rc = setrlimit(RLIMIT_DATA, &mem);
if(rc) { std::perror("setrlimit"); exit(1); }

95 unsigned int N = 10;
Node **data = ConstructNodes(N);
RunSimulation(data, N, 100000);
std::cout << "number mallocs = " << num_mallocs << std::endl;
DisplayMemoryUsed();

100 std::cout << std::endl;
return 0;

}

Listing 7.1 Example of using Boehm garbage collection

We compile this program with and without the garbage collector:

g++ -O3 unknown_lifetime.cpp
$ /usr/bin/time ./a.out
number mallocs = 100000
Program consumed 251876 kb.

0.08user 0.94system 0:01.10elapsed 93%CPU
(0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (0major+102255minor)pagefaults 0swaps
Now we compile with garbage collection
$ g++ -O3 -DUSE_GC unknown_lifetime.cpp -lgc
$ /usr/bin/time ./a.out

154 7 Performance Libraries

number mallocs = 100000

Program consumed 1491 kb.

3.65user 0.01system 0:03.77elapsed 97%CPU
(0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (0major+625minor)pagefaults 0swaps

The garbage collected binary is several times slower (this is a very artificial ex-
ample where the runtime cost of the memory allocator dominate any processing),
but the important aspect is the significant reduction in memory consumption from
251 MB (for the non-gc binary), to 1.5 MB for the garbage collected binary. Al-
though, the example is simplistic (the dangling pointers can be fixed with some
extra code and reference counts), having the flexibility of automatic garbage collec-
tion allows the programmer to concentrate on the actual simulation kernel in this
example, without running out of memory.

7.4 Conclusion

In this chapter we discussed performance optimization libraries which concentrate
on memory issues. We first described the Google Perftool set of tools which include
the tcmallocmemory allocation and thread-key based memory allocation library.
We compared the performance of perftools memory allocation with APR and the re-
sults are presented in this chapter. Another technique for memory optimization is the
use of garbage collection. Examples using Boehm GC are presented in this chapter,
and we investigate the impact of GC on performance and memory consumption.

Chapter 8
Compression Engines

Abstract In this chapter we present libraries and APIs for lossless compression.
Even with the geometric rise in memory capacity, the information theoretic com-
pression gains provided at relatively cheap computing power can result in impres-
sive performance and capacity gains. In this chapter we present with the help of
examples, the use of the ZLIB and BZIP2 libraries. Examples are presented using
C/C++ API as well as Python modules. More recently, LZMA and XZ Utilities also
provide even better compression, albeit at slightly slower speed. Their use is also
described in this chapter.

Contents
8.1 ZLIB Compression Library . 156
8.2 LIBBZ2 and BZIP2 . 162
8.3 LZMA and XZ Utils . 163
8.4 Conclusion . 164

Although network speeds and memory capacities have expanded at a rapid rate
in recent years, application demands for ever more features and capabilities have
continued to place a constraint on the total memory space consumed by the pro-
gram, or data which is communicated between cooperating processes. One solution
to alleviating this concern is the use of compression, both lossless (for applica-
tions which need bit-equivalent data on both ends of the communication) or lossy
(such as image compression). In the next section we discuss techniques for lossless
compression including the use of deflate, and its implementation in ZLIB. As the
performance gap between CPU and memories continue to expand, spending CPU
cycles for compression and decompression, which reduces the memory requirement
is indeed beneficial.

S. Koranne, Handbook of Open Source Tools, 155
DOI 10.1007/978-1-4419-7719-9_8, © Springer Science+Business Media, LLC 2011

156 8 Compression Engines

8.1 ZLIB Compression Library

zlib is a loss-less compression and decompression library. It has the advantage
of input independent memory requirements, as well as the compression algorithm
produces excellent compression of data. The zlib library is an implementation of
the deflate algorithm which in turn uses Huffman coding to perform compres-
sion. The zlib library can be used as a buffer compression library (which in turn
can be used to compress files), or it can be used to read files compressed using
the gzip tool. The zlib functions gzread allows reading compressed files. See
Section 8.1.2 for more details on the file functions of zlib.

The compressed data format used by the in-memory functions is the zlib format
(by default), which is a zlib wrapper (RFC 1950), around a deflate stream (RFC
1951). A Deflate stream consists of a series of blocks. Each block is preceded by a
3-bit header:

1. Bit 0 :marker,

• 1: last block in stream,
• 0: more blocks.

2. Bit 1 and 2: represent the encoding method:

• 00: a stored/raw/literal section follows, between 0 and 65,535 bytes in length,
• 01: static Huffman compressed block (pre-agreed tree),
• 10: dynamic Huffman block alongwith tree,
• 11: reserved.

Most data blocks are compressed using the dynamic Huffman coding, where the
tree is contained after the header. The two techniques used for data compression
in DEFLATE are (i) duplicate string referencing and (ii) bit-reduction by symbol
encoding. Duplicate strings are back referenced (upto a maximum distance of 32K
bytes), and symbol encoding is performed using the Huffman encoding method.
The lookback for the string matching contributes significantly to the quality and
performance of the compression library. In this section we discuss the reference
zlib implementation since it is widely used in many open-source software, as well
as being part of Internet standard (RFC 1950) and the Java JAR format.

The zlib functionality is accessed using an opaque ZSTREAM object as shown
in Listing 8.1. The declaration of this stream structure can be found in zlib.h and
is shown below:

typedef struct z_stream_s {
Bytef *next_in; /* next input byte */
uInt avail_in; /* no. bytes available next_in */
uLong total_in; /* input bytes read so far */

5
Bytef *next_out; /* location of next output */
uInt avail_out; /* free space at next_out */
uLong total_out; /* no, bytes output so far */

10 char *msg; /* error message, NULL if no error */
struct internal_state FAR *state; /* opaque */

8.1 ZLIB Compression Library 157

alloc_func zalloc; /* internal allocator */
free_func zfree; /* internal deallocator */

15 voidpf opaque; /* pvt. data to allocator */

int data_type; /* binary or text */
uLong adler; /* adler32 value */
uLong reserved; /* reserved */

20 } z_stream;

During compression or decompression, next_in and avail_in must be updated
when avail_in becomes zero. Similarly, the members next_out and avail_out have
to be updated. The memory allocation and opaque member must be initialized. When
compressing data-buffers, compression can be performed in a single step if the in-
put/output buffers have appropriate memory allocated for them. A comprehensive
example of using ZLIB with XDR is given in Listing 8.1, which uses the single-
shot method of compression. Otherwise, the stream object’s avail_out member has
to be monitored to ensure that space is available for output. The fields total_in and
total_out are used for statistics or progress reports and contain the number of input,
and output bytes, read and written, respectively. The main functions provided by the
zlib library are shown in Table 8.1.

Table 8.1 Major functions of the zlib library

zlib function Description
zlib_version return version number
deflateInit initialize the stream state for compression
deflateInit2 same as above, but has more options
deflate compress as much data as possible
deflateEnd free dynamically allocated structures
inflateInit initialize stream for decompression
inflateInit2 same as above, but has more options
inflate decompress as much data as possible
inflateEnd free dynamically allocated structures
compress utility function to compress buffer
compress2 same as above, but has level

compressBound function to return upper bound on length of output
uncompress utility function to perform decompression
adler32 update running Adler-32 checksum
crc32 update running CRC32

The functions deflateInit2 has customizable options including (i) compression
method, (ii) windowBits, (iii) memory level, and (iv) compression strategy. Sim-
ilarly, the inflateInit2 has only one extra parameter, the number of window bits
(specified as a base two logarithm), which controls the maximum window size.

// \file rdb.cpp
// \author Sandeep Koranne, (C) 2010

158 8 Compression Engines

// \description Use of zlib, bzip2, LZMA with XDR
#include <iostream>

5 #include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <rpc/types.h>
#include <rpc/xdr.h>

10 #include <boost/crc.hpp> // actual CRC
#include <zlib.h>

static size_t MAX_LEN = 0;
static char *BUFFER = NULL;

15 static char *ZLIB_BUFFER = NULL;
static unsigned long CHECKSUM = 0;
// Note: use of CRC32 is not endian-proof as we always
// across machines, but is acceptable as a test case
// against data corruption.

20
int WriteNumberStream(int N, char** buf) {
boost::crc_32_type boost_crc;
XDR xdrs;
if(MAX_LEN <= (N * sizeof(int))) {

25 *buf = new char[(N * sizeof(int))];
MAX_LEN = N * sizeof(int);

}
xdrmem_create(&xdrs, *buf, MAX_LEN, XDR_ENCODE);
for(int i=0; i < N; ++i) {

30 int x = (rand() % 100) ˆ (i) ;
boost_crc.process_byte(x & 0x0FF0); // middle order bits
if (!xdr_int(&xdrs, &x)) return -1;

}
int written_len = xdr_getpos(&xdrs);

35 //std::cout<<written_len<<"\t"<<boost_crc.checksum()<<"\t";
//std::cout << "Wrote " << written_len << " bytes.\n";
//std::cout << "CRC32 checksum = " << boost_crc.checksum();
CHECKSUM = boost_crc.checksum();
return written_len;

40 }

int ReadNumberStream(int N, char* buf) {
boost::crc_32_type boost_crc;
XDR xdrs;

45 xdrmem_create(&xdrs, buf, N, XDR_DECODE);
int x;
int count=0;
while(true) {

if(!xdr_int(&xdrs, &x)) break;
50 boost_crc.process_byte(x & 0x0FF0);

count++;
}
if(CHECKSUM != boost_crc.checksum()) {

std::cerr << "CHECKSUM failed.\n";
55 exit(1);

}
//std::cout << "Read " << count << " integers.\n";
//std::cout << "CRC32 checksum = " << boost_crc.checksum();
return count;

60 }

int CompressXDRStream(char *input, int len, char* output, int MAX_LEN) {
z_stream zstrm;
int flush = Z_NO_FLUSH;

65 int compressed_till_now = 0;
zstrm.zalloc = Z_NULL;
zstrm.zfree = Z_NULL;
zstrm.opaque = Z_NULL;
int ret = deflateInit(&zstrm, 3); // level = 3

8.1 ZLIB Compression Library 159

70 if(ret != Z_OK) {
std::cerr << "ZLIB stream construction failed.\n";
exit(1);

}
zstrm.avail_in = len;

75 zstrm.next_in = (unsigned char*)input;
zstrm.avail_out = MAX_LEN;
zstrm.next_out = (unsigned char*)output;
do {

// we expect the whole buffer in single shot
80 ret = deflate(&zstrm, flush);

if(ret != Z_OK) {
std::cerr << "ZLIB failure\n";
exit(1);

}
85 } while(zstrm.avail_in > 0);

ret = deflate(&zstrm, Z_FINISH);
compressed_till_now = MAX_LEN - zstrm.avail_out;
//std::cout<<"Wrote "<<compressed_till_now<<" bytes during deflate.\n";
deflateEnd(&zstrm);

90 return compressed_till_now;
}

int DecompressXDRStream(char *input, int len, char* output, int MAX_LEN) {
z_stream zstrm;

95 int flush = Z_NO_FLUSH;
int decompressed_till_now = 0;
zstrm.zalloc = Z_NULL;
zstrm.zfree = Z_NULL;
zstrm.opaque = Z_NULL;

100 int ret = inflateInit(&zstrm);
if(ret != Z_OK) {

std::cerr << "ZLIB stream construction failed.\n";
exit(1);

}
105 zstrm.avail_in = len;

zstrm.next_in = (unsigned char*)input;
zstrm.avail_out = MAX_LEN;
zstrm.next_out = (unsigned char*)output;
do {

110 // we expect the whole buffer in single shot
ret = inflate(&zstrm, flush);
if(ret == Z_STREAM_ERROR) {

std::cerr << "ZLIB failure\n";
exit(1);

115 }
} while(zstrm.avail_in > 0);
ret = deflate(&zstrm, Z_FINISH);
decompressed_till_now = MAX_LEN - zstrm.avail_out;
//std::cout<<"Read "<<decompressed_till_now<<" bytes during deflate.\n";

120 inflateEnd(&zstrm);
return decompressed_till_now;

}

int main(int argc, char *argv[]) {
125 int number_to_write = 1000;

if(argc > 1) number_to_write = atoi(argv[1]);
int numWritten = WriteNumberStream(number_to_write, &BUFFER);
if(numWritten < 0) {

std::cerr << "XDR stream overflowed, allocate more memory.\n";
130 exit(1);

}
if(MAX_LEN) ZLIB_BUFFER = new char[MAX_LEN * sizeof(int)];
int comp_len = CompressXDRStream(BUFFER, numWritten,

ZLIB_BUFFER, MAX_LEN);
135 std::cout << numWritten << "\t" << comp_len << "\n";

memset(BUFFER, 0, MAX_LEN); // initialize to 0

160 8 Compression Engines

int decomp_len = DecompressXDRStream(ZLIB_BUFFER, comp_len,
BUFFER, MAX_LEN);

int numRead = ReadNumberStream(numWritten, BUFFER);
140

return 0;
}

Listing 8.1 Using ZLIB with XDR

Using the utility functions uncompress requires the transmission of the length of
the uncompressed stream alongwith the compressed data as that is not stored in the
compressed data. The compress function is declared as:

compress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen);

The size of the compressed stream is returned in destLen. Using the compressBound

function an output buffer to accumulate the compressed data can be allocated prior
to calling compress. The uncompress function is similarly declared:

uncompress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen);

The output buffer length has to be known to the application in advance. On return,
destLen contains the number of bytes (which can be compared with the application
data). Both these functions return Z_OK if the action was performed without error.

8.1.1 Compression ratio

This section is subjective, and depending on the data present in the stream compres-
sion ratio can vary significantly. We presented an example in Listing 8.1. Running
this example on several different sizes of input yielded the plot as shown in Fig-
ure 8.1.

8.1.2 gzip file access functions

The zlib library supports reading and writing gzip (RFC 1952) files (also called
‘.gz’ files). The main functions are shown in Table 8.2.

8.1.3 Integration of zlib and gzip in Python

In addition to using the library from your own C/C++ programs as we have shown
in Listing 8.1, it is also possible to use zlib and gzip from Python. Consider the
example shown below:

8.1 ZLIB Compression Library 161

Fig. 8.1 Compression ratio for zlib

Table 8.2 Major gzip functions of the zlib library

gzip function Description
gzopen open filename for reading with mode,
gzdopen open file descriptor for reading with mode
gzbuffer set internal buffer size
gzsetparams set level and strategy for file
gzread read length (uncompressed) of bytes into buffer
gzwrite write length (uncompressed) to file
gzprintf format, convert and write to file
gzputs write null-terminated string to file
gzgets read null-terminated string of given length from file
gzflush flush output to file
gzseek sets starting position for next read/write
gztell return position (uncompressed) of next read/write
gzoffset return current offset of file
gzeof return 1 if end-of-file indicator is set
gzclose close the file

import sys
import gzip
def ParseFile(fileName):

print "Reading file %s" %fileName
if poly_file_name.find(’.gz’) != -1:

file = gzip.open(fileName, ’rb’)
lines = file.readlines()
file.close()

else:

162 8 Compression Engines

f = open(fileName, ’r’)
lines = f.readlines()
f.close()

for l in lines:
computation on contents

As the above example shows using zlib in Python is simple, and transparent.

8.2 LIBBZ2 and BZIP2

The bzip2 implements the Burrows-Wheeler block-sorting text compression algo-
rithm. The underlying library of bzip2 is libbz2. An advantage of using bzip2
is that internally it organizes data as chunks of 900k, so partially damaged files
can be recovered (using the bzip2recover program). The major functions of the
libbz2 library are shown in Table 8.3.

Table 8.3 Major functions of the libbz2 library

zlib function Description
BZ2_bzCompressInit prepares for compression
BZ2_bzCompress compress the data, change state
BZ2_bzCompressEnd cleanup data structures
BZ2_bzDecompressInit prepare for decompression
BZ2_bzDecompress decompress the data
BZ2_bzDecompressEnd cleanup data structures
BZ2_bzReadOpen prepare to read data from FILE*
BZ2_bzRead read data into buffer
BZ2_bzReadClose close FILE
BZ2_bzWriteOpen open FILE for writing
BZ2_bzWrite write compressed data to FILE
BZ2_bzWriteClose close FILE
BZ2_bzBuffToBuffCompress one-shot buffer compression
BZ2_bzBuffToBuffDecompress one-shot buffer decompression

The stream for libbz2 is shown below:

struct {
char *next_in; /* data to be compressed */
unsigned int avail_in; /* length of input data remaining */
unsigned int total_in_lo32;/* statistics */

5 unsigned int total_in_hi32;
char *next_out; /* output buffer */
unsigned int avail_out; /* length of output buffer remaining */
unsigned int total_out_lo32;/* statistics */
unsigned int total_out_hi32;

10 void *state; /* internal state */
void *(*bzalloc)(void *,int,int); /* memory allocator function */

8.3 LZMA and XZ Utils 163

void (*bzfree)(void *,void *); /* deallocator function */
void *opaque; /* pointer given to allocator*/

} bz_stream;

8.2.1 Integration of bzip2 in Python

In addition to using the library from your own C/C++ programs it is also possible to
use bzip2 from Python. Consider the example shown below:

import bz2
def ParseFile(fileName):

print "Reading file %s" %fileName
if poly_file_name.find(’.bz2’) != -1:

5 file = bz2.BZ2File(fileName, ’rb’)
lines = file.readlines()
file.close()

else:
f = open(fileName, ’r’)

10 lines = f.readlines()
f.close()

for l in lines:
computation on contents

8.3 LZMA and XZ Utils

The Lempel-Ziv-Markov chain algorithm is implemented in the LZMA toolchain
and library. The underlying library for the XZ tools is the liblzma library. We
describe the compression and decompression functions of this library in this section.

The API for decoding LZMA compressed data is shown below:

SRes LzmaDecode(Byte *dest,
SizeT *destLen,
const Byte *src,
SizeT *srcLen,

5 const Byte *propData,
unsigned propSize,
ELzmaFinishMode finishMode,
ELzmaStatus *status,
ISzAlloc *alloc);

The memory allocators can be set to use the system wide malloc and free as:

void *SzAlloc(void *p, size_t size)
{ p = p; return malloc(size); }

void SzFree(void *p, void *address)
{ p = p; free(address); }

5 ISzAlloc alloc = { SzAlloc, SzFree };

Compressing data using LZMA is shown below:

CLzmaEncHandle enc;
enc = LzmaEnc_Create(&g_Alloc);

164 8 Compression Engines

if (enc == 0) return SZ_ERROR_MEM;
LzmaEncProps_Init(&props);

5 res = LzmaEnc_SetProps(enc, &props);
HRes LzmaEncode(Byte *dest,

SizeT *destLen,
const Byte *src,
SizeT srcLen,

10 CLzmaEncProps *props,
Byte *propsEncoded,
SizeT *propsSize,
int writeEndMark,
ICompressProgress *progress,

15 ISzAlloc *alloc,
ISzAlloc *allocBig);

The distinction between the allocators is done for systems which support large page
size tables for efficient allocation of large memory buffers.

8.3.1 XZ Utils

An implementation of LZMA in the XZ utilities is available on GNU/Linux systems.
The compression engines are also available with the GNU tar program using the
-J command-line option (see Section 11 for a description of the command-line
options). We experimented with compressing a file of 13 Mb using gzip, bzip2
and xz, the results are shown in Table 8.4. It shows that XZ utilities can achieve
significantly better compression, albeit at a higher runtime. As shown in Table 8.4
XZ (with the -e, extreme option) achieves almost 50% compression, while gzip
and bzip2 achieve (only) 0.84.

Table 8.4 Compression ratio of various tools

Tool name Ratio Comp. time (s) Decomp. time (s)
gzip -9 0.84 02.59 0.46
bzip2 -9 0.84 11.99 3.96
xz -e 0.55 24.20 2.18

8.4 Conclusion

In this chapter we presented libraries and APIs for lossless compression. Using short
examples, we presented the use of the ZLIB and BZIP2 libraries. Examples were
presented using C/C++ API as well as Python modules. The use of LZMA and XZ
Utilities was also discussed.

Chapter 9
Application Development Libraries

Abstract In this chapter we present several useful libraries and API which we
could not categorize with any of the other libraries we presented in this part of the
book. We first present the RPC (remote procedure call) library for remote invoca-
tion of predefined functions. We present a real-life example motivated from physical
chemistry to use RPC for optimizing runtime using remote servers. In any discus-
sion of cluster computing, data endianess issues always crop up, and a part of the
RPC library is XDR (extensible data representation). We continue to present APIs
for checksum, and hash signature computation to check and prevent transmission
errors. An alternative to XDR is to use XML files, and library APIs for XML pro-
cessing is presented in this chapter. For persistent storage we show examples of
using Berkeley DB, and present examples using C++. A network based caching li-
brary (Memcache) is presented with examples in C++ and Python. To seamlessly
use Python and other interactive languages, SWIG (the Simplified Wrapper Inter-
face Generator) is presented.

Contents
9.1 RPC (remote procedure call) library . 165
9.2 Checksum computation . 173
9.3 OpenSSL . 177
9.4 XML Processing . 178
9.5 Berkeley DB . 181
9.6 Memcached Library . 185
9.7 SWIG interface generator . 186
9.8 Conclusion . 189

9.1 RPC (remote procedure call) library

The remote procedure call (RPC) library provides an API and abstraction to invoke
pre-defined and pre-registered functions on remote servers. The library supports

S. Koranne, Handbook of Open Source Tools, 165
DOI 10.1007/978-1-4419-7719-9_9, © Springer Science+Business Media, LLC 2011

166 9 Application Development Libraries

messaging, data-representation, client and server programming. There is a RPC pro-
tocol compiler rpcgen which converts a high level description of a function in RPC
Language (a language similar to C), and generates C language code for client and
server. The server needs to be registered with the rpcbind RPC server running on
the server, by adding its service number into the /etc/rpc file.

We present a small example inspired from computational biology. Given a
molecule with N atoms, and spectroscopic data containing M distances between
the atoms, the goal of the PDF Solver is to assign x,y,z coordinates to the atoms
which best matches the distances. We use a greedy minimization algorithm to solve
for x,y, we assume z is fixed. The molecule data type is a simple collection of x,y,d
vector of double. An example RPC Language file is shown below in Listing 9.1.

/*
* RPC file for molecule computation

* Sandeep Koranne, (C) 2010

*/
5 const MAX_MOLECULE_SIZE = 64;

const MAX_NUM_DISTANCES = 4096;

struct molecule {
int N;

10 int M;
double coordinate_x< MAX_MOLECULE_SIZE >;
double coordinate_y< MAX_MOLECULE_SIZE >;
double distances< MAX_NUM_DISTANCES >;

};
15

typedef struct molecule* MPTR;

program MOLECULEPROG {
version MOLVERS {

20 MPTR SOLVEPDF(MPTR) = 1;
}
= 1;

} = 0x20000002;

Listing 9.1 RPC Language description of molecule

We can generate the client and server code by running rpcgen as follows:

$rpcgen molecule.x

This generates the files:

1. molecule clnt.c: the client functionality of pdfsolver,
2. molecule svc.c: the server functionality of pdfsolver,
3. molecule xdr.c: the XDR representation of molecule. See Section 9.1.1 for more

details on XDR library.

In addition to these code files, we need to write additional code to actually per-
form the computation, and to call the client code which connects to the service
running on the server. These are:

/* Molecular PDF Processing using RPC

* (C) Sandeep Koranne, 2010
*/

#include <stdlib.h>
5 #include "molecule.h"

9.1 RPC (remote procedure call) library 167

#include "molecule_ds.h"

extern MPTR * solvepdf_1(MPTR *, CLIENT *);
extern MPTR * solvepdf_1_svc(MPTR *, struct svc_req *);

10
static double ComputeDistanceEnergy(MPTR M) {
int i;
double energy = 0.0;
for(i=0; i < M->M; ++i) {

15 energy += M->distances.distances_val[i];
}
return energy;

}

20 static double ComputePointEnergy(int N,
const double* X,
const double* Y)

{
int i,j;

25 double energy = 0.0;
for(i=0; i < N; ++i)

for(j=0; j < N; ++j) {
double dx = X[i] - X[j];
double dy = Y[i] - Y[j];

30 if((X[i] == 100.0) || (X[j] == 100.0)) dx += 10000;
if((Y[i] == 100.0) || (Y[j] == 100.0)) dy += 10000;
energy += (dx * dx) + (dy * dy);

}

35 return energy;
}

static double ComputeEnergy(MPTR M) {
40 int i;

double energy = 0.0;
const double *X = M->coordinate_x.coordinate_x_val;
const double *Y = M->coordinate_y.coordinate_y_val;
energy = ComputePointEnergy(M->N, X, Y);

45 return energy;
}

/*
* \function ProcessMoleculeForPDF

50 * \description memory has been allocated for output

*/
static void ProcessMoleculeForPDF(MPTR input, MPTR output) {
const static unsigned int LOOP_COUNT = 1000;
int i,j;

55 int N,count;
const double *iX = input->coordinate_x.coordinate_x_val;
const double *iY = input->coordinate_y.coordinate_y_val;
const double *iD = input->distances.distances_val;

60 double *oX = output->coordinate_x.coordinate_x_val;
double *oY = output->coordinate_y.coordinate_y_val;
double *oD = output->distances.distances_val;

double *X = malloc(input->N * sizeof(double));
65 double *Y = malloc(input->N * sizeof(double));

double d_energy = ComputeDistanceEnergy(input);
double energy, min_energy = 1e10;
N = input->N;

70 for(i=0; i < input->N; ++i) {
X[i] = oX[i] = iX[i];
Y[i] = oY[i] = iY[i];

168 9 Application Development Libraries

}
for(i=0; i < input->N; ++i) {

75 oD[i] = iD[i];
}
/* for every X,Y which is 0, we have to solve */
energy = ComputeEnergy(output) - d_energy;
for(i=0; i < LOOP_COUNT; ++i) {

80 double cur_energy = 0.0;
/* set unsolved to random solutions */
for(j=0; j < N; ++j) {

double prev_X;
if(iX[j] != 100.0) continue;

85 prev_X = X[j]; X[j] = drand48();
/* now compute new energy */
cur_energy = ComputePointEnergy(N, X, Y);
if(cur_energy < energy)

energy = cur_energy;
90 else

X[j] = prev_X;
}
/* Now do the Y loop */
for(j=0; j < N; ++j) {

95 double prev_Y;
if(iY[j] != 100.0) continue;
prev_Y = Y[j]; Y[j] = drand48();
/* now compute new energy */
cur_energy = ComputePointEnergy(N, X, Y);

100 if(cur_energy < energy)
energy = cur_energy;

else
Y[j] = prev_Y;

}
105 /* printf("\n E %d = %f ", i, energy); */

}
count=0;
for(i=0; i < N; ++i) {

oX[i] = X[i]; oY[i] = Y[i];
110 }

for(i=0; i < N; ++i)
for(j=0; j < N; ++j) {

double dx = oX[i] - oX[j];
double dy = oY[i] - oY[j];

115 oD[count++] = (dx * dx) + (dy * dy);
}

free(X);
free(Y);

}
120

MPTR* solvepdf_1(MPTR* input, CLIENT* client) {
static MPTR retval = NULL;
MPTR actual_input;
//if(retval) { DestroyMolecule(retval); retval = NULL; }

125 actual_input = *input;
retval = ConstructMolecule(actual_input->N, actual_input->M);
ProcessMoleculeForPDF(actual_input, retval);
return &retval;

}
130

MPTR* solvepdf_1_svc(MPTR* input, struct svc_req* req) {
CLIENT *client;
printf("\n Memory used = ");
system("cat /proc/self/statm");

135 printf("\n");
return(solvepdf_1(input, client));

}

9.1 RPC (remote procedure call) library 169

Listing 9.2 Molecule processing service

The client code has to be wrapped as:

/* \file rmolecule.c
\author Sandeep Koranne, (C) 2010
\description Remote molecule processing

*/
5 #include <stdio.h>

#include "molecule.h"
#include "molecule_ds.h"

int main(int argc, char *argv []) {
10

CLIENT *clnt;
MPTR *result;
MPTR input;
char *server, *mfile;

15 FILE *fp;
server = argv[1];
mfile = argv[2];
fp = fopen(mfile, "rt");

20 input = ReadMolecule(fp);
InitializeMolecule(input);
fclose(fp);

clnt = clnt_create(server, MOLECULEPROG,
25 MOLVERS, "udp");

if(clnt == NULL) {
clnt_pcreateerror(server);
return 1;

}
30 result = solvepdf_1(&input, clnt);

if(result == NULL) {
clnt_perror(clnt, server);
return 1;

}
35 PrintMolecule(input);

printf("\nMessage sent to server");
clnt_destroy(clnt);
/* now print the returned molecule */
printf("\n Returned molcule = \n");

40 PrintMolecule(*result);
printf("\n");
return 0;

}

Listing 9.3 Client for molecule processing service

We add the new service to /etc/rpc:

molecule_server 536870914

9.1.1 XDR : External Data Representation Library

XDR’s approach to standardizing data representations is canonical. For example
XDR defines a single byte order (big-endian) and uses the IEEE format for repre-
senting floating point numbers. Any program running on any machine can use XDR
to create portable data by translating its local representation to the XDR standard

170 9 Application Development Libraries

representations. The single standard completely de-couples programs that create or
send portable data from those that use or receive portable data. Consider the program
below:

/* \file rpc_writer.c
* \author Sandeep Koranne, (C) 2010

* \description Using XDR for serialization

*/
5

#include <stdio.h>
#include <rpc/types.h>
#include <rpc/xdr.h>

10 int main(int argc, char *argv[]) {
XDR xdrs;
long i;
xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
for(i = 0; i < 8; i++) {

15 if(!xdr_long(&xdrs, &i)) {
fprintf(stderr, "ERROR: xdr_long");
exit(1);

}
}

20 return(0);
}

Listing 9.4 XDR writer example

and

/* \file rpc_reader.c

* \author Sandeep Koranne, (C) 2010

* \description Using XDR for serialization
*/

5
#include <stdio.h>
#include <rpc/types.h>
#include <rpc/xdr.h>

10 int main(int argc, char *argv[]) {
XDR xdrs;
long i,j;
xdrstdio_create(&xdrs, stdin, XDR_DECODE);
for(i = 0; i < 8; i++) {

15 if(!xdr_long(&xdrs, &j)) {
fprintf(stderr, "ERROR: xdr_long");
exit(1);

} else {
printf("%d = %ld", i, j);

20 }
}
return(0);

}

Listing 9.5 XDR reader example

The major XDR primitives are shown in Table 9.1.
At this time it is instructive to inspect the XDR description generated by rpcgen

for a complex structure. Above in Section 9.1 we had discussed the RPC library with
the example of computational biology using the molecule structure. The generated
XDR is given below:

struct molecule {

9.1 RPC (remote procedure call) library 171

Table 9.1 XDR functions for writing primitives

Directive Description
xdr_bool Boolean
xdr_chars Char
xdr_u_chars Unsigned char
xdr_int Integer
xdr_u_int Unsigned integer
xdr_long Long
xdr_u_long Unsigned long
xdr_float Single precision floating point
xdr_double Double precision floating point
xdr_void void
xdr_string null terminated byte sequence
xdr_bytes byte sequence with length
xdr_arrays arrays of arbitrary elements
xdr_union Discriminated union
xdr_reference Pointers
xdrstdio_create initialize XDR stream
xdrmem_create create XDR mem stream
xdrrec_create create TCP/IP stream

int N;
int M;
struct {

5 u_int coordinate_x_len;
double *coordinate_x_val;

} coordinate_x;
struct {

u_int coordinate_y_len;
10 double *coordinate_y_val;

} coordinate_y;
struct {

u_int distances_len;
double *distances_val;

15 } distances;
};
typedef struct molecule molecule;

typedef molecule *MPTR;

Listing 9.6 Generated XDR for molecule.x

It can be seen that the arrays have been augmented with the length variable.
Another example with user defined XDR functions for writing structures is

shown below:

/* \file system_load.h

* \author Sandeep Koranne, (C) 2010

* \description Using XDR for serialization

*/
5 #ifndef _system_load_h

#define _system_load_h

172 9 Application Development Libraries

#include <rpc/types.h>
#include <rpc/xdr.h>

10
struct SystemLoad {
char* system_name;
float avg1, avg5, avg15;

};
15

extern bool_t SystemLoad_XDR(XDR *xdrs, struct SystemLoad* S);
#endif

Listing 9.7 XDR file for system load structure

/* XDR utility for own structure */
#include "system_load.h"

bool_t SystemLoad_XDR(XDR *xdrs, struct SystemLoad* S) {
5 return (xdr_string(xdrs, &S->system_name, 64) &&

xdr_float (xdrs, &S->avg1) &&
xdr_float (xdrs, &S->avg5) &&
xdr_float (xdrs, &S->avg15));

}

Listing 9.8 XDR file system load

/* \file rpc_info_writer.c

* \author Sandeep Koranne, (C) 2010

* \description Using XDR for serialization

*/
5

#include <stdio.h>
#include "system_load.h"

int main(int argc, char *argv[]) {
10 XDR xdrs;

struct SystemLoad S;
S.system_name = "celex";
S.avg1 = 1.38;
S.avg5 = 1.30;

15 S.avg15 = 0.78;
xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
SystemLoad_XDR(&xdrs, &S);
return(0);

}

Listing 9.9 Server RPC file for system load

/* \file rpc_info_reader.c

* \author Sandeep Koranne, (C) 2010

* \description Using XDR for serialization

*/
5

#include <stdio.h>
#include "system_load.h"

int main(int argc, char *argv[]) {
10 XDR xdrs;

struct SystemLoad S;
S.system_name = NULL;
xdrstdio_create(&xdrs, stdin, XDR_DECODE);
SystemLoad_XDR(&xdrs, &S);

15 printf("\n Name = %s : %f %f %f\n", S.system_name,
S.avg1, S.avg5, S.avg15);

9.2 Checksum computation 173

return(0);
}

Listing 9.10 Client RPC file for system load

$./rpc_info_writer | ./rpc_info_reader

Name = celex : 1.380000 1.300000 0.780000

When using xdr_string we have to initialize the memory pointed to by the struc-
ture, to NULL, or a valid memory location (which can atleast be of size MAXLEN).
If the memory is NULL, XDR will call malloc; this memory should be freed after-
wards. Another example of XDR, this time using it in conjunction with zlib is
given in Listing 8.1.

9.2 Checksum computation

Alongwith data transmission and storage, comes the possibility of data corruption.
Data can be corrupted due to hardware or software failures, and reliable commu-
nication channels thus always include a checksum with each packet of data. The
capability of the checksum depends on the expected rate of failure, system require-
ments on reliability, and performance. Cyclic redundancy check (CRC) is a common
checksum function and has been optimized for implementation in hardware. Boost
includes a CRC function, and we describe its use by an example as shown in List-
ing 9.11.

// \file crc_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description CRC example using Boost
#include <iostream> // for program IO

5 #include <fstream> // for data IO
#include <boost/crc.hpp> // actual CRC
#include <string> // for filename

int CalculateCRC32(std::ifstream& ifs) {
10 ifs.seekg(0, std::ios::beg); // seek to begining

boost::crc_32_type boost_crc;
unsigned long file_size = 0;
while(ifs) {

unsigned char uc = ifs.get();
15 boost_crc.process_byte(uc);

file_size++;
}
std::cout << "File checksum = " << boost_crc.checksum()

<< " processed " << file_size << " bytes.\n";
20 }

int main(int argc, char * argv[]) {
if(argc != 2) { std::cerr << "Usge: crc32 <filename>\n";

exit(1);
25 }

std::string fileName(argv[1]);
std::ifstream ifs(fileName.c_str());
if(!ifs) {

174 9 Application Development Libraries

std::cerr << "Unable to open file: " << fileName << " for reading.\n";
30 exit(1);

}
CalculateCRC32(ifs);
return 0;

}

Listing 9.11 Example of Boost CRC32 checksum

In addition to CRC32, boost provides the following checksum algorithms:

1. crc_16_type

2. crc_ccitt_type

3. crc_xmodem_type

4. crc_32_type

9.2.1 MD5

Simple CRC32 (as discussed above in Boost CRC) is prone to aliasing. Using 128-
bit MD5 (RFC 1321) can alleviate this concern to a great extent. Although the
GNU/Linux command md5sum can compute the MD5 checksum of a given file, we
can also use MD5 checksum on arbitrary frames of data (e.g., when devising an er-
ror correcting protocol, or disk file system). Using APR MD5 functionality we can
quickly integrate MD5 checksum into an application. See the small example listing
shown in Listing 9.12.

// \file md5example.cpp
// \author Sandeep Koranne (C) 2010
// \description Example of using MD5 checksum
#include <iostream> // for program IO

5 #include <iomanip> // for std::hex
#include <cstdio> // for C FILE*
#include <cstdlib> // for exit
#include <apr_general.h> // APR general
#include <apr_mmap.h> // APR mmap

10 #include <apr_md5.h> // MD5 computation

static const int MAX_NUMBER = APR_MD5_DIGESTSIZE;
static void ComputeMD5Checksum(const char *filename,

unsigned char digest[MAX_NUMBER]) {
15 apr_status_t retval;

apr_pool_t *pool;
apr_pool_create(&pool, NULL);
apr_mmap_t *mmap;
apr_finfo_t file_info;

20 apr_file_t *fp;
retval = apr_file_open(&fp, filename,

APR_READ|APR_BINARY,
APR_OS_DEFAULT, pool);

25 retval = apr_file_info_get(&file_info, APR_FINFO_SIZE, fp);
std::cout << "File size = " << file_info.size << std::endl;
// do the actual memory mapping
retval = apr_mmap_create(&mmap, fp, 0, file_info.size,

APR_MMAP_READ, pool);
30 if(retval != APR_SUCCESS) {

std::cerr << "APR mmap failed..\n";

9.2 Checksum computation 175

exit(1);
}
apr_file_close(fp); // file can be closed now

35 // now mmap->mm is a const char* which can be read
apr_md5_ctx_t md5context;
apr_md5_init(&md5context);
apr_md5(digest, mmap->mm, file_info.size);
apr_mmap_delete(mmap); // return back memory

40 apr_pool_destroy(pool);
}

int main(int argc, char *argv[]) {
45 // Step 1. initialize APR

if(argc != 2) {
std::cerr << "Usage: ./md5example <filename>\n";
exit(1);

}
50 const char *filename = argv[1];

apr_initialize();
unsigned char digest[MAX_NUMBER];
ComputeMD5Checksum(filename, digest);
std::cout << "MD5 digest for " << filename << " = \n";

55 for(int i=0; i < MAX_NUMBER; ++i)
std::cout << std::hex << (int)digest[i];

std::cout << std::endl;
apr_terminate();
return (0);

60 }

Listing 9.12 Example of computing MD5 checkum using APR

Compiling and running this program on the binary itself gives us:

$md5sum -b md5example.cpp
a7af280c4d7c627b97f080a98074ecf5 *md5example.cpp
$./md5example md5example
File size = 9723
MD5 digest for md5example =
a0cf97256ae47ba16df66eee1fe42c3

We first run the GNU/Linux program with the ‘-b’ option (for binary files), there-
after, we run our own program which uses mmap on the given file.

9.2.2 SHA1 checksum

Simple CRC32 (as discussed above in Boost CRC) is prone to aliasing. Using SHA1
(NIST Secure Hash Algorithm) can alleviate this concern to a great extent. Although
the GNU/Linux command sha1sum can compute the SHA1 checksum of a given file,
we can also use SHA1 checksum on arbitrary frames of data (e.g., when devising an
error correcting protocol, or disk file system). Using APR SHA1 functionality we
can quickly integrate SHA1 checksum into an application. See the small example
listing shown in Listing 9.13.

// \file sha1example.cpp

176 9 Application Development Libraries

// \author Sandeep Koranne (C) 2010
// \description Example of using MD5 checksum
#include <iostream> // for program IO

5 #include <iomanip> // for std::hex
#include <cstdio> // for C FILE*
#include <cstdlib> // for exit
#include <apr_general.h> // APR general
#include <apr_mmap.h> // APR mmap

10 #include <apr_sha1.h> // SHA1 computation

static const int MAX_NUMBER = APR_SHA1_DIGESTSIZE;
static void ComputeSHA1Checksum(const char *filename,

unsigned char digest[MAX_NUMBER]) {
15 apr_status_t retval;

apr_pool_t *pool;
apr_pool_create(&pool, NULL);
apr_mmap_t *mmap;
apr_finfo_t file_info;

20 apr_file_t *fp;
retval = apr_file_open(&fp, filename,

APR_READ|APR_BINARY,
APR_OS_DEFAULT, pool);

25 retval = apr_file_info_get(&file_info, APR_FINFO_SIZE, fp);
std::cout << "File size = " << file_info.size << std::endl;
// do the actual memory mapping
retval = apr_mmap_create(&mmap, fp, 0, file_info.size,

APR_MMAP_READ, pool);
30 if(retval != APR_SUCCESS) {

std::cerr << "APR mmap failed..\n";
exit(1);

}
apr_file_close(fp); // file can be closed now

35 // now mmap->mm is a const char* which can be read
apr_sha1_ctx_t sha1context;
apr_sha1_init(&sha1context);
apr_sha1_update_binary(&sha1context, (unsigned char*)(mmap->mm),

file_info.size);
40 apr_sha1_final(digest, &sha1context);

apr_mmap_delete(mmap); // return back memory
apr_pool_destroy(pool);

}

45
int main(int argc, char *argv[]) {
// Step 1. initialize APR
if(argc != 2) {

std::cerr << "Usage: ./sha1example <filename>\n";
50 exit(1);

}
const char *filename = argv[1];
apr_initialize();
unsigned char digest[MAX_NUMBER];

55 ComputeSHA1Checksum(filename, digest);
std::cout << "SHA1 digest for " << filename << " = \n";
for(int i=0; i < MAX_NUMBER; ++i)

std::cout << std::hex << (int)digest[i];
std::cout << std::endl;

60 apr_terminate();
return (0);

}

Listing 9.13 Example of computing SHA1 checkum using APR

Compiling and running this program on the binary itself gives us:

$ sha1sum sha1example

9.3 OpenSSL 177

9ca4b2a1fb03d3038c22e313a1cebb8a39069400 sha1example
./sha1example sha1example
File size = 9872
SHA1 digest for sha1example =
9ca4b2a1fb3d338c22e313a1cebb8a396940

9.3 OpenSSL

The OpenSSL Project is an open-source effort to develop a robust toolkit imple-
menting the Secure Socket Layer (SSL v2/v3) and Transport Layer Security (TLS
v1) as well as a general purpose cryptographic library. The openssl command-
line tool can be used for:

1. Creation and management of public/private keys,
2. Public key cryptography,
3. Creation of X.509 certificate,
4. Calculation of message digests,
5. Encryption and decryption with Ciphers.

openssl command-line tool is a general purpose utility which can invoke the
processing functions listed above. For example, the MD5 digest can be computed
using:

$openssl version
OpenSSL 1.0.0-fips-beta4 10 Nov 2009
$openssl md5 math.lisp
MD5(/home/skoranne/math.lisp) =

d82e9c3808c986bce26df25640c80886

Some of the other tools in OpenSSL can be listed using openssl -h

Standard commands
asn1parse ca ciphers cms
crl crl2pkcs7 dgst dh
dhparam dsa dsaparam enc
engine errstr gendh gendsa
genpkey genrsa nseq ocsp
passwd pkcs12 pkcs7 pkcs8
pkey pkeyparam pkeyutl prime
rand req rsa rsautl
s_client s_server s_time sess_id
smime speed spkac ts
verify version x509

Message Digest commands
md2 md4 md5 rmd160
sha sha1

Cipher commands

178 9 Application Development Libraries

aes-128-cbc aes-128-ecb aes-192-cbc aes-192-ecb
aes-256-cbc aes-256-ecb base64 bf
bf-cbc bf-cfb bf-ecb bf-ofb
camellia camellia-256 cast cast-cbc
cast5-cbc cast5-cfb cast5-ecb cast5-ofb
des des-cbc des-cfb des-ecb
des-ede des-ede-cbc des-ede-cfb des-ede-ofb
des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb
des-ofb des3 desx rc2
rc2-40-cbc rc2-64-cbc rc2-cbc rc2-cfb
rc2-ecb rc2-ofb rc4 rc4-40
seed seed-cbc seed-cfb seed-ecb
seed-ofb zlib

9.4 XML Processing

XML (Extended Markup Language) is a standard for representing markup lan-
guages. SVG files, configuration files for GNOME, and many other systems now
use XML to communicate and store data. For application programs to read and
write XML files, they can use software API. Some libraries for XML handling are:

1. SAX: SAX (Simple API for XML) is a standard interface for event-based XML
parsing,

2. libXML: a SAX (Simple API for XML) like parser,
3. Expat: another event-based parsing framework,
4. APR XML API: Apache Portable Runtime (APR) has XML processing capabil-

ities,
5. Boost XML: Boost C++ API also has XML handling.

Consider an example XML file:

<settings>
<profiles>
<profile>
<id>JPP</id>
<repositories>
<repository>
<id>internal</id>
<layout>jpp</layout>
<url>file:///builddir/build/BUILD/\

jetty-6.1.20/.m2/repository</url>
</repository>
<repository>
<id>external</id>
<layout>jpp</layout>
<url>file:///builddir/build/BUILD/\

jetty-6.1.20/external_repo</url>
...

9.4 XML Processing 179

9.4.1 Expat : XML processing

An example of using Expat for XML parsing is shown in Listing 9.14.

static void XMLDeclaration(void *ud, // user data
const XML_Char *version,
const XML_Char *encoding,
int standalone) {

5 std::cout << "XML Declaration : Version = " << version << "\n"
<< "Encoding = " << encoding << "\n";

}

10 static void ParseElementDecl(void *ud,
const XML_Char *name,
XML_Content *model) {

std::cout << "Read ElementDecl : " << name << "\n";
}

15
static void EntityDecl(void *ud, // user data

const XML_Char *name,
int is_parameter,
const XML_Char *value,

20 int value_length,
const XML_Char *base,
const XML_Char *systemId,
const XML_Char *publicId,
const XML_Char *notationName) {

25 std::cout << "Entity : " << name << "\n";
}

static void StartDocHandler(void *ud,
const XML_Char *doctypeName,

30 const XML_Char *sysid,
const XML_Char *pubid,
int has_internal_subset) {

std::cout << "Doc type name = " << doctypeName << "\n";
}

35
static void DefaultHandler(void *ud,

const XML_Char *s,
int len) {

std::cout << "Default : " << s << "\n";
40 }

static void ProcessXMLStream(const char* data, size_t len) {
XML_Parser parser = XML_ParserCreate(NULL);

45 XML_SetElementDeclHandler(parser, ParseElementDecl);
XML_SetXmlDeclHandler(parser, XMLDeclaration);
XML_SetEntityDeclHandler(parser, EntityDecl);
XML_SetStartDoctypeDeclHandler(parser, StartDocHandler);
XML_SetDefaultHandler(parser, DefaultHandler);

50 XML_Parse(parser, data, len, 1); // is final
}

Listing 9.14 Example of using Expat for XML parsing

180 9 Application Development Libraries

9.4.2 libXML : XML processing library

Another API for XML processing is the libxml library, which can be configured
to read/write XML files using event-processing, or data-driven mode. An example
of the data-driven mode is shown in Listing 9.15.

// \file libxml_example.cpp
// \author Sandeep Koranne (C) 2010
// \description XML parsing using libxml
#include <cstdio> // for FILE

5 #include <iostream> // for program IO
#include <libxml/parser.h> // libxml

static void ProcessFile(const char *filename) {
xmlDocPtr doc;

10 xmlNodePtr cur;
doc = xmlParseFile(filename);
if(doc == NULL) {

std::cerr << "Unable to parse XML file : " << filename << "\n";
exit(1);

15 }
cur = xmlDocGetRootElement(doc);
std::cout << "Root = " << cur->name << "\n";
while(cur) {

std::cout << cur->name << "\n";
20 xmlNode *children = cur->children;

while(children) {
std::cout << "\t Child = " << children->name << "\n";
children = children->next;

}
25 cur = cur->next;

}
xmlFreeDoc(doc);

}

30 int main(int argc, char *argv []) {
if(argc != 2) {

std::cerr << "Usage: ./libxml_example <file>.xml...\n";
exit(1);

}
35 ProcessFile(argv[1]);

std::cout << std::endl;
return (0);

}

Listing 9.15 Example of using libxml for XML processing

The code in Listing 9.15 should be contrasted with Listing 9.14; in Listing 9.14 we
defined callbacks which the API called for us on specific events during the parsing
of the XML file. In Listing 9.15 we explore the XML data-structure tree using our
own control loops. Compiling the code in Listing 9.15 and running it on the example
XML file shown above gives:

Root = settings
settings
Child = text
Child = profiles
Child = text
Child = activeProfiles

9.5 Berkeley DB 181

Child = text
.....

XML handling is also present in other languages such as Perl and Python, which
often provide bindings to one or more of the above libraries, thus, the syntax and
method of using XML libraries is as described above.

9.5 Berkeley DB

Berkeley DB is an open-source embedded database library that provides scalable,
high-performance, transaction protected data management services to applications.
Berkeley DB provides a simple API for data-access and management. Bindings for
Berkeley DB are provided for C, C++, Perl, Java, Tcl, Python, Lisp and many other
languages. Berkeley DB runs in the same memory space as the application, and as
such no inter-process or network communication is required to use Berkeley DB.

Berkeley DB supports many different storage structures including: (i) hash tables,
(ii) BTrees, (iii) simple record-number based storage,dow and (iv) persistent queues.
Programmers can create tables using these structure. Hash tables are best suited for
large applications with a need for predictable search time, while BTrees are better
for range-based searches.

Berkeley DB also provides data management services such as concurrency, trans-
actions and recovery. Records in Berkeley DB are represented as (key,value) pair,
and it provides functions for:

1. Insertion: insert a record in a table,
2. Search: find a record in a table,
3. Deletion: delete a record from a table,
4. Update: update a record in a table.

Berkeley DB is not a relational database and does not support SQL. It is possible to
build a relational database using the transactional library and data storage facilities
of Berkeley DB (infact, MySQL used Berkeley DB for its storage).For SQL oriented
databases refer to Chapter 20 for a discussion on open-source relational databases.
Keys and values can be arbitrary bit strings (fixed-length or variable length, depend-
ing on the application).

9.5.1 DB open function

The DB->open() function opens the database for writing as well as reading. The form
of this function is as follows:

#include <db.h>
int DB->open(DB *db, DB_TXN *txnid, const char *file,

const char *database, DBTYPE type,

182 9 Application Development Libraries

u_int32_t flags, int mode);

The DB is the handle to the database, and txnid is the transaction id if trans-
actions are used, else NULL. The file name of the database is passed in file.
The database argument is optional; it allows for the application to have several
databases in the same logical file. If there is a single database, this argument
can be left NULL. The DBTYPE type specifies the type of the database, whether
DB BTREE, DB HASH, DB QUEUE, DB RECNO, or DB UNKNOWN. The
flags specify whether the database should be created (DB CREATE), or opened
for read-only access (DB RDONLY), or whether the database should be multi-
versioned (DB MULTIVERSION). The mode parameter is used to set the file per-
mission on the created file.

A database handle is created using db_create and subsequently a database can
be opened using DB->open() function. When the processing is complete the database
should be closed using the DB->close() function. Consider an example application
written using the Berkeley DB as shown in Listing 9.16.

// \file bdb_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using Berkeley DB

5 #include <cassert> // for assertion checking
#include <cstdio> // C stdio
#include <cstdlib> // C stdlib for exit, atoi
#include <cstring> // memset
#include <iostream> // program IO

10 #include <string> // std::string
#include <sys/types.h> // C standard types
#include <db.h> // Berkeley db

15 int main(int argc, char *argv[]) {
if(argc != 3) {

std::cerr << "Usage: bdb_example <db-name> <op-code>\n";
exit(1);

}
20 std::string dbName(argv[1]);

int db_operation = atoi(argv[2]);
DB *dbp = NULL;
int rc = db_create(&dbp, NULL, 0);
if(rc != 0) {

25 std::cerr << "db_create " << db_strerror(rc);
std::exit(1);

}

if(db_operation == 1) { // database create
30 rc = dbp->open(dbp, NULL, dbName.c_str(),

NULL, DB_BTREE, DB_CREATE, 0664);
if(rc != 0) {

perror("Berkeley db open error");
exit(1);

35 }
// successfully opened the db
DBT key, data;
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

40 key.data = (void*)"subject_A";
key.size = sizeof("subject_A");
data.data = (void*)"Math";
data.size = sizeof("Math");

9.5 Berkeley DB 183

rc = dbp->put(dbp, NULL, &key, &data, 0);
45 switch(rc) {

case 0 : { break; /* key added */ }
case DB_KEYEXIST:{

std::cerr << "already stored "<<key.data<< "\n"; break;
}

50 }
key.data = (void*) "subject_B";
data.data = (void*) "Physics";
data.size = sizeof("Physics");
rc = dbp->put(dbp, NULL, &key, &data, 0);

55 dbp->close(dbp, 0);
} else if(db_operation == 2) { // database open and print

rc = dbp->open(dbp, NULL, dbName.c_str(),
NULL, DB_BTREE, DB_RDONLY, 0664);

if(rc != 0) {
60 perror("Berkeley db open error");

exit(1);
}
DBT key, data;
memset(&key, 0, sizeof(DBT));

65 memset(&data, 0, sizeof(DBT));
key.data = (void*)"subject_A";
key.size = sizeof("subject_A");
rc = dbp->get(dbp, NULL, &key, &data, 0);
if(rc == 0) {

70 std::cout << (char*)key.data << "\t" << (char*)data.data << "\n";
} else {

perror(" db->get error...\n");
exit(1);

}
75 dbp->close(dbp, 0);

} else {
std::cerr << "Unknown db-operation, " << db_operation << std::endl;

}

80 std::cout << "Example of Berkeley db\n";

return (0);
}

Listing 9.16 Example of using Berkeley DB

The functions DB->put() and DB->get() are described below:

#include <db.h>
int
DB->put(DB *db, DB_TXN *txnid, DBT *key, DBT *data,

u_int32_t flags);
5 int

DB->get(DB *db, DB_TXN *txnid, DBT *key, DBT *data,
u_int32_t flags);

The DB->put() function stores key/data value pairs into the database. It can either
replace an existing key/value pair, or add duplicate (if allowed).

9.5.2 Other Berkeley DB functions

In addition to these above functions, Berkeley DB has a number of useful function
as listed in Table 9.2.

184 9 Application Development Libraries

Table 9.2 Berkeley DB functions

Database functions Description
DB->compact() compact a database
DB->del() delete items from database
DB->err() retrieve error message
DB->exists() return if an item exists in the database
DB->fd() return underlying file descriptor
DB->get() get key/value pair (see above)
DB->get_byteswapped() check if db is in host order
DB->get_dbname() return file and db name
DB->get_type() return database type
DB->join() perform db join on cursors
DB->key_range() return estimate on key location
DB->open() open database (see above)
DB->put() put key/value pair in db (see above)
DB->remove() remove a database
DB->rename() rename a database
DB->stat() return database statistics
DB->sync() flush database to disk
DB->verify() verify database integrity
DB->cursor() create a database cursor
BTree / Recno config Description
DB->set_bt_compare() set BTree comparison function
DB->set_bt_compress() set BTree compression function

Berkeley DB also has a simple Python interface, an example of which is shown
in Listing 9.17.

#!/usr/bin/python
#example file for using Berkeley DB with Python
import bsddb
db = bsddb.btopen(’example.db’, ’c’)

5 print db.keys()
for k,v in db.iteritems():

print k,v

Listing 9.17 Using Berkeley DB with Python

Running the C++ binary, followed by the Python program gives:

./bdb_example example.db 1
Example of Berkeley db
[skoranne@celex BDB]$ python bsdb.py
[’subject_A\x00’, ’subject_B\x00’]
subject_A Math
subject_B Physics

Berkeley DB has a number of other features such as cursors and database join
operations which can be used by the application software, but even by the above

9.6 Memcached Library 185

functions we can see that Berkeley DB provides an elegant and effective data storage
mechanism. It is thus no surprise that a number of open-source applications (such
as Subversion and MySQL) use Berkeley DB for their data storage and database
management needs.

9.6 Memcached Library

Memcached is a high-performance distributed memory object caching system. It is
designed to reduce database load in web applications and speed up dynamic web
content generation. libmemcached is a client library for the memcached protocol.
Memcache implements an in-memory key-value store for small chunks of arbitrary
data. This data can be the result of applications running on the server, and the re-
sults are cached, so that subsequent calls to the same procedure by any application
running on the server can simply return the pre-computed result, thus increasing
performance.

Memcached comprises of the following components:

1. Server software: stores arbitrary key/value pairs in an internal hash table,
2. Server algorithms: for cache management and purging,
3. Client software: given a list of memcached servers,
4. Client hashing algorithm: chooses server based on key, for load balancing.

Running memcached on a server is a simple matter of invoking the memcached binary.
The command accepts a number of command line options:

-p : port number
-s : UNIX socket path (disables network support)
-m : maximum memory (default is 64 MB)
-d : run memcache as a daemon
-M : disable automatic removal of objects from cache
-t : specify number of threads (default 4)

The status of a running memcached server can be checked using the nc tool. By
sending the message “stats settings” to the specified port of the memcached server we
can query its disposition, as shown below:

$echo "stats settings" | nc localhost 11211
STAT maxbytes 67108864
STAT maxconns 1024
STAT tcpport 11211
STAT udpport 11211
STAT inter NULL
STAT verbosity 0
STAT oldest 0
STAT evictions on
STAT domain_socket NULL
STAT umask 700
STAT growth_factor 1.25

186 9 Application Development Libraries

STAT chunk_size 48
STAT num_threads 4
STAT stat_key_prefix :
STAT detail_enabled no
STAT reqs_per_event 20
STAT cas_enabled yes
STAT tcp_backlog 1024
STAT binding_protocol auto-negotiate
STAT auth_enabled_sasl no
STAT item_size_max 1048576
END

To use the memcached server as a cache for key/value pair, the client software
must implement the memcached protocol. The protocol specifies a key, flag value, an
expiration time, and arbitrary data. The memcached protocol can be implemented in
the client, an example with Python client is shown in Listing 9.18.

#!/usr/bin/python
example of using memcached server
import pylibmc
mc = pylibmc.Client(["localhost"], binary = True)

5 mc.behaviors = {"tcp_nodelay" : True }

mc.set("Subject_A", "Math")
mc.set("Subject_B", "Physics")
mc.set("Subject_C", "Chemistry")

10
mc.get("Subject_A")

Listing 9.18 Example of memcached protocol in Python

memcached can help in improving the performance of an application when the appli-
cation has the characteristics of being compute bound in calculating results which
have also been previously computed at some point in the past. The cache replace-
ment logic, as well as the distributed aspects of the data management can be handled
by memcached.

9.7 SWIG interface generator

Simplified Wrapper and Interface Generator (SWIG) is an open source tool to gen-
erate bindings for programs written in C/C++ to other languages (usually scripting
languages) such as Python, Tcl, Perl, and Lua.

Using SWIG is deliberately simple; by adding a small number of directives the
C/C++ header file a complete module of code can be converted into appropriate
form by SWIG. The tool generates source code which enables the calling of the
C/C++ code in the target language. SWIG has enabled the conversion of many utility
libraries written in C/C++ for use in Lisp (for example).

Consider the example of generating bindings for Python as shown below:

int factorial(int n) {
if (n < 2) return 1;

9.7 SWIG interface generator 187

else return n * factorial(n-1);
}

Listing 9.19 Example of Python binding generation

We write a SWIG wrapper factorial.i as:

/* SWIG file for math */
%module math
%{
#define SWIG_FILE_WITH_INIT

5 #include "factorial.h"
%}
%include "factorial.h"

Listing 9.20 SWIG interface file for Python binding

The we run SWIG as:

$swig -python factorial.i
$gcc -O2 -c factorial.c
$gcc -O2 -c -I/usr/include/python2.6 factorial_wrap.c
$gcc -shared factorial.o factorial_wrap.o -o _math.so
$python
Python 2.6.2 (r262:71600, Aug 21 2009, 12:22:21)
[GCC 4.4.1 20090818 (Red Hat 4.4.1-6)] on linux2
Type "help", "copyright", "credits" ...
>>> import math
>>> math.factorial(10)
3628800

A more detailed example using C++ is shown below:

#ifndef _layer_db_h_
#define _layer_db_h_
struct Box {
int x1,y1,x2,y2;

5 };

struct LayeredBox {
int layer;
int n;

10 Box *D;
};

LayeredBox ReadData(const char*);
void PrintLayerData(const LayeredBox& B);

15 #endif

Listing 9.21 SWIG Python integration with C++ header file

// simple db format library
#include <stdio.h>
#include <stdlib.h>

5 #include "db.h"

LayeredBox ReadData(const char* fileName) {
int i;

188 9 Application Development Libraries

LayeredBox retval;
10 FILE *fp = fopen(fileName, "rb");

if(!fp) exit(1);
fscanf(fp, "%d %d", &retval.layer, &retval.n);
retval.D = (Box*) malloc(retval.n * sizeof(Box));
for(i=0; i < retval.n; ++i) {

15 fscanf(fp, "%d %d %d %d",
&retval.D[i].x1, &retval.D[i].y1,
&retval.D[i].x2, &retval.D[i].y2);

}
return retval;

20 }

void PrintLayerData(const LayeredBox& B) {
fprintf(stdout, "Layer = %d", B.layer);
for(int i=0; i < B.n; ++i) {

25 fprintf(stdout, "\n %d %d %d %d",
B.D[i].x1, B.D[i].y1,
B.D[i].x2, B.D[i].y2);

}
}

Listing 9.22 SWIG Python integration with C++ file

/* SWIG file for math */
%module layerdb
%{
#define SWIG_FILE_WITH_INIT

5 #include "db.h"
%}
%include "db.h"

Listing 9.23 SWIG interface file for Python binding

$swig -python -c++ db.i
$g++ -shared db.o db_wrap.o -o _layerdb.so
$python
Python 2.6.2 (r262:71600, Aug 21 2009, 12:22:21)
[GCC 4.4.1 20090818 (Red Hat 4.4.1-6)] on linux2
Type "help", "copyright", "credits" ...
>>> import layerdb
>>> D = layerdb.ReadData("a.data")
>>> layerdb.PrintLayerData(D)
Layer = 46
0 0 10 10
20 10 30 20
5 5 10 5>>>

As the above example shows, SWIG and Python can maintain the object structure
of complex C++ classes and structure, and pass them to and from functions.

9.8 Conclusion 189

9.8 Conclusion

In this chapter we have presented application development libraries which aid in the
development of remote procedure call enabled applications. The libraries presented
included RPC (remote procedure call), XDR (extensible data representation), check-
sum, SHA1, MD5, OpenSSL. The use of XML files for data representation was pre-
sented with examples using C++. Persistent storage of data using BerkeleyDB, and
its use in C++ and Python code, was also discussed. Lastly, we presented the Sim-
plified Wrapper Interface Generator (SWIG) tool which can automate the wrapping
of C and C++ APIs for use in Python, Scheme, and other interactive languages.

Chapter 10
Hierarchical Data Format 5 : HDF5

Abstract In this chapter we introduce the Hierarchical Data Format 5 (HDF5) spec-
ification. We present a number of examples which use the HDF5 API for reading
and writing HDF files. We present C/C++ API examples of the API including exam-
ples of writing, reading compound types in HDF5. For large scientific data, HDF5 is
representative of the APIs which are used in CDF and other data formats containing
simulation or experimentally collected data.

Contents
10.1 HDF5 files . 191
10.2 Example of HDF5 API . 193

Scientific datasets can be enormously large in size (comprising of many terabytes
of data). It is thus essential that large datasets are transported and accessed in an
efficient and standardized manner (otherwise multiple tools will have to reinvent
the wheel of doing performance optimized IO on large datasets). Since scientific
datasets also have a lot of structure to them, efficient storage policies can be adopted.

HDF5 is a hierarchical data format specification and supporting library imple-
mentation. HDF version 5 addresses some of the limitations of the older HDF for-
mats, such as (i) 2 Gb file size restriction, (ii) cap on maximum number of objects
per file, and (iii) library source of the previous HDF was old and outdated. HDF5
also includes the following improvements to the previous version: (i) new file format
(which removes the restrictions on file size), (ii) simpler, more comprehensive data
model (which incidentally has only two basic structures: a multi-dimensional array
of record structure and a grouping structure, and (iii) simpler library with improved
support of parallel I/O and threading.

10.1 HDF5 files

HDF5 are organized in a hierarchical structure around two basic objects: (i) groups
and (ii) datasets. Datasets contain the actual multi-dimensional data elements (along-

S. Koranne, Handbook of Open Source Tools, 191
DOI 10.1007/978-1-4419-7719-9_10, © Springer Science+Business Media, LLC 2011

192 10 Hierarchical Data Format 5 : HDF5

with supporting metadata), while groups provide the data with organizational skele-
ton; a group contains instances of other groups or datasets (alongwith support-
ing metadata). The metadata is actually data about the data. In addition to meta-
data, groups and datasets may have an associative attribute list. Attributes are user-
defined HDF5 structures containing extra information about the HDF5 object.

HDF5 groups and group members are deliberately organized in a manner anal-
ogous to the UNIX file system hierarchy, with / representing the root group, and
/foo denoting a group foo which is a member of the root group. An HDF5 group
comprises of: (i) group header (consisting of group name and list of attributes), and
(ii) group symbol table (which is a list of the HDF5 objects which belong to the
group).

An HDF5 dataset comprises of: (i) dataset header, and (ii) data array. The header
contains information needed to interpret the array; it contains the name of the
object (header name), its dimensionality (header dataspace), number-type (header
datatype), and disk storage information (header storage layout). The name of the
object is an ASCII string.

The dimensionality of the dataset is stored in the dataspace in the header. The di-
mensions can be static or unlimited (extensible). Properties of the dataspace consist
of its rank (number of dimensions) of the data array, actual sizes of the dimen-
sions, and the maximum size of the dimensions. Importantly, a dataspace can also
describe portions of the dataset, allowing input-output operations on a hyperslab of
the dataset. Selection of such a region is supported in HDF5 using the dataspace
interface (H5S). The region(s) can be (i) contiguous, (ii) non-contiguous hyperslab,
(iii) union of hyperslabs, and (iv) list of independent points.

The HDF5 supported data-types are (i) integer, (ii) floating point (IEEE 32-
bit and 64-bit) in both endian formats, (iii) references and (iv) strings. Symboli-
cally the data-types can be referenced using the API enumerations, e.g., for int

the corresponding HDF5 data-type is H5T_NATIVE_INT, similarly for long double,
H5T_NATIVE_LDOUBLE. A C language struct can be represented as an HDF5 compound
data-type.

The storage of the HDF5 data on disk is possible in a number of ways, with
contiguous storage being the default. In this default mode, there is a one-to-one cor-
respondence between data items in memory and disk. The other types of storage are:
(ii) compact (useful when data is small and can be stored alongwith the header), and
(iii) chunked (data is divided into equal sized chunks, which are stored separately).
Chunked data increases performance, especially when accessing subsets of datasets.
The HDF5 appears to the user as a directed graph whose nodes are HDF5 objects
such as: (i) groups, (ii) datasets, (iii) datatypes and (iv) dataspaces. At the lowest
level, an HDF5 file is comprised of:

1. A super block,
2. B-tree nodes: containing either symbol, nodes or raw data chunks,
3. Object headers:
4. Local heaps:
5. Free space.

10.2 Example of HDF5 API 193

Although the APIs provide opaque access to the underlying data, it is useful to
understand how the underlying data is stored on disk file for improving efficiency.
As an example, a HDF5 group is an object header in the HDF5 file. This object
header contains a message that points to a local heap and to a B-tree node pointing
to symbol nodes.

10.1.1 HDF5 API Naming Conventions

The naming convention of the HDF5 API are given below:

1. H5F: file-level access, e.g., H5Fopen,
2. H5G: group functions, e.g., H5Gset,
3. H5T: datatype functions, e.g., H5Tcopy,
4. H5S: dataspace functions, e.g., H5Screate_simple,
5. H5D: dataset functions, e.g., H5Dread,
6. H5P: property list functions, e.g., H5Pset_chunk,
7. H5A: attribute access, e.g., H5Aget_name,
8. H5Z: compression registration, e.g., H5Zregister,
9. H5E: error handling routine, e.g., H5Eprint,

10. H5R: reference function, e.g., H5Rcreate,
11. H5I: identifier routing, e.g., H5Iget_type.

10.2 Example of HDF5 API

We present two simple examples of using the HDF5 API. In Listing 10.1 we have
presented a HDF5 dataset writer, which writes a two-dimensional table of 32-bit
integers to a disk file.

// \file hdf_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Example of using HDF5 for data storage
#include <cstdio> // for C FILE

5 #include <cassert> // assertion checking
#include <cstdlib> // exit
#include <iostream> // program IO
#include <hdf5.h> // HDF5

10 static const char fileName[] = "example_A.h5";
static const char datasetName[] = "ASTR_10";
static const unsigned int DIM0 = 3;
static const unsigned int DIM1 = 3;

15 static void InitializeDataSet(int D[DIM0][DIM1]) {
for(unsigned int i=0; i < DIM0; ++i)

for(unsigned int j=0; j < DIM1; ++j)
D[i][j] = i+j;

}
20

int main(int argc, char *argv[]) {

194 10 Hierarchical Data Format 5 : HDF5

hid_t file, space, dataset; // Opaque HDF5 handles
herr_t status;
hsize_t dims[2] = { DIM0, DIM1 };

25 int write_data[DIM0][DIM1]; // write buffer
InitializeDataSet(write_data);
file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
space= H5Screate_simple(2, dims, NULL);
dataset = H5Dcreate(file, datasetName, H5T_STD_I32LE, space,

30 H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
status = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, write_data[0]);
status = H5Dclose(dataset); // first close the dataset
status = H5Sclose(space); // then close the space

35 status = H5Fclose(file); // and lastly close the file.
return (0);

}

Listing 10.1 Example of using HDF5 library API for writing dataset

The corresponding reader example is presented in Listing 10.2. The same file is
opened using H5F_ACC_RDONLY mode, and the contents are verified and printed to the
screen.

// \file hdf_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Example of using HDF5 for data storage
#include <cstdio> // for C FILE

5 #include <cassert> // assertion checking
#include <cstdlib> // exit
#include <iostream> // program IO
#include <hdf5.h> // HDF5

10 static const char fileName[] = "example_A.h5";
static const char datasetName[] = "ASTR_10";
static const unsigned int DIM0 = 3;
static const unsigned int DIM1 = 3;

15 static void CheckAndPrintDataSet(int D[DIM0][DIM1]) {
for(unsigned int i=0; i < DIM0; ++i) {

std::cout << std::endl;
for(unsigned int j=0; j < DIM1; ++j) {

assert(D[i][j] == (int)(i+j));
20 std::cout << " " << D[i][j];

}
}

}

25 int main(int argc, char *argv[]) {
hid_t file, dataset; // Opaque HDF5 handles
herr_t status;
int read_data[DIM0][DIM1]; // read buffer
file = H5Fopen(fileName, H5F_ACC_RDONLY, H5P_DEFAULT);

30 dataset = H5Dopen(file, datasetName, H5P_DEFAULT);
status = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, read_data[0]);
// check and print dataset
CheckAndPrintDataSet(read_data);

35 status = H5Dclose(dataset); // first close the dataset
status = H5Fclose(file); // and lastly close the file.
std::cout << std::endl;
return (0);

}

Listing 10.2 Example of using HDF5 library API for reading dataset

10.2 Example of HDF5 API 195

The SCons file for compiling these applications is shown for reference:

Program(’hdf_example’, [’hdf_example.cpp’],
CXXFLAGS="-Wall -O0 -ggdb",
LIBS=[’hdf5’,’m’,’pthread’])

Program(’hdf_read_example’, [’hdf_read_example.cpp’],
CXXFLAGS="-Wall -O0 -ggdb",
LIBS=[’hdf5’,’m’,’pthread’])

Compiling and executing the writer/reader programs gives:

$./hdf_example
$ ls -l example_A.h5
-rw-rw-r--. 1 skoranne example_A.h5
$./hdf_read_example

0 1 2
1 2 3
2 3 4

In the above Listing 10.1, the use of HDF5 API functions is demonstrated. In
HDF5, datatype and dimensionality are independent objects, which are created in-
dependently from any particular dataset they may be attached to. A dataspace can be
created once the rank and dimension of the space are known; in the above example
we use the H5Screate_simple function to create the dataspace.

The datatype is created using the H5Tcopy(H5T_NATIVE_INT) function (in the exam-
ple it is simple integer), which creates a datatype using the native integer type as
a template. The endian behavior of the datatype can be set using the H5Tset_order

function; we can choose little-endian (H5T_ORDER_LE) or big-endian. Once the datas-
pace and datatype handles have been created the actual dataset can be created. At
this point in time, the dataset is connected to the underlying data file, the datatype
and the dataspace. The H5D function for creating a dataset is: H5Dcreate. In addi-
tion to the filename, the name of the dataset has to be given. Once the dataset has
been created, actual data can be read or written to the disk file using the H5Dread

and H5Dwrite functions. These functions take the pointer to the data for reading and
writing.

The datatype, dataspace and dataset object handles should be released once they
are no longer needed. Each handle must be released separately using: H5Tclose (for
datatype), H5Dclose (for dataset), and H5Sclose (for dataspace).

Using the public API functions of the HDF5 library we can write a HDF inspec-
tion tool as shown in Listing 10.3.

// \file hdf_info.cpp
// \author Sandeep Koranne (C) 2010
// \description HDF5 info program
#include <cstdio> // for C FILE

5 #include <cstring> // for string function
#include <cassert> // assertion checking
#include <cstdlib> // exit
#include <iostream> // program IO
#include <hdf5.h> // HDF5

10
static const unsigned int MAX_NUMBER = 1024;

196 10 Hierarchical Data Format 5 : HDF5

static char fileName[MAX_NUMBER];
static char datasetName[MAX_NUMBER];

15 int main(int argc, char *argv[]) {
if(argc != 3) {

std::cerr << "Usage: hdf_info <h5> <dataset>..\n";
exit(1);

}
20 strcpy(fileName, argv[1]);

strcpy(datasetName, argv[2]);
hid_t file, dataset; // Opaque HDF5 handles
file = H5Fopen(fileName, H5F_ACC_RDONLY, H5P_DEFAULT);
// analyze the file object

25 hsize_t filesize;
(void) H5Fget_filesize(file, &filesize);

hsize_t objc[5];
for(int i=0; i < 5; ++i) objc[i] = 0;

30 objc[0] = H5Fget_obj_count(file, H5F_OBJ_FILE); // no. file objects
objc[1] = H5Fget_obj_count(file, H5F_OBJ_DATASET); // no. datasets
objc[2] = H5Fget_obj_count(file, H5F_OBJ_GROUP); // no. group objects
objc[3] = H5Fget_obj_count(file, H5F_OBJ_DATATYPE); // no. datatype
objc[4] = H5Fget_obj_count(file, H5F_OBJ_ATTR); // no. attributes

35 std::cout << "File " << fileName
<< " File size = " << filesize
<< " free space = " << H5Fget_freespace(file) << "\n"
<< " has " << objc[0] << " file objects\n"
<< " has " << objc[1] << " dataset objects\n"

40 << " has " << objc[2] << " group objects\n"
<< " has " << objc[3] << " datatype objects\n"
<< " has " << objc[4] << " attribute objects\n";

// in case we dont know the dataset name we can query it
size_t max_dataset_number = objc[1];

45 hid_t *dataset_objects = new hid_t[max_dataset_number];
(void) H5Fget_obj_ids(file, H5F_OBJ_DATASET,

max_dataset_number, dataset_objects);

for(size_t i=0; i < max_dataset_number; ++i) {
50 char temp_dataset_name[MAX_NUMBER];

H5Fget_name(dataset_objects[i], temp_dataset_name, MAX_NUMBER);
std::cout << "Dataset name = " << temp_dataset_name;

}
std::cout << std::endl;

55 dataset = H5Dopen(file, datasetName, H5P_DEFAULT);
hsize_t storage_size = H5Dget_storage_size(dataset);
haddr_t offset = H5Dget_offset(dataset);
std::cout << "\nStorage size : " << storage_size

<< "\nOffset : " << offset
60 << std::endl;

hid_t datatype = H5Dget_type(dataset);
hid_t hdf5class= H5Tget_class(datatype);
switch(hdf5class) {

65 case H5T_INTEGER:{std::cout << "Data set class = INTEGER\n"; break;}
case H5T_FLOAT:{std::cout << "Data set class = FLOAT\n"; break;}
case H5T_TIME:{std::cout << "Data set class = TIME\n"; break;}
case H5T_STRING:{std::cout << "Data set class = STRING\n";break;}
case H5T_BITFIELD:{std::cout << "Data set class = BITFIELD\n";break;}

70 case H5T_OPAQUE:{std::cout << "Data set class = OPAQUE\n";break;}
case H5T_COMPOUND:{std::cout << "Data set class = COMPOUND\n";break;}
case H5T_REFERENCE:{std::cout << "Data set class = REFERENCE\n";break;}
case H5T_ENUM:{std::cout << "Data set class = ENUM\n";break;}
case H5T_VLEN:{std::cout << "Data set class = VLEN\n";break;}

75 case H5T_ARRAY:{std::cout << "Data set class = ARRAY\n";break;}
case H5T_NO_CLASS:
default:

{ std::cout << "Data set class = NO CLASS\n"; break; }

10.2 Example of HDF5 API 197

}
80 if(hdf5class == H5T_FLOAT) {

// check point normalization
H5T_norm_t norm = H5Tget_norm(datatype);
if(norm == H5T_NORM_NONE)

std::cout << "Floating point is not normalized.\n";
85 else

std::cout << "Floating point is normalized.\n";
} else if(hdf5class == H5T_INTEGER) {

// check integer signed type
H5T_sign_t sign_t = H5Tget_sign(datatype);

90 if(sign_t == H5T_SGN_2)
std::cout << "Integer is 2’s complement.\n";

else if(sign_t == H5T_SGN_NONE)
std::cout << "Integer is UNSIGED.\n";

}
95 hid_t order = H5Tget_order(datatype);

switch(order) {
case H5T_ORDER_LE:{std::cout << "Data order is Little Endian\n"; break;}
case H5T_ORDER_BE:{std::cout << "Data order is Big Endian\n"; break;}
case H5T_ORDER_VAX:{std::cout << "Data order is VAX\n"; break;}

100 case H5T_ORDER_NONE:{std::cout << "Data order is NONE\n"; break;}
}

hid_t size = H5Tget_size(datatype);
std::cout << "Data size = " << size << "\n";

105
hid_t dataspace = H5Dget_space(dataset);
hid_t dataspace_class = H5Sget_simple_extent_type(dataspace);
switch(dataspace_class) {
case H5S_NO_CLASS:{std::cout<<"Dataspace class = H5S_NO_CLASS\n";break;}

110 case H5S_SCALAR:{std::cout << "Dataspace class = H5S_SCALAR\n"; break;}
case H5S_SIMPLE: {std::cout << "Dataspace class = H5S_SIMPLE\n";break;}
case H5S_NULL: {std::cout << "Dataspace class = H5S_NULL\n"; break;}
}
hssize_t num_points = H5Sget_simple_extent_npoints(dataspace);

115 hid_t rank = H5Sget_simple_extent_ndims(dataspace);
hsize_t *dims = new hsize_t[rank];
hsize_t *maxdims = new hsize_t[rank];
for(int i=0; i < rank; ++i) maxdims[i] = 32;
(void)H5Sget_simple_extent_dims(dataspace, dims, maxdims);

120 std::cout << "Num points = " << num_points << "\n";
std::cout << "Is Simple ? = " << H5Sis_simple(dataspace) << "\n";
std::cout << "Rank = " << rank << "\n";
for(int i=0; i < rank; ++i) {

std::cout << "dim[" << i << "] = " << dims[i] << "\n";
125 }

std::cout << std::endl;

delete[] dims;
H5Sclose(dataspace);

130 H5Tclose(datatype);
H5Fclose(file);
H5Dclose(dataset);
std::cout << std::endl;
return (0);

135 }

Listing 10.3 HDF5 API example

When using the C++ API the following libraries should be linked with the appli-
cation program:

Program(’hdfcxx’, [’hdfcxx.cpp’],
CXXFLAGS="-Wall -O0 -ggdb",
LIBS=[’hdf5’,’hdf5_hl’,’hdf5_cpp’,

198 10 Hierarchical Data Format 5 : HDF5

’hdf5_hl_cpp’,’pthread’])

Compiling and running this ‘info’ program on an HDF5 file gives:
./hdf_info example_A.h5 ASTR_10
File example_A.h5 File size = 2084 free space = 0
has 1 file objects
has 0 dataset objects
has 0 group objects
has 0 datatype objects
has 0 attribute objects

Storage size : 36
Offset : 2048
Data set class = INTEGER
Integer is 2’s complement.
Data order is Little Endian
Data size = 4
Dataspace class = H5S_SIMPLE
Num points = 9
Is Simple ? = 1
Rank = 2
dim[0] = 3
dim[1] = 3

An example of using C++ API is shown in Listing 10.4.
// \file hdfcxx.cpp
// \author Sandeep Koranne (C) 2010
// \description HDF API in C++
#include <cstdlib>

5 #include <H5Cpp.h>
#include <iostream>

using namespace H5;

10 int main(int argc, char *argv[]) {
H5File file(argv[1], H5F_ACC_RDONLY);
hid_t dataset_id = H5Dopen(file.getId(), argv[2], H5P_DEFAULT);
if(dataset_id == -1) {

std::cerr << "Dataset : " << argv[2] << " not found in file.\n";
15 exit(1);

}
DataSet dataset(dataset_id);
std::cout << "Storage size = " << dataset.getStorageSize();

20 dataset.close();
file.close();
std::cout << std::endl;
return (0);

}

Listing 10.4 HDF5 C++ API example

The primary use of HDF5 is in maintaining large datasets, for example, those
coming from simulations of physical processes, or astronomy. In these cases the
size of the dataset exceeds the installed physical memory on the computer system
by orders of magnitude. For example, an 8 Gb machine may be expected to analyze
a terabyte size file containing temperature and pressure readings from a simula-
tion. HDF5 includes the ability to load into memory sections of data from disk.

10.2 Example of HDF5 API 199

The sections are arranged into hyperslabs which is a dimensional generalization of
multi-dimensional arrays. See Figure 10.1 for a depiction of how data organized on
disk can be loaded into memory. The data can be loaded from a contiguous slab,
or accessed using strides. The function H5Sselect_hyperslab can be used to select
regions from the dataspace, both in dataset space, as well as the memory space.

Fig. 10.1 Hyperslab data
reading in HDF5

10.2.1 Writing and Reading compound datatype in HDF5

Writing and reading compound datatype (such as a C language structure) can be
performed using HDF5 groups. Consider the example of temperature and pressure
(as floating point values) readings taken at various coordinates (X,Y pairs). This
organization can be written in C as:

typedef struct {
int X,Y;

} Coord;
typedef struct {

5 float temperature, pressure;
Coord location;
hobj_ref_t group;

} Reading;

The HDF5 API calls needed to implement writing and reading this compound type
can be written as:

hid_t file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
space = H5Screate_simple(2, dims, NULL);
dataset = H5Dcreate(file, ‘‘LOC_READING’’, H5T_NATIVE_DOUBLE,..);
group = H5Gcreate(file, ‘‘SensorA’’, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

5 (void)H5Gclose(group);
group = H5Gcreate(file, ‘‘SensorB’’,H5P_DEFAULT,H5P_DEFAULT,H5P_DEFAULT);
(void)H5Gclose(group);
Reading *readings = new Reading[4];
reading[0]->temperature = 100.0; reading[0]->pressure = 65.1;

10 reading[0]->X = 6, reading[0]->Y = 8;
reading[1]->temperature = 92.4; reading[1]->pressure = 47.2;
reading[1]->X = 12, reading[0]->Y = 18;
status = H5Rcreate(&reading[0].group, file, ‘‘SensorA’’, H5R_OBJECT, -1);

The group handle is stored in the data structure representing the location based
readings. A group can be created using the H5Gcreate function. A hierarchical group
can be created by providing the absolute name of the group to this function, e.g.:

200 10 Hierarchical Data Format 5 : HDF5

group = H5Gcreate(file, ‘‘/Data/Another_Group’’);

creates a group “Another Group” inside the group “Data” which is in the root group.
A dataset can be placed in a group by giving the name of the group as the argument
to the HD5create function. To open the dataset in a group, two methods can be used:
(i) use the absolute name of the group in the HD5open function, or (ii) open the group,
and pass the group handle to the HD5open function.

10.2.2 HDF5 Attributes

HDF5 attributes are small named datasets that are attached to primary datasets, or
named datatypes. An attribute has two components: (i) name, and (ii) value. The
value part contains one or more data entries of the same datatype. As mentioned
above, H5A is the API prefix for all attribute related HDF5 functions. All the at-
tributes of an object can be iterated using the index value identification of attributes.
Since attributes are expected to be small, they are stored in the header of the object
they are attached to. Attributes can be created using H5Acreate, an example is shown
below:

id = H5Screate(H5S_SCALAR);
attr = H5Acreate(dataset, ‘‘Integer’’, H5T_NATIVE_INT, id, H5P_DEFAULT);
..
H5Aopen_name(dataset, ‘‘Integer’’); // reads same attribute back

10.2.3 References to objects

In HDF5 object references are based on the relative file address of the object header
in the file and is deemed constant for the life of the object.

10.2.4 Conclusion

HDF5 is a versatile and efficient mechanism of data storage and access. Since it is
widely supported on a number of high-performance computing platforms, availabil-
ity of tools to analyze HDF5 files, and the use of multi-threaded I/O for reading and
writing large datasets in HDF5 format can be expected. In the above section we have
given a brief overview of the capabilities of HDF5.

Chapter 11
Graphics and Image Processing Libraries

Abstract In this chapter we discuss the Cairo graphics library. Cairo graphics li-
brary is used for device independent graphics rendering. Thereafter image formats
such as PNG and JPEG are interfaced with the help of libraries libPNG and jpegLib,
and these libraries are also discussed in this chapter. We conclude with a discussion
of the GraphicsMagick and ImageMagick software.

Contents
11.1 Cairo: A Vector Drawing Library . 201
11.2 Graphics File Formats . 205
11.3 Conclusion . 210

11.1 Cairo: A Vector Drawing Library

Cairo is a device independent vector drawing library which supports a number
of backends including X11 (Xlib), Windows, PDF, PostScript, PNG, and MacOS
(Quartz). The same rendering code (using Cairo drawing primitives) can generate
the required output using the appropriate backend.

Cairo graphics supports rendering of fonts, arcs, points, polylines, as well as
bitmap images. Drawing with Cairo involves the use of the cairo_surface and the
cairo_t state. The surface models the backend, while the cairo_t state models the
current drawing state machine. Attributes such as backing store of the surface, size,
color space depth, number of visuals on the surface can be controlled using Cairo
functions. The state machine attributes (including current color, pen type) can be
changed on the cairo_t data-structure using Cairo functions. A simple example of
using the X11 Xlib backend is shown in Listing 11.1.

// \file cairo_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Use of Cairo graphics library
#include <iostream> // for program IO

5 #include <cstdlib> // for exit

S. Koranne, Handbook of Open Source Tools, 201
DOI 10.1007/978-1-4419-7719-9_11, © Springer Science+Business Media, LLC 2011

202 11 Graphics and Image Processing Libraries

#include <cairo/cairo.h> // Cairo library
#include <cairo/cairo-xlib.h> // X-lib surface for Cairo

static const unsigned int SIZE = 400;
10

static void EraseWindow(cairo_surface_t *surface) {
cairo_t *cr = cairo_create(surface);
cairo_set_source_rgb(cr, 1.0, 1.0, 1.0);
cairo_paint(cr);

15 cairo_destroy(cr);
}

static void DrawData(cairo_surface_t *surface) {
cairo_t *cr = cairo_create(surface);

20 while(true) {
EraseWindow(surface);
cairo_set_source_rgb(cr, 0.5, 0.1, 0.5);
cairo_rectangle(cr, rand()%SIZE,rand()%SIZE, 100, 100);
cairo_stroke(cr);

25 }
cairo_destroy(cr);

}

static void InitializeWindow(Display *dpy) {
30 cairo_surface_t *surface ;

Drawable drawable;
int screen = DefaultScreen(dpy);
XSetWindowAttributes xwa;
drawable = XCreateWindow(dpy, DefaultRootWindow(dpy),

35 100,100, SIZE, SIZE, 0,
DefaultDepth(dpy, screen),
InputOutput,
DefaultVisual(dpy, screen),
CWOverrideRedirect, &xwa);

40 XMapWindow(dpy, drawable);
surface = cairo_xlib_surface_create(dpy, drawable,

DefaultVisual(dpy, screen),
SIZE, SIZE);

cairo_xlib_surface_set_size(surface, SIZE, SIZE);
45 DrawData(surface);

EraseWindow(surface);
XDestroyWindow(dpy, drawable);

}
50

int main(int argc, char *argv[]) {
Display *dpy = XOpenDisplay(NULL);
if(dpy == NULL) {

std::cerr << "Unable to open X display...\n";
55 exit(1);

}
InitializeWindow(dpy);

std::cout << std::endl;
60 XCloseDisplay(dpy);

return (0);
}

Listing 11.1 Example of using Xlib with Cairo

The following functions are available for use when using Xlib surface with Cairo:

cairo_public cairo_surface_t *
cairo_xlib_surface_create (Display *dpy,

Drawable drawable,
Visual *visual,

5 int width,

11.1 Cairo: A Vector Drawing Library 203

int height);

cairo_public cairo_surface_t *
cairo_xlib_surface_create_for_bitmap (Display *dpy,

10 Pixmap bitmap,
Screen *screen,
int width,
int height);

15 cairo_public void
cairo_xlib_surface_set_size (cairo_surface_t *surface,

int width,
int height);

20 cairo_public void
cairo_xlib_surface_set_drawable (cairo_surface_t *surface,

Drawable drawable,
int width,
int height);

25
cairo_public Display *
cairo_xlib_surface_get_display (cairo_surface_t *surface);

cairo_public Drawable
30 cairo_xlib_surface_get_drawable (cairo_surface_t *surface);

cairo_public Screen *
cairo_xlib_surface_get_screen (cairo_surface_t *surface);

35 cairo_public Visual *
cairo_xlib_surface_get_visual (cairo_surface_t *surface);

cairo_public int
cairo_xlib_surface_get_depth (cairo_surface_t *surface);

40
cairo_public int
cairo_xlib_surface_get_width (cairo_surface_t *surface);

cairo_public int
45 cairo_xlib_surface_get_height (cairo_surface_t *surface);

To draw using Cairo surfaces, a Cairo context cairo_t must be created using the
Cairo surface as the target. The function cairo_create() is used for this purpose. The
various attributes of the Cairo context can be changed using Cairo functions, e.g.,
the default line width can be changed using cairo_set_line_width function, and the
fill rule can be set to either the winding number, or the even-odd overlap count using
the cairo_set_fill_rule function. Even the join types of lines, their stroke (whether
to use solid lines or dashes) can be set. In this regards, Cairo is similar to OpenGL
(see Section 19.2) and GD (see Section 19.10).

Similar to OpenGL, a Cairo context can be given a matrix transform to be ap-
plied. The transform may contain rotation, translation, and scaling. The drawing
primitives include (i) points, (ii) rectangles, (iii) paths, (iv) curves and arcs.

The advantage of using Cairo is manifest when the same rendering code has to
generate multiple output formats such as PDF, PostScript, PNG, and SVG. Cairo
provides functions to create surfaces for each of these backends. A page composit-
ing program may use multiple backends of Cairo at the same time, Xlib for on-
screen editing, PDF and PostScript for paper printing, and PNG and SVG for web

204 11 Graphics and Image Processing Libraries

deployment. For example, the SVG (scalable vector graphics) backend functions
are:

cairo_public cairo_surface_t *
cairo_svg_surface_create (const char *filename,

double width_in_points,
double height_in_points);

Fig. 11.1 Cairo graphics with
SVG surface, example

An example of using SVG with Cairo is shown in Listing 11.2.

// \file cairo_svg.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using SVG with Cairo
#include <cstdio> // C FILE*

5 #include <cstdlib> // exit
#include <iostream> // program IO
#include <cairo/cairo.h> // Cairo
#include <cairo/cairo-svg.h> // SVG support
static unsigned int SIZE = 500;

10 static void DrawExample(const char* filename) {
cairo_surface_t *surface =

cairo_svg_surface_create(filename, SIZE, SIZE);

cairo_t *cr = cairo_create(surface);
15 cairo_set_source_rgb(cr, 0.5, 0.1, 0.5);

#if 0
cairo_translate(cr, 200, 100);
cairo_rotate(cr, 45.0);
#endif

20 cairo_rectangle(cr, 10, 10, 100, 200);
cairo_rectangle(cr, 100, 30, 50, 50);
cairo_rectangle(cr, 100, 140, 50, 50);

cairo_stroke(cr);
25 cairo_destroy(cr);

cairo_surface_destroy(surface);
}

int main(int argc, char *argv []) {
30 if(argc != 2) {

std::cerr << "Usage: cairo_svg <filename>..\n";
exit(1);

}
DrawExample(argv[1]);

35 std::cout << std::endl;
return (0);

11.2 Graphics File Formats 205

}

Listing 11.2 Using SVG surface with Cairo

Compiling and running this program as:

Fig. 11.2 Example of using
cairo_rotate

$g++ cairo_svg.cpp -lcairo
$./a.out a.svg

generates the SVG file as shown in Figure 11.1.
By adding cairo_translate and cairo_rotate to the Cairo context we can perform

translation and rotation of the scene. An example is shown in Figure 11.2.

11.2 Graphics File Formats

Portable Network Graphics (PNG) is the modern loss-less image format which is
widely used on the Internet. JPEG is loss-less and even though it is prevalent in In-
ternet and amateur photography, its role in scientific image processing is thus limited
only to preview generation. We concentrate on PNG as its design, and the software
library are instructive in designing efficient file formats for two-dimensional bitmap
graphics. The equivalent for vector images is Scalable Vector Graphics (SVG) (see
Section 11.2.2) for more details.

11.2.1 libPNG: library for Portable Network Graphics

Portable Network Graphics (PNG) is a standard for loss-less representation of bit-
mapped image data. PNG supports 24-bit and 32-bit RGBA color images (but does
not support print color spaces such as CMYK). The PNG format uses the zlib

206 11 Graphics and Image Processing Libraries

deflate compression (see Section 8.1) and achieves good compression. Since two-
dimensional image data is often involved in scientific experiments; reading, writing,
and otherwise manipulating PNG files is often required. We discuss the use of the
libPNG library for this purpose. A more general purpose image manipulation li-
brary is discussed in the next section, see Section 11.2.3. Tools to programmatically
generate PNG files are described in Chapter 19, see Section 19.10 and Section 19.11.

11.2.1.1 Format of a PNG file

PNG files are divided into chunks, which help in maintaining backwards compat-
ibility. A PNG reader when confronted with a chunk which it cannot decode can
simply skip the chunk (if it is not defined as critical). Each chunk is represented as:

1. Chunk length in bytes: this field is 4 bytes long,
2. Chunk type: also 4 bytes long. The case of the character in these 4 bytes denotes

information that a decoder can use. This information includes whether the chunk
is critical, public, reserved, and safe to copy,

3. Actual chunk data: length in bytes is given in the first field above,
4. CRC checksum: 4 bytes long.

The color depth of the image, compression, and transparency are also stored.
The compression used in PNG is divided into multiple phases. In the first phase

a compression (using predictor functions) based on the value of neighboring pixels
is performed. Then interlacing and Adam7 interlacing (to quickly regenerate an ap-
proximation of the image during decoding) is done. This 7-pass scheme (Adam7)
not only requires computation time, but also reduces compression since not all adja-
cent bytes of the images are compressed together. The raw byte stream comprising
the chunk is then compressed using deflate, the standard ZLIB compression (see
Section 8.1).

11.2.1.2 JPEG file format

The library for reading and writing JPEG files is libjpeg and it provides functions
for reading (decompressing) and writing (compressing) JPEG image data from/to
files. It provides a JPEG compress structure jpeg_compress_struct which can be used
to write JPEG files, (part of the structure are shown) as shown in the listing below.

struct jpeg_compress_struct {
/* partial structure see libjpeg.h */
struct jpeg_destination_mgr * dest;
JDIMENSION image_width; /* input image width */

5 JDIMENSION image_height; /* input image height */
int input_components;
J_COLOR_SPACE in_color_space; /* colorspace of input image */
double input_gamma; /* image gamma of input image */
int data_precision; /* bits of precision in image data */

10 int num_components; /* # of color components in JPEG image */
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */

11.2 Graphics File Formats 207

jpeg_component_info * comp_info;
JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];

15 };

Correspondingly, jpeglib also has a decompression structure for reading
JPEG data as shown in the next listing (only some part of the structure are shown):

struct jpeg_decompress_struct {
/* partial structure see libjpeg.h */
struct jpeg_source_mgr * src;
JDIMENSION image_width; /* nominal image width */

5 JDIMENSION image_height; /* nominal image height */
int num_components; /* # of color components */
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
J_COLOR_SPACE out_color_space; /* colorspace for output */
unsigned int scale_num, scale_denom;

10 JDIMENSION output_width; /* scaled image width */
JDIMENSION output_height; /* scaled image height */

};

A list of function from the jpeglib.h header file is shown:

/* Destruction of JPEG compression objects */
jpeg_destroy_compress JPP((j_compress_ptr cinfo));
jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));

5 jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));

jpeg_set_defaults JPP((j_compress_ptr cinfo));
jpeg_set_colorspace JPP((j_compress_ptr cinfo,

10 J_COLOR_SPACE colorspace));
jpeg_default_colorspace JPP((j_compress_ptr cinfo));
jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,

boolean force_baseline));
jpeg_set_linear_quality JPP((j_compress_ptr cinfo,

15 int scale_factor,
boolean force_baseline));

jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
const unsigned int *basic_table,
int scale_factor,

20 boolean force_baseline));
jpeg_quality_scaling JPP((int quality));
jpeg_simple_progression JPP((j_compress_ptr cinfo));
jpeg_suppress_tables JPP((j_compress_ptr cinfo,

boolean suppress));
25 jpeg_alloc_quant_table JPP((j_common_ptr cinfo));

jpeg_alloc_huff_table JPP((j_common_ptr cinfo));

/* Main entry points for compression */
jpeg_start_compress JPP((j_compress_ptr cinfo,

30 boolean write_all_tables));
jpeg_write_scanlines JPP((j_compress_ptr cinfo,

JSAMPARRAY scanlines,
JDIMENSION num_lines));

jpeg_finish_compress JPP((j_compress_ptr cinfo));
35

jpeg_write_raw_data JPP((j_compress_ptr cinfo,
JSAMPIMAGE data,
JDIMENSION num_lines));

40 /* Same, but piecemeal. */
jpeg_write_m_header
JPP((j_compress_ptr cinfo,

int marker,

208 11 Graphics and Image Processing Libraries

unsigned int datalen));
45 jpeg_write_m_byte

JPP((j_compress_ptr cinfo, int val));

/* Alternate compression function:
just write an abbreviated table file */

50 jpeg_write_tables JPP((j_compress_ptr cinfo));

/* Decompression startup:
read start of JPEG datastream to see what’s there */

jpeg_read_header JPP((j_decompress_ptr cinfo,
55 boolean require_image));

/* Main entry points for decompression */
jpeg_start_decompress JPP((j_decompress_ptr cinfo));
jpeg_read_scanlines JPP((j_decompress_ptr cinfo,

60 JSAMPARRAY scanlines,
JDIMENSION max_lines));

jpeg_finish_decompress JPP((j_decompress_ptr cinfo));

/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
65 jpeg_read_raw_data JPP((j_decompress_ptr cinfo,

JSAMPIMAGE data,
JDIMENSION max_lines));

/* Additional entry points for buffered-image mode. */
70 jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));

jpeg_start_output JPP((j_decompress_ptr cinfo,
int scan_number));

jpeg_finish_output JPP((j_decompress_ptr cinfo));
jpeg_input_complete JPP((j_decompress_ptr cinfo));

75 jpeg_new_colormap JPP((j_decompress_ptr cinfo));
jpeg_consume_input JPP((j_decompress_ptr cinfo));

11.2.2 Scalable Vector Graphics (SVG)

In the above sections we have looked at image representation using PNG and JPEG.
These file formats are designed for bit-mapped data. Another way to represent geo-
metric information in images is using a vector approach, where the image is com-
posed of well defined primitives. The primitives can be combined hierarchically,
transformed (scaled and rotated, as well as translation). The advantage of vector
graphics is: (i) faithful reproduction independent of scaling, (ii) much better com-
pression for line art type drawings, (iii) programmatic generation, and (iv) elegant
mathematical model underlying the drawing principles. Scalable Vector Graphics
(SVG) is an international standard for representing vector image data using the
XML format.

Since SVG files are XML files, they can be parsed using standard XML process-
ing tools (see Section 9.4).

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"
width="500pt" height="500pt"
viewBox="0 0 500 500" version="1.1">

<g id="surface1">

11.2 Graphics File Formats 209

<path style="fill:none;stroke-width:2;stroke-linecap:butt;
stroke-linejoin:miter;stroke:rgb(50%,10%,50%);
stroke-opacity:1;stroke-miterlimit:10;"
d="M 10.000546

" transform="matrix(0.525322,0.850904,
-0.850904,0.525322,200,100)"/>

</g>
</svg>

The SVG specification defines the semantics of the XML elements; XML is used
as the transmission medium and container. To properly interpret an SVG files, the
semantics of the SVG primitives such as: (i) path, (ii) fill, (iii) width, (iv) stroke, (v)
join-styles, etc. must be understood.

Thus, it is possible for an application to generate SVG directly, but most applica-
tions use a higher order abstraction. Generating XML from geometric primitives can
be done using Cairo (see Section 11.1), and see Figure 11.2 for an example of using
Cairo to generate a shape in SVG, then also perform a rotational transformation on
the shape. Inkscape (see Section 19.8) uses SVG as its native file format.

11.2.3 GraphicsMagick and ImageMagick

GraphicsMagick is described as the “swiss army knife” of image processing. It pro-
vides tools and libraries which support reading and writing image of many formats
including JPEG, PNG, and TIFF. Source code of GraphicsMagick is portable and re-
cently has added OpenMP (see Section 12.2) support for parallel processing. Graph-
icsMagick has been used with large images (of gigapixel-size). GraphicsMagick is
originally derived from ImageMagick but now is developed independently.

ImageMagick is an open-source software suite to create, edit, and compose
bitmap images from a multitude of file formats including JPEG, PNG, and TIFF.
ImageMagick can perform the following functions on files:

1. Format conversion: convert an image from one format to another,
2. Transform: resize, rotate, crop, and flip,
3. Transparency, Draw, and Decorate,
4. Special effects: blur, sharpen and tint,
5. Image identification,
6. Discrete Fourier Transform,
7. High dynamic range image,
8. Thread safe and implemented with OpenMP.

ImageMagick is mostly used with the command-line tool convert which has
command-line options to perform many of the above tasks. Images used in this
book were often processed with convert for resizing and format conversion.

11.3 Conclusion

In this chapter we discussed the Cairo graphics library, and presented example of
its usage. Cairo is used for device independent graphics rendering in many open-
source applications including Firefox. Image formats such as PNG and JPEG are
interfaced with the help of libraries (libPNG and jpegLib). The Scalable Vector
Graphics (SVG) file format (in XML) was explained with the help of an exam-
ple, and we used Cairo to generate an SVG file. We concluded with a discussion
of the GraphicsMagick and ImageMagick software for image manipulation on the
command-line.

11 Graphics and Image Processing Libraries210

Part III
Parallel and System Programming

Chapter 12
Parallel Programming

Abstract Parallel programming deals with multi-processing and multi-threading.
With the advent of multi-core computers, parallel programming has become essen-
tial. In this chapter we discuss the POSIX threading library (pthread). User anno-
tated compiler supported parallelism with OpenMP is described with the help of
examples in Section 12.2. The new features of OpenMP version 3.0 (task com-
puting) is presented with the help of examples in Section 12.2.0.3. In addition to
multi-threading, parallel computing has been successfully deployed on cluster grids
(called the Beowulf class). The most common API used in cluster computing is
MPI (message passing interface) which is discussed in this chapter. In addition to
these well established parallel programming systems, the rapid rise of many-core
and other forms of parallelism has also created new systems which have had less
exposure. In particular the Intel Thread Building Block library, and GPGPU com-
puting with NVIDIA CUDA and OpenCL are described.

Contents
12.1 POSIX Thread Library (pthreads) . 214
12.2 OpenMP: Open specification for Multi-processing 218
12.3 MPI: Message Passing Interface . 228
12.4 Other libraries and tools . 230
12.5 Conclusion . 240

In this chapter we discuss the various software tools and libraries available for pro-
gramming parallel and distributed computers. With the ready availability of dual-
core, quad-core and many-core machines in the mainstream, utilizing parallel com-
putation paradigms effectively is important. In this Part we will discuss POSIX
threading library (pthreads), OpenMP, MPI, Intel TBB, and general purpose com-
puting on graphics card using CUDA and OpenCL.

S. Koranne, Handbook of Open Source Tools, 213
DOI 10.1007/978-1-4419-7719-9_12, © Springer Science+Business Media, LLC 2011

214 12 Parallel Programming

12.1 POSIX Thread Library (pthreads)

Even before we delve deep into the programming model of pthreads, it is useful to
see what are the knobs and tuning parameters available to us to manage pthreads.
These management methods are independent of the CPU thread scheduling policies
or data-cache touching functions.

Fig. 12.1 Example of pthread
spawning 2 threads for func-
tions F1 and F2.

POSIX pthread library allows management of threads by specifying the follow-
ing:

1. Keys: threads use keys to maintain private copies of shared data items. A single
globally defined key points to different memory location for each thread. We
can use keys when making function calls and we want thread specific data to be
passed along,

2. Attributes: thread attributes allow us to control scheduling behavior, stack size
and initial state,

3. pthread once mechanism: is like the singleton constructor concept, it ensures that
a function or action is performed exactly once regardless of how many times (or
different threads) attempt to call it. Useful for file or network handling, use this
mechanism instead of writing static variables for this purpose,

4. Thread cancellation: allows a thread to self-destruct, for example when searching
for a data in a binary-tree, once the data is found, the rest of the threads can be
canceled,

5. Thread scheduling: specifies to the Operating System which thread you (as a
programmer, not as a user, unless you make the thread scheduling visible to the
end-user) would like the CPU to be scheduled. CPU has extensive control on the
scheduling behavior of threads.

12.1.1 Understanding pthread programming model

Since pthread is an API library, all of its functionality is exposed using standardized
function calls and these calls make up the programming model for pthreads.

12.1 POSIX Thread Library (pthreads) 215

The pthread create() function creates a new thread, with attributes specified by
attr, within a process. If attr is NULL, the default attributes shall be used. If the
attributes specified by attr are modified later, the thread’s attributes shall not be
affected. Upon successful completion, pthread create() store the ID of the created
thread in the location referenced by thread.

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

Attributes objects are provided for threads, mutexes, and condition variables as a
mechanism to support probable future standardization and customization. Attributes
objects provide clean isolation of the configurable aspects of threads. For example,
stack size is an important attribute of a thread, but it cannot be expressed portably.

The pthread attr init() function shall initialize a thread attributes object attr with
the default value for all of the individual attributes used by a given implementation.
The pthread attr destroy() function shall destroy a thread attributes object.

int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_init(pthread_attr_t *attr);

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <pthread.h>

5 int r1 = 0, r2 = 0;
static void F1(int *pr1) {
// some compute intensive function

}
static void F2(int *pr2) {

10 // some other compute intensive function
}
int main(int argc, char **argv) {
pthread_t t1, t2;
if(pthread_create(&t1,NULL,(void *) F1,(void *) &r1) != 0)

15 perror("pthread_create"), exit(1);
if(pthread_create(&t2,NULL,(void *) F2,(void *) &r2) != 0)

perror("pthread_create"), exit(1);
if(pthread_join(t1, NULL) != 0)

perror("pthread_join"),exit(1);
20 if (pthread_join(t2, NULL) != 0)

perror("pthread_join"),exit(1);
return (EXIT_SUCCESS);

}

Listing 12.1 Introduction to pthreads

int pthread_once(pthread_once_t *once_control,
void (*init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Usually the controlling thread in the CPU will perform setup tasks, but this can be
sub-optimal, especially when the setup is compute intensive or involves dealing with
blocking I/O.

216 12 Parallel Programming

12.1.2 Pthreads Keys: using thread specific data

As threads are created, run, and destroyed, their working space consists of their stack
space, global variables, and memory allocated from the heap. During the course of
program execution if you want to associate thread specific data to each thread, so
that the same variable in different threads points to different memory, you can use
keys to achieve this. Consider the example of searching for a value in a tree, every
thread function will store its own fragment of the binary tree on which its operating.
This can be done using keys:

static pthread_key_t tree_key;
int search_init() {
pthread_key_create(&tree_key, (void*)free_key);

}

This function needs the variable for the key as well as a destructor function. Since
thread cancellations and exits can leak thread specific data pointed to by keys, im-
plementing this destructor correctly helps prevent memory leaks. Now we can use
this key as follows:

pthread_setspecific(tree_key, (int*)(binary_tree+offset));

We set this threads tree_key to binary_treeoffset+, later on we can use this key to
retrieve the binary tree offset as follows:

int *tree_offset;
pthread_getspecific(tree_key, (void**)&tree_offset);

void *pthread_getspecific(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *value);

12.1.3 Pthreads Summary

Detailed function description of pthread functions can be found using the man
pthread create manpage and then following the related sections. In this sec-
tion we present the most often used pthread functions, and their description for ready
reference.

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <pthread.h>

5 #define N 100
typedef int matrix_t[N][N];
typedef struct {
int id,size,Arow,Bcol;
matrix_t *MA, *MB,*MC,dummy;

10 } arg_t;
matrix_t MA,MB,MC;
void mult(int size,int row,int col,

matrix_t A, matrix_t B,matrix_t C) {

12.1 POSIX Thread Library (pthreads) 217

Table 12.1 Pthread Functions

Name Description
pthread_create creates thread (pthread_t,attr,function,arg)
pthread_exit exits thread (status)
pthread_attr_init initializes attribute (pthread_attr_t*)
pthread_attr_destroy destroys attribute (pthread_attr_t*)
pthread_join blocks parent till T terminates (pthread_t T, void**)
pthread_detach storage can be claimed when thread terminates (pthread_t),
pthread_self return the thread id of calling thread (pthread_t)
pthread_equal compare thread id (pthread_t t1, pthread_t t2)
pthread_control allows 1 call to function (pthread_once_t *, void* ())

pthread_mutex_init initializes mutex with attributes
(pthread_mutex_t*, pthread_mutexattr_t*)

pthread_mutex_destroy destroys mutex (pthread_mutex_t*)
pthread_mutexattr_init initializes mutex attribute (pthread_mutexattr_t*)
pthread_mutexattr_destroy destroys mutex attribute (pthread_mutexattr_t*)
pthread_mutex_lock acquire a lock on a mutex (pthread_mutex_t*)
pthread_mutex_trylock attemp to acquire a lock (pthread_mutex_t*)
pthread_mutex_unlock unlock the mutex (pthread_mutex_t*)
pthread_cond_init initializes cond with attributes

(pthread_cond_t*, pthread_condattr_t*)
pthread_cond_destroy destroys cond (pthread_cond_t*)
pthread_condattr_init initializes cond attribute (pthread_condattr_t*)
pthread_condattr_destroy destroys cond attribute (pthread_condattr_t*)
pthread_cond_wait blocks calling thread until condition

(pthread_cond_t*, pthread_mutex_t*)
pthread_cond_signal wakeun up thread waiting for cond (pthread_cond_t*)
pthread_cond_broadcast waken up all threads waiting on cond (pthread_cond_t*)

int pos;
15 C[row][col] = 0;

for(pos = 0; pos < size; ++pos)
C[row][col] += A[row][pos] * B[pos][col];

}
void *mult_worker(void *arg) {

20 arg_t *p=(arg_t *)arg;
mult(p->size, p->Arow, p->Bcol, *(p->MA), *(p->MB), *(p->MC));
free(p);
return(NULL);

}
25 int main(int argc, char **argv) {

int size, row, col, num_threads, i;
pthread_t *threads;
arg_t *p;
unsigned long thread_stack_size;

30 pthread_attr_t *pthread_attr_p, pthread_custom_attr;
size = N;
threads = (pthread_t *)malloc(size*size*sizeof(pthread_t));
for (row = 0; row < size; ++row)

for (col = 0; col < size; ++col)

218 12 Parallel Programming

35 MA[row][col] = 1, MB[row][col] = row + col + 1;
num_threads = 0;
for(row = 0; row < size; row++)

for (col=0;col<size;col++,num_threads++) {
p = (arg_t *)malloc(sizeof(arg_t));

40 p->id = num_threads;p->size = size;
p->Arow = row;p->Bcol = col;
(p->MA) = &MA;(p->MB) = &MB;(p->MC) = &MC;
pthread_create(&threads[num_threads],&pthread_custom_attr,

mult_worker,(void *) p);
45 }

for (i = 0; i < (size*size); i++)
pthread_join(threads[i], NULL);

return (EXIT_SUCCESS);
}

Listing 12.2 Parallel matrix multiple

12.2 OpenMP: Open specification for Multi-processing

OpenMP has become the defacto standard for shared-memory parallel program-
ming. The last few years has seen OpenMP emerge as the preferred standard, and
with the advent of multi-core computing on every desktop, parallel programming
with OpenMP is the method of choice for application developers. OpenMP is an
Application Program Interface (API) defined by a standardization body comprised
of hardware and software vendors. It provides a simple, flexible, yet efficient model
for developing portable and scalable parallel applications. GNU GCC version 4.5.0
was used as the C/C++/FORTRAN compiler which supports the latest OpenMP
standard (OpenMP ver 3.0). OpenMP comprises of:

1. Compiler directives (written as # pragmas),
2. Runtime library routines: provided by the compiler or hardware provider,
3. Environment variables: controlling aspects of OpenMP,
4. Programming Model: is based on shared-memory, thread based explicit paral-

lelism with a fork- join model.

The compiler directives for OpenMP are written as # pragmas for the compiler.
Consider a small program written in C++ using OpenMP as shown in Listing 12.3.

// \file hw_open_mp.cpp
// \author Sandeep Koranne, (C) 2010
// \description Initial program of OpenMP
#include <iostream> // for program IO

5 #include <cassert> // assertions
#include <cstdlib> // exit
#include <omp.h> // OpenMP

int main(int argc, char *argv []) {
10 int num_threads, id;

#pragma omp parallel private(num_threads, id)
{

id = omp_get_thread_num();
15 std::cout << "Thread id " << id << " says hello!\n";

12.2 OpenMP: Open specification for Multi-processing 219

if(id == 0) { // master thread
num_threads = omp_get_num_threads();
std::cout << "Number of threads = " << num_threads;

20 }
} // join point of all threads

return (0);
}

Listing 12.3 Hello world style program using OpenMP

We can compile and run this program with GCC 4.5.0 as:

$g++ -fopenmp hw_open_mp.cpp -o hw_omp
$export OMP_NUM_THREADS=2
$./hw_omp
Thread id 1 says hello!
Thread id 0 says hello!
Number of threads = 2

Using the ldd program we can check that this binary links to both libgomp
(which provides the OpenMP run-time library), and libpthread (which pro-
vides the underlying threading implementation on GNU/Linux, although this is not
required by OpenMP).

12.2.0.1 OpenMP directives

OpenMP directives are case sensitive, follow the C/C++ compiler standards for
#pragmas. Directives are specified for one structured block by a single line preced-
ing it (if the line becomes too long a line continuation character has to be inserted).
Some common OpenMP directives are listed below in Table 12.3.

12.2.0.2 Parallel region construct

defines a block of code which will be executed by multiple threads. It accepts a
conditional test clause (to trigger parallel execution), a list of thread-local private
variables, shared variables. The number of threads for the block can also be spec-
ified, as well as advanced parameters dealing with initialization of variables going
into the block (firstprivate) There is an implied barrier at the end of the block.

#pragma omp parallel default(shared) private(..)

The number of threads can be specified in the parallel construct.
The data clause of the parallel directive can be chosen depending on the use of

the variable. In OpenMP 3.0 the following data clauses are available:

1. private: variable is localized to each thread,
2. firstprivate: variable is localized and initialized with the value of the variable

going into the parallel section,

220 12 Parallel Programming

Table 12.2 GNU libomp runtime functions

Directive Description
omp_get_active_level Number of active parallel regions
omp_get_ancestor_thread_num Ancestor thread ID
omp_get_dynamic Dynamic teams setting
omp_get_level Number of parallel regions
omp_get_max_active_levels Maximal number of active regions
omp_get_max_threads Maximal number of threads of parallel region
omp_get_nested Nested parallel regions
omp_get_num_procs Number of processors online
omp_get_num_threads Size of the active team
omp_get_schedule Obtain the runtime scheduling method
omp_get_team_size Number of threads in a team
omp_get_thread_limit Maximal number of threads
omp_get_thread_num Current thread ID
omp_in_parallel Whether a parallel region is active
omp_set_dynamic Enable/disable dynamic teams
omp_set_max_active_levels Limits the number of active parallel regions
omp_set_nested Enable/disable nested parallel regions
omp_set_num_threads Set upper team size limit
omp_set_schedule Set the runtime scheduling method
omp_init_lock Initialize simple lock
omp_set_lock Wait for and set simple lock
omp_test_lock Test and set simple lock if available
omp_unset_lock Unset simple lock
omp_destroy_lock Destroy simple lock
omp_init_nest_lock Initialize nested lock
omp_set_nest_lock Wait for and set simple lock
omp_test_nest_lock Test and set nested lock if available
omp_unset_nest_lock Unset nested lock
omp_destroy_nest_lock Destroy nested lock
omp_get_wtick Get timer precision.
omp_get_wtime Elapsed wall clock time.

3. lastprivate: variable is localized, the last iteration copies the value of the variable
to the corresponding variable outside the parallel block,

4. shared: all threads in the team share the variable (same memory reference),
5. default: changes the default for all variables in the parallel block,
6. reduction: each thread has a local copy which is combined (reduced) using the

specified binary operator (only simple binary operator such as +, - are supported),
7. copying: the value of the master thread variable is copied to all threads.

12.2 OpenMP: Open specification for Multi-processing 221

Table 12.3 OpenMP directives

Directive Description
parallel parallel region construct
for for-loop with implied barrier at end
sections code executed in parallel
single executed by exactly one thread
task finer schedulable entity (ver 3.0)
master synchronization directive
critical code block with critical section
barrier synchronization primitive
taskwait synchronization primitive
atomic memory location updated atomically
flush specific point at which memory is consistent
ordered loop iteration should execute in serial order
threadprivate variables become thread specific

If nested regions are enabled (use the library function omp_get_nested() to check
this), then parallel sections can be nested. The parallel directive can be combined
with the worksharing directives shown in the next section.

Work sharing directives are the work-horses of OpenMP. Using these directives
the programmer directs the compiler to create parallel threads. The work sharing
construct divides the code block execution between the threads on the team. Work
sharing directives can be iterative (such as do, while and for), or they can be non-
iterative SECTIONS, which are listed in the code block. Each section is executed
once by a thread (although the same thread may execute multiple sections).

#pragma omp parallel shared(sum,A,count) private(i)
{
#pragma omp for schedule(static) nowait
for(i=0; i < count; ++i) {

5 sum += A[i];
}

} /* end of parallel section */

As an example of SECTIONS:

#pragma omp parallel shared(sumA,A,subB,B,count) private(i)
{
#pragma omp sections nowait
{

5 #pragma omp section
for(i=0; i < count; ++i) sumA += A[i];

#pragma omp section
for(i=0; i < count; ++i) sumB += B[i];

10 } /* end of sections */
} /* end of parallel section */

For FORTRAN language there is a special WORKSHARE directive which treats
all statements in the enclosed structured code block as independent work units.

222 12 Parallel Programming

There also exists a directive single which ensures that the enclosed code is exe-
cuted by only one thread. The work-sharing directives accept arguments which con-
trol the scheduling of the threads and the division of the work between the threads
on the team. The schedules are:

1. Static: fixed schedule, depends on the size of the work unit in the iteration, num-
ber of threads and chunk size,

2. Dynamic: as threads become free they execute on available data.

A comparison of the scheduling methods available in OpenMP was performed. The
workload used was the evaluation of the return-count of the Collatz function of a
number. The Collatz function is defined as a recurrence:

collatz(n) = 1 : n == 1
= n/2 : n is even
= 3n+1 : n is odd

The return-count of the Collatz function is the number of times the function would
need to be evaluated given a positive integer as input. Although defined as a recur-
rence, we implement it as a while loop as shown in Listing 12.4.

volatile unsigned long CountCollatzReturn(unsigned long N) {
static const unsigned int LOOP_COUNT = 1;
unsigned long count = 0;
unsigned long storedN = N;

5 for(unsigned long j=0; j < LOOP_COUNT; ++j) {
N = storedN;
count=j;
while(1) {

count++;
10 if(N <= 1) break;

if(N % 2) N = 3*N+1;
else N = N/2;

}
}

15 return count;
}

Listing 12.4 Return count of the Collatz function

We write several OpenMP functions, each differing in the scheduling method.
These functions are listed in Listing 12.5. The performance comparison is shown in
Figure 12.2. In Figure 12.2(a), the performance benefit of adding another processor
to the thread pool is shown. Since the Collatz function is compute bound, we get
linear speedup. As stated above, the scheduling of threads can be left as static (us-
ing the static schedule in OpenMP). The Collatz function has the property that the
return count of any integer is not completely dependent on the size of the integer
(e.g., return count for all even numbers is simply lg(n)), thus the static schedule per-
forms adequately. But if the workload was dependent on the size of the integer, then
a static schedule would exhibit the tail syndrome, where the initial values would be
computed quickly, but as the length of the integers increases, the time would in-
crease (e.g., this manifests itself in number theoretic functions checking whether a
given number is prime or not). The static schedule divides the iteration count of the

12.2 OpenMP: Open specification for Multi-processing 223

(a) Threading performance in OpenMP (b) Scheduling in OpenMP

(c) Static schedule compare CHUNK (d) Dynamic schedule compare CHUNK

Fig. 12.2 Comparing performance in OpenMP using various scheduling and data chunking strate-
gies.

for loop by the number of threads (as specified in the parallel section) or based on
the OMP_NUM_THREADS environment value.

In dynamic scheduling, as and when threads get free they take new work from
the pool of not yet finished loop iterations. At the expense of managing this dy-
namic queue, the tail syndrome can be mitigated. The runtime of the function using
static schedule is compared with dynamic schedule as shown in Figure 12.2(b). As
we discussed above, in this example the static schedule is reasonably fair, thus the
dynamic schedule’s queue management overhead is visible.

By default OpenMP processes a single loop iteration per-thread. If the workload
computation is small (as in this case), it is more efficient to process larger chunks per
thread. This can be specified using the chunk construct in the OpenMP pragma. We
compare the addition of chunks to static schedule in Figure 12.2(c), and to dynamic
schedules in Figure 12.2(d).

// experiment to try different schedule
int dynamic_chunk(unsigned long scount) {
std::cout << __PRETTY_FUNCTION__ << std::endl;
unsigned long i;

5 unsigned long ans=0;
int chunk = 100;

224 12 Parallel Programming

#pragma omp parallel private(i) shared(scount,chunk,ans)
{

#pragma omp for schedule(dynamic,chunk) nowait
10 for(i=0; i < scount; ++i) {

unsigned long retCount = CountCollatzReturn(i);
if(retCount > 400) ans++;

} /* end of parallel section */
} // join point of all threads

15 std::cout << "Ans = " << ans << std::endl;
return 0;

}

int dynamic_schedule(unsigned long scount) {
20 std::cout << __PRETTY_FUNCTION__ << std::endl;

unsigned long i;
unsigned long ans=0;
#pragma omp parallel private(i) shared(scount,ans)
{

25 #pragma omp for schedule(dynamic) nowait
for(i=0; i < scount; ++i) {

unsigned long retCount = CountCollatzReturn(i);
if(retCount > 400) ans++;

} /* end of parallel section */
30 } // join point of all threads

std::cout << "Ans = " << ans << std::endl;
return 0;

}

35 int static_chunk(unsigned long scount) {
std::cout << __PRETTY_FUNCTION__ << std::endl;
unsigned long i;
unsigned long ans=0;
int chunk = 100;

40 #pragma omp parallel private(i) shared(scount,chunk,ans)
{

#pragma omp for schedule(static, chunk) nowait
for(i=0; i < scount; ++i) {

unsigned long retCount = CountCollatzReturn(i);
45 if(retCount > 400) ans++;

} /* end of parallel section */
} // join point of all threads
std::cout << "Ans = " << ans << std::endl;
return 0;

50 }

int static_schedule(unsigned long scount) {
std::cout << __PRETTY_FUNCTION__ << std::endl;

55 unsigned long i;
unsigned long ans=0;
#pragma omp parallel private(i) shared(scount,ans)
{

#pragma omp for schedule(static) nowait
60 for(i=0; i < scount; ++i) {

unsigned long retCount = CountCollatzReturn(i);
if(retCount > 400) ans++;

} /* end of parallel section */
} // join point of all threads

65 std::cout << "Ans = " << ans << std::endl;
return 0;

}

int static_wait(unsigned long scount) {
70 std::cout << __PRETTY_FUNCTION__ << std::endl;

unsigned long i;
unsigned long ans=0;
#pragma omp parallel private(i) shared(scount,ans)

12.2 OpenMP: Open specification for Multi-processing 225

{
75 #pragma omp for schedule(static)

for(i=0; i < scount; ++i) {
unsigned long retCount = CountCollatzReturn(i);
if(retCount > 400) ans++;

} /* end of parallel section */
80 } // join point of all threads

std::cout << "Ans = " << ans << std::endl;
return 0;

}

85 int dynamic_wait(unsigned long scount) {
std::cout << __PRETTY_FUNCTION__ << std::endl;
unsigned long i;
unsigned long ans=0;
#pragma omp parallel private(i) shared(scount,ans)

90 {
#pragma omp for schedule(dynamic)
for(i=0; i < scount; ++i) {

unsigned long retCount = CountCollatzReturn(i);
if(retCount > 400) ans++;

95 } /* end of parallel section */
} // join point of all threads
std::cout << "Ans = " << ans << std::endl;
return 0;

}
100

int main(int argc, char * argv[]) {
int shift_count = atoi(argv[1]);
unsigned long scount = 1UL << shift_count;

105 int which_algo = atoi(argv[2]);
switch(which_algo) {
case 0: { return static_schedule(scount); }
case 1: { return dynamic_schedule(scount); }
case 2: { return static_chunk(scount); }

110 case 3: { return dynamic_chunk(scount); }
case 4: { return static_wait(scount); }
case 5: { return dynamic_wait(scount); }
default:{ return static_schedule(scount); }
}

115 return 0;
}

Listing 12.5 Experimenting with OpenMP scheduling

The shared and private lists of data in the parallel sections control the data visi-
bility of variables to the threads. A variable present in the ‘private’ list implies that
all threads receive a new object of the same type (value of this variable is uninitial-
ized, unless copying or firstprivate is specified). Shared variables, on the other hand,
refer to the same location in memory, and all threads can access the same variable.
A variable may also be passed as a reduction variable with an associated operator.
OpenMP currently limits the operator to be arithmetic operations such as addition,
subtraction, and bitwise Boolean. Although, sufficient for basic purposes such as
scans and prefix-sums, a generic binary reduction operator as a C++ template type
can easily be written. An example is shown in Listing 12.6, which computes the
minimum value of a given vector.

// \file min_omp.cpp
// \author Sandeep Koranne, (C) 2010
// \description Calculate minimum value of vector
#include <omp.h>

226 12 Parallel Programming

5 #include <iostream>
#include <cstdlib>
#include <limits>

template <typename T>
10 T MyOp(T a, T b) { return std::min(a, b); }

// Although OpenMP does not support reduction on
// arbitrary functions, it is simple to code it.

15 int main(int argc, char *argv []) {
if(argc != 2) {

std::cerr << "Usage: <N>\n";
exit(1);

}
20 int i;

int N = atoi(argv[1]); // number of elements
int *data = new int[N];
for(i=0; i < N; ++i) data[i] = rand() ˆ 177317;
int chunk = N/10; // chunk size

25 int result = std::numeric_limits<int>::max();

#pragma omp parallel private(i) shared(N,chunk,result)
{

int local_min = std::numeric_limits<int>::max();
30 #pragma omp for schedule(static,chunk) nowait

for(i=0; i < N; ++i) local_min = MyOp(local_min, data[i]);

#pragma omp critical
{

35 result = MyOp(result, local_min);
}

}
std::cout << "Minimum value = " << result << std::endl;
delete [] data;

40 return (0);
}

Listing 12.6 OpenMP reduction style min operator

The use of a local variable to accumulate partial results per thread which are then
merged with the final result under a critical section is a powerful idiom. This can
reduce locking on the shared variable, and thus improve performance.

12.2.0.3 Task parallelism in OpenMP ver 3.0

New in OpenMP 3.0 is the concept of task parallelism. This was added in response
to the increasing demand of application writers who had to deal with irregular paral-
lelism. The Task construct defines an explicit task (which is then executed by some
thread), which shares data according to the data sharing attributes (as discussed
above, see shared, and private).

The fork and join concept of OpenMP is exemplified in the design of the TASK
construct. See Figure 12.3; an example of using task parallelism in OpenMP is
shown in Listing 12.7.

// \file task_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of task based parallelism
#include <iostream> // for program IO

12.2 OpenMP: Open specification for Multi-processing 227

Fig. 12.3 Task parallelism in
OpenMP 3.0

5 #include <vector> // data storage
#include <algorithm> // for copy
#include <iterator> // ostream iterator
#include <omp.h> // OpenMP

10 static void AnalyzeData(std::vector<int>& D,
int index,
const unsigned int N,
const unsigned int chunk) {

// each chunk = [N/chunk]*index, [N/chunk]*(index+1)
15 unsigned int start_index = (N/chunk) * index;

unsigned int stop_index = start_index + (N/chunk);
for(unsigned int i=start_index; i < stop_index; ++i)

D[i] = index;
}

20
void ExecuteFunction(void) {
static const unsigned int N = 48;
std::vector<int> Data(N);
#pragma omp parallel

25 {
#pragma omp single nowait
{

for(int i=0; i < N; ++i) Data[i]=i;
}

30 // create 16 tasks, each responsible for doing part of the work
for(int i=0; i < 16; ++i) {
#pragma omp task if(i > 10)

{
AnalyzeData(Data, i, N, 16);

35 #ifdef _OPENMP
std::cout<<"\nComputing with "<<i<<"\t"<<omp_get_thread_num();
#endif

}
}

40 #pragma omp taskwait
}
std::copy(Data.begin(), Data.end(),

std::ostream_iterator<int>(std::cout, " "));
}

45

int main(int argc, char *argv []) {
ExecuteFunction();

228 12 Parallel Programming

std::cout << std::endl;
50 return (0);

}

Listing 12.7 Example of TASK parallelism in OpenMP

The TASK construct has an optional scalar expression which controls whether
the task should be executed on a new thread or executed on the existing thread. On
entry upon the parallel sections, already threads have been created, and if the scalar
expression returns false, the task code block is executed in-situ.

OpenMP also supports a Critical construct which should enclose a block of code
which must be executed only by one thread at any given time. Example can be a
function to write messages to log file. Task synchronization is achieved using the
Barrier directive which requires threads to wait at the barrier until all other threads
also reach that barrier, at which time all the threads resume execution.

12.3 MPI: Message Passing Interface

Before multicore computing became commonplace in the last 2-3 years, large scale
high performance computing projects relied on cluster computing or distributed
computing. A cluster of 100 nodes proved more beneficial (flops per dollar cost)
to the end user, as compared to an expensive shared memory multi-CPU machine
with 100 CPUs. As the number of vendors deploying clusters increased, a need for
standardized APIs for messaging arose. The MPI (message passing interface) API
was deigned in response to this need and it comprises of a number of functions as
listed below. The functions are divided into categories of:

1. Environment functions: to initialize the MPI execution environment, determine
the size of the process group, and compute the rank,

2. C/C++ Library API: includes the point-to-point communication, MPI_Send and
MPI_Recv.

3. Run time library,
4. Configuration file.

12.3.0.4 MPI Environment functions

The environment functions include MPI_Init(), MPI_Comm_size(), MPI_Abort(), and
MPI_Finalize().

12.3.0.5 C/C++ Library API

The MPI library contains functions for blocking and non-blocking message passing.
As a communication library, MPI ensures (a) ordering of messages and (b) fairness

12.3 MPI: Message Passing Interface 229

of messages. The MPI functions of MPI_Send(), and MPI_Recv() can be used. Mes-
sages to the same host can be differentiated using tags included with the message,
as:

MPI_Send(&buf, count, datatype, dest, tag, communication);

Consider an example:

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

5 if(rank == 0) {
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest,

tag, MPI_COMM_WORLD);
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source,

tag, MPI_COMM_WORLD, &Stat);
10 }

12.3.0.6 Run-time library

The compiler options to compile the C/C++ program and link it with the appropriate
MPI library can be done automatically using the mpicc command.

12.3.0.7 Configuration file

The mpd.hosts file lists the hosts on which MPI programs can run. The port range and
password for authentication is listed in .mpd.conf. Thereafter, the mpd program can
be launched, either using mpdboot command or direct invocation of the mpd program.
The servers can be linked together into the same MPI ring. Consider the program as
shown in Listing 12.8.

/*
* \file mpi_hw.c

* \author Sandeep Koranne (C) 2010
* \description MPI hello_world program

5 */
#include <mpi.h> /* for MPI */
#include <stdio.h> /* for program IO */
#include <stdlib.h> /* for exit */

10 int main(int argc, char *argv[]) {
int number_tasks, rank, rc;
rc = MPI_Init(&argc, &argv);
if(rc != MPI_SUCCESS) {

perror("MPI init failed");
15 MPI_Abort(MPI_COMM_WORLD, rc);

exit(1);
}

MPI_Comm_size(MPI_COMM_WORLD, &number_tasks);
20 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("\n Num tasks = %d, rank = %d",
number_tasks, rank);

MPI_Finalize();

230 12 Parallel Programming

return (0);
25 }

Listing 12.8 Example program using MPI

Running this program on our MPI cluster prints the number of tasks and the
rank of the process. It should be noted that MPI itself is only a specification, and an
implementation is provided by a specific vendor (hardware or software), or a generic
version such as MPICH can be used on the existing cluster. Since MPI was designed
for primarily message passing, it has the concept of a communicator group which
is an object that specifies the collection of MPI processes which may communicate
with each other. Moreover, each process has an unique integer identifier denoted
rank which can be used for communication.

12.3.1 Using Boost.MPI

In addition to using the default MPI API, we can also write MPI programs in C++
using Boost. The Boost.MPI is a library for message passing built on top of MPI.
Boost.MPI is a C++ interface which provides an alternative style of programming
and development style including (a) support for user-defined data types, (b) C++
STL, (c) arbitrary function objects, and (d) template functions. The functions of
MPI.Boost can be classified the same as MPI:

1. Communicators: creation, cloning, and splitting of MPI communicators, manip-
ulation of process groups,

2. Point-to-point communication: communication of primitive and user-defined
data types with send and receive operation with blocking and non-blocking in-
terfaces,

3. Collective communications: including reduce and gather,
4. MPI Datatypes.

Boost.MPI can be directly used through C++ or using Python interface.

12.4 Other libraries and tools

In this section we discuss some of the new parallel programming libraries and soft-
ware.

12.4.1 Thread Building Blocks

Thread Building Blocks is an C++ library by Intel designed to improve the efficacy
of expressing parallelism using C++. Intel TBB is written using modern C++ tech-

12.4 Other libraries and tools 231

niques such as templates, and object oriented programming. TBB is written to allow
the expression of task based, as well the plain-old thread based parallelism. It sup-
ports parallel design patterns and promotes scalable data parallel programming. As
we discussed above in the case of OpenMP (see Section 12.2), TBB also specifies
tasks, as opposed to threads, TBB manages the scheduling, which in the general
case results in better performance; however, TBB has excellent support for C++, as
shown in Listing 12.9.

// \file tbb_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using Thread Building Block library

5 #include <iostream> // for program IO
#include <string> // for std::string
#include <cassert> // assertion checking
#include <cstdlib> // exit
#include <algorithm> //

10 #include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"

class NoWorkDone {
public:

15 void operator()(const tbb::blocked_range<size_t>& R) const {
//std::cout << std::endl << "Range = " << R.begin() << "\t" << R.end();

}
};

20
class TakeuchiBenchmark {
static unsigned int Takeuchi(int x, int y, int z) {

if(y >= x) return z;
// extra looping constructs, to add computation time

25 #if 0
for(unsigned int i=0; i < z; ++i)

for(unsigned int j=0; j < x; ++j)
x = (x & i) | x, y = y & j | y;

#endif
30 return Takeuchi(Takeuchi(x-1, y, z),

Takeuchi(y-1, z, x),
Takeuchi(z-1, x, y));

}

35 public:
void operator()(const tbb::blocked_range<size_t>& R) const {

//std::cout << std::endl << "Range = " << R.begin() << "\t" << R.end();
unsigned long int sum = 0;
for(size_t i = R.begin(); i < R.end(); ++i) {

40 sum += Takeuchi(i, i+1, i+2);
}
//std::cout << "\n Sum = " << sum << std::endl;

}
};

45

int main(int argc, char *argv[]) {
unsigned int N = 16;
if(argc == 2) N = atoi(argv[1]);

50 std::cout << "Calculate schedule.\n";
tbb::parallel_for(tbb::blocked_range<size_t>(0, N),NoWorkDone());

std::cout << "Takeuchi benchmark...\n";
tbb::parallel_for(tbb::blocked_range<size_t>(0, N),

55 TakeuchiBenchmark());
return (EXIT_SUCCESS);

232 12 Parallel Programming

}

Listing 12.9 Example of using Intel TBB

As shown in Listing 12.9, the operator() function is defined for the class; the
TBB library splits the workload using tbb::blocked_range<size>. The partitioning
scheme can be changed by passing a custom partitioner to the parallel_for func-
tion. The parallel_for function introduces parallelism in the code. TBB also sup-
ports nested parallelism. A nice use of C++ templates is the lambda expression to
encapsulate a code block without creating a dummy class with the operator(). This
features uses recent features of the C++ 00x standard, but is supported in GCC 4.5.0.
An example is shown below in Listing 12.10.

int main(int argc, char *argv[]) {
unsigned int N = 16;
if(argc == 2) N = atoi(argv[1]);

5 parallel_for(blocked_range<size_t>(0, N),
[=](const blocked_range<size_t>& R) {

unsigned long int sum = 0;
for(size_t i = R.begin(); i < R.end(); ++i)
sum += TakeuchiBenchmark::Takeuchi(i, i+1, i+2);

10 }
);
return (EXIT_SUCCESS);

}

Listing 12.10 Lambda expressions in TBB

As with OpenMP, TBB also defines reductions to be performed in parallel. Com-
plete C++ support for binary operator is available, and using this, arbitrary complex
binary reductions can be performed in parallel. Another key facility provided by
TBB is a memory allocator optimized for multi-threaded allocations.

12.4.2 CUDA : C Unified Device Architecture

A recent entrant to the parallel computing stage is the GPGPU (general purpose
computing on graphics processing unit) concept. Graphics chips (such as those by
NVIDIA and AMD) have enormous compute power in the form of streaming pro-
cessors designed for high-performance graphics. As compared to the CPU architec-
ture (shown in Figure 12.4(a)) the GPUs have most of the silicon area dedicated
to ALUs (as shown in Figure 12.4(b)). The branch control logic and memory la-
tency hiding caches are smaller. This presents both an opportunity and a challenge,
as traditional C/C++ programs are written for execution on a CPU and thus cannot
directly take advantage of the massive data-parallelism which is present in the GPU.

Thus, programming GPUs is accomplished by special compilers and tools, al-
though recent progress in auto-parallelizing (at least FORTRAN code) has been
made. One such programming system for GPUs is CUDA by NVIDIA. CUDA is an
acronym for C Unified Device Architecture. A more standardized (able to execute

12.4 Other libraries and tools 233

(a) CPU Organization (b) GPU Organization

Fig. 12.4 Difference between CPU and GPU organization

on NVIDIA as well as AMD chips) method is to use OpenCL. In this section we
describe the use of CUDA and OpenCL to program GPUs.

Our test hardware for the CUDA setup is a GeForce GT 240 graphics card
plugged into a PCI-Express slot on an Opteron x86-64 host running GNU/Linux
(Fedora Core 12). NVIDIA CUDA ships with a deviceQuery utility which can
report the various properties of the underlying hardware, this is required when writ-
ing programs which are expected to run on generic CUDA hardware. Running this
program on our CUDA setup we get:

./bin/linux/release/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

There is 1 device supporting CUDA

Device 0: "GeForce GT 240"
CUDA Driver Version: 3.10
CUDA Runtime Version: 3.10
CUDA Capability Major revision number: 1
CUDA Capability Minor revision number: 2
Total amount of global memory: 1073020928 bytes
Number of multiprocessors: 12
Number of cores: 96
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 2147483647 bytes
Texture alignment: 256 bytes
Clock rate: 1.34 GHz
Concurrent copy and execution: Yes

234 12 Parallel Programming

Run time limit on kernels: Yes
Integrated: No
Support host page-locked memory mapping: Yes
Compute mode: Default
Concurrent kernel execution: No
Device has ECC support enabled: No

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 3.10,
CUDA Runtime Version = 3.10, NumDevs = 1, Device = GeForce GT 240

PASSED

12.4.3 SIMT in CUDA

The CUDA stream multiprocessors create, manage, schedule and execute threads in
groups called warps. Threads belonging to a warp have the same instruction stream
(program code) and start off from the same location. Each thread has its own pro-
gram counter (PC), register state and thus can branch independently of each other;
however, as long the threads execute the same instruction path full efficiency is re-
alized, but as soon as a thread diverges, the warp serializes the execution of thread
until the threads synchronize to the same point. This behavior, where a group of
threads execute the same instruction, but may diverge out of sequence is termed
SIMT (single instruction multiple thread). As long as the programmer can opti-
mize that code path divergence is minimized, efficiency can be optimized, but unlike
SIMD, branches can be taken by the threaded code. The ability of the GPU archi-
tecture to launch threads and schedule them in hardware makes the runtime penalty
of this thread management small compared to execution time of the data-parallel
portions of the kernel.

12.4.4 Compute Kernels in CUDA

The key concept in CUDA is the idea of compute kernels. Compute kernels are C
functions which are executed in parallel by N different CUDA threads. Consider a
compute kernel as shown below:

__global__ void AddVector(float* A, float* B, float* SUM) {
int i = threadIdx.x;
SUM[i] = A[i] + B[i];

}
5

int main() {
AddVector<<<1,N>>>(A, B, SUM);
// Parallel invocation of N threads
return (0);

10 }

12.4 Other libraries and tools 235

In the above listing N threads execute the AddVector compute kernel in parallel. The
__global__ declaration specifier denotes the function as a CUDA kernel function.
Inside the kernel the variable threadIdx and blockIdx are defined by the CUDA sys-
tem. These are actually three dimensional vector. Calling the kernel with different
blocks is done as:

{
AddVector<<< numBlocks, numThreadsPerBlock >>>(A,B,SUM);

}

There is a system imposed limit on the number of threads per block, due in part to
the CUDA constraints on limited memory resources on the core. Moreover, thread
blocks are required to execute independently, as well as in any order. Threads within
a block can cooperate by sharing data through shared memory and using synchro-
nization functions.

12.4.5 Compiling CUDA code with NVCC

NVCC is the CUDA compiler driver which compiles C code to a form which can be
executed on the GPU. The compiler outputs PTX (assembly) and/or binary instruc-
tions from C code containing a mixture of host code and GPU code (kernels).

CUDA functions to allocate memory on the host and device allow the program-
mer to transfer data for computation on the GPU. Texture memory on the GPU can
also be used as a lookup memory for constant data. Consider the following example:

// \file cuda_memory.cu
// \author Sandeep Koranne, (C) 2010
// \description CUDA example file

5 #include <cuda.h>
#include <cuda_runtime_api.h>
#include <iostream>

__global__ void DepictBlockDim(float* SUM, int N) {
10 int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i < N) SUM[i] = blockDim.x;
}

__global__ void DepictBlockId(float* SUM, int N) {
15 int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i < N) SUM[i] = blockIdx.x;
}

__global__ void DepictIteration(float* SUM, int N) {
20 int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i < N) SUM[i] = i;
}

__global__ void AddVector(float* A, float* B, float* SUM, int N) {
25 int i = threadIdx.x;

SUM[i] = A[i] + B[i];
}

int main() {
30 cuInit(0);

236 12 Parallel Programming

int deviceCount = 0;
cudaGetDeviceCount(&deviceCount);
if(deviceCount == 0) {

std::cerr << "Unable to find any CUDA devices..\n";
35 return (1);

}
const unsigned int N = 16;
const size_t size = N*sizeof(float);
std::cout << deviceCount << " CUDA device(s) found.\n";

40 float* A = (float*) malloc(size);
float* B = (float*) malloc(size);
float* SUM = (float*) malloc(size);
for(unsigned int i=0; i < N; ++i) {

A[i] = B[i] = 1.0 * i;
45 SUM[i] = 0.0;

}
float *d_A = NULL, *d_B = NULL, *d_SUM = NULL;
cudaMalloc((void**) &d_A, size); // device allocate
cudaMalloc((void**) &d_B, size); // device allocate

50 cudaMalloc((void**) &d_SUM, size); // device allocate

cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);

55 //AddVector<<<1,N>>>(d_A, d_B, d_SUM); // SUM = A + B
int numThreadsPerBlock = 256;
int blocksPerGrid = (N + numThreadsPerBlock -1)/numThreadsPerBlock;
std::cout << "Blocks per grid = " << blocksPerGrid << "\n";
//DepictBlockDim<<<8,8>>> (d_SUM,N);

60 //DepictBlockId<<<8,8>>> (d_SUM,N);
//DepictIteration<<<8,8>>>(d_SUM, N);
AddVector<<<blocksPerGrid,numThreadsPerBlock>>>(d_A, d_B, d_SUM, N);
cudaMemcpy(SUM, d_SUM, size, cudaMemcpyDeviceToHost);
cudaFree(d_A);

65 cudaFree(d_B);
cudaFree(d_SUM);
for(unsigned int i=0; i < N; ++i) {

std::cout << SUM[i] << " ";
}

70 std::cout << std::endl;
return (0);

}

Listing 12.11 Kernel dimensions in CUDA

We compile this CUDA file as:

nvcc -I /usr/local/cuda/include/ cuda_memory.cu -lcuda

Listing 12.11 has many different compute kernels. Except for the AddVector kernel,
the purpose is to demonstrate the effect of kernel dimensions, parameters to the
CUDA runtime listed within the <<<B,N>>> angled brackets. The first argument is the
blocksPerGrid, and the second argument is threadsPerBlock. The kernel
implicit variable blockDim is defined as the dimension of the block, while individual
values of the block id are available in the implicit variable blockIdx. We selectively
run each of these compute kernels, the results are shown below:

Kernel is DepictBlockDim

$./a.out
1 CUDA device(s) found.
Blocks per grid = 2

12.4 Other libraries and tools 237

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

The block dimension is indeed 8, as that was passed as the argument to the CUDA
runtime.

Kernel is DepictBlockId

$./a.out
1 CUDA device(s) found.
Blocks per grid = 2
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Since there are a total of 16 values, and 8 blocks per grid, there will be a total of 2
blocks, of id 0 and id 1. This is what we see from the above output.

Kernel is DepictIteration

$./a.out
1 CUDA device(s) found.
Blocks per grid = 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In this kernel we compute the iteration index for each member of the array. Typi-
cally, this formulation is used in most kernels, the id of the variable is computed as
a function of blockDim, blockId, and threadId. If a multi-dimensioned thread block
is used, conventional row-column matrix index conversion formulas can be used to
compute the index.

Kernel is AddVector

$./a.out
1 CUDA device(s) found.
Blocks per grid = 2
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

This kernel performs the actual addition. Since both vectors A and B are sequentially
filled, we expect the SUM array to be comprising of sequential even numbers. For
high-efficiency, number of threads per block is set to 256.

12.4.5.1 PyCUDA

While CUDA API and the nvcc compiler provide complete access to the GPU
hardware, programming in CUDA is low-level and time consuming. For numerical
applications which involve operations on array, an alternative is to use a Python
software library called PyCUDA which is a higher level alternative.

Consider the following example in PyCUDA as shown in Listing 12.12.

\file pycuda_props.py
\author Sandeep Koranne (C) 2010
\description Example file using PyCUDA for GP GPU Computing
import pycuda.driver as drv

5 import pycuda.autoinit
import numpy

238 12 Parallel Programming

import sys

from pycuda.compiler import SourceModule
10

mod = SourceModule("""
__global__ void VectorAdd(float* A, float* B, float* SUM) {

const int i = threadIdx.x;
SUM[i] = A[i] + B[i];

15 }

__global__ void DepictBlockId(float *SUM) {
const int i = blockDim.x * blockIdx.x + threadIdx.x;
SUM[i] = i;

20 }
""")

VectorAdd = mod.get_function("VectorAdd")

25 numCudaDevices = drv.Device.count()

if numCudaDevices == 0:
print "No CUDA devices detected..\n"
sys.exit(1)

30 else:
print "%d CUDA devices detected." % numCudaDevices
dev = drv.Device(0)
print "Compute Capability %d.%d" %dev.compute_capability()
print "Device has %s MB memory" % (dev.total_memory()//(1024*1024))

35
we have the CUDA device
N = 16
a = numpy.random.randn(N).astype(numpy.float32)
b = numpy.random.randn(N).astype(numpy.float32)

40 sum = numpy.zeros_like(a)
#VectorAdd(drv.In(a), drv.In(b), drv.Out(sum),block=(N,2,1))
DepictBlockId = mod.get_function("DepictBlockId")
DepictBlockId(drv.Out(sum), block=(N,2,1))

45 print sum

sys.exit(0)

Listing 12.12 Example of PyCUDA

Running the code in Listing 12.12 we get:

$ python pycuda_props.py
1 CUDA devices detected.
Compute Capability 1.2
Device has 1023 MB memory
[0. 1. 2. 3. 4. 5. 6. 7. 8
...
]

Using GPUarrays, the task of running simple compute kernels can be simplified
even further as shown in Listing 12.13.

\file gpuarray.py
\author Sandeep Koranne (C) 2010
\description Example of using GPUarray in PyCUDA with CUDA
import pycuda.gpuarray as gpuarray

5 import pycuda.driver as drv
import pycuda.autoinit

12.4 Other libraries and tools 239

import numpy
import sys

10 numCudaDevices = drv.Device.count()

if numCudaDevices == 0:
print "No CUDA devices detected..\n"
sys.exit(1)

15
N=4
h_a = numpy.arange(N).astype(numpy.float32)
d_a = gpuarray.to_gpu(h_a)
a_2x = (2*d_a).get()

20 print "Host Array = "
print h_a
print "After computing"
print a_2x

25
sys.exit(0)

Listing 12.13 Example of GPUarrays in PyCUDA

Running the code in Listing 12.13, we get:

$python gpuarray.py
Host Array =
[0. 1. 2. 3.]
After computing
[0. 2. 4. 6.]

Comparing the code in Listing 12.13 to the C code compiled with nvcc, one
can immediately see the reduction in code that can be done using PyCUDA. The
use of NumPy and general Python language can be used to write the non compute-
intensive part of the program, while CUDA based kernels can perform the compute
intensive code blocks. The low level CUDA APIs are exposed using the Driver and
Device class in PyCUDA.

12.4.6 OpenCL (Open Compute Language)

OpenCL (Open Compute Language) is an open standard for parallel programming
of heterogeneous systems. OpenCL standard is managed by the Khronos Group
(same group who manages OpenGL standard). OpenCL is designed to run em-
bedded systems, personal computers, and high-performance computing systems.
OpenCL runs on CUDA for NVIDIA, and implementations of OpenCL for other
GPUs are also available.

It is instructive to compare the compute kernel for vector addition (see List-
ing 12.4.4) with the OpenCL kernel shown below:

__kernel void AddVector(__global const float *A,
__global const float *B,
__global float *SUM) {

int elementIndex = get_global_id(0);

240 12 Parallel Programming

5 SUM[elementIndex] = A[elementIndex] + B[elementIndex];
}

The key difference in the OpenCL kernel is the computation of thread index equiv-
alent, elementIndex is done using function calls as opposed to implicit variables
(as done in CUDA). OpenCL has functions to return the (i) work group index, (ii)
work group size, (iii) thread index. The function used above get_global_id is used
to get the id globally, while get_local_id is used to get the id within the work group.
Starting with version 3.1 of the CUDA software, OpenCL is supported.

12.5 Conclusion

computing. More and more desktop computers also come equipped with multicore
CPUs. In this chapter we have briefly introduced open-source tools and techniques
to write efficient and scalable parallel programs. In this chapter we have discussed
POSIX Threading library, OpenMP, MPI, Intel Thread Building Blocks, and GPU
computing with CUDA and OpenCL. We expect parallel and multi-core computing
to increase its impact on scientific as well as general computing in the years ahead.

Parallel, especially multicore computing has become the mainstay of high-performance

Chapter 13
Compiler Construction

Abstract A compiler refers to a software tool or system which performs automatic
conversion from one computer language to another. Along the way, the compiler
tries to optimize the program while maintaining the semantics of the computation.
This chapter discusses the compiler construction tools flex, bison, and LLVM.
Related text processing tools such as m4, gperf and readline are also pre-
sented. We also discuss the various GNU binutils tools, including ar, nm and ld.
Examples using the various compiler construction tools are presented.

Contents
13.1 Introduction . 241
13.2 Anatomy of a Compiler . 242
13.3 Lexical Analysis . 243
13.4 YACC: Yet Another Compiler Compiler . 250
13.5 Code Generation . 256
13.6 LLVM: Low Level Virtual Machine . 273
13.7 Conclusion . 284

13.1 Introduction

In this chapter we discuss language processors and compiler construction tools. In
Section 13.2 we introduce the compiler construction concept. The flowchart for lan-
guage processing and translation is presented, and appropriate software tools for
each part of the flow are introduced. In Section 13.3 we discuss lexical analysis.
This problem has elegant mathematical roots and solutions from finite automata
are discussed. Utilities such as m4, readline, getopt are also introduced. In
Section 13.4 venerable parsing tool YACC and the ANTLR compiler construction
toolkit are described. The Boost SPIRIT framework is also described in 13.4.1.

In Section 13.5 we describe the code generation, and instruction representation
libraries available through GNU binutils. Other system tools such as linkers, archive
managers, ELF inspection are also discussed.

S. Koranne, Handbook of Open Source Tools, 241
DOI 10.1007/978-1-4419-7719-9_13, © Springer Science+Business Media, LLC 2011

242 13 Compiler Construction

The Low Level Virtual Machine (LLVM) intermediate representation, and com-
piler optimization system is discussed in Section 13.6. GCC plugin dragonegg,
the LLVM bit-code analyzer, and compiler optimization passes are discussed.

13.2 Anatomy of a Compiler

A compiler refers to a software tool or system which performs automatic conversion
from one computer language to another. Along the way, the compiler tries to opti-
mize the program while maintaining the semantics of the computation. The history
of compiler construction tools is rich and varied. Classical texts such as Aho, Ull-
man and Sethi’s Dragon Book have defined the field. As shown in Figure 13.1 the
process of compiling a source text can be broken into (i) lexical analysis, (ii) pars-
ing, (iii) intermediate code representation, (iv) optimization (which includes register
allocation, scheduling and rewriting), and (v) finally, instruction generation.

Fig. 13.1 Flow chart of compiler construction

Alongwith the compiler proper, the act of compiling also includes ancillary ac-
tivities such as (i) assembler, (ii) loaders and linkers, (iii) binary object file manipu-
lation, and (iv) library archive maintenance. Towards this end, in this part we have
also discussed the important and ubiquitous GNU bin-utils. More details are
given below in Section 13.5.1 Intermediate representation (IR) and compiler opti-
mizations are discussed later in Section 13.6.

13.3 Lexical Analysis 243

13.3 Lexical Analysis

Lexical analysis is defined as the task of tokenizing a given input stream accord-
ing to pre-defined rules. Examples of lexical analysis abound in computer literature,
from command line parsing, macro substitution, UNIX grep, to actual program-
ming language compilers. The problem can be modeled as a halting problem on
finite automata. The rules for lexical analysis are input by the user, and most com-
monly a software tool is used to construct a lexical scanner. The software usually
also optimizes the scanner so that it reduces memory usage during scanning, and
optimizes the performance. The common lexical analysis generator is lex, and its
GNU implementation is called flex. This is discussed below in Subsection 13.3.1.

As we mentioned above, lexical analysis is also used in grep (see Chapter 1.3),
macro processor (m4), GNU readline, and the GNU perfect hash generator
(gperf). These are discussed below.

13.3.1 GNU flex

GNU flex automatically generates programs whose control flow is directed by
instances of regular expressions in the input stream. It is well suited for generating
lexical analyzers and token processors, and for segmenting input in preparation for
a parsing routine.

GNU flex source is a table of regular expressions (called rules) and corre-
sponding program fragments, called actions. The table is translated to a program by
flex which reads an input stream, copying it to an output stream and partitioning
the input into strings which match the given expressions. Each such string is rec-
ognized using deterministic finite automata (DFA); when the string is matched the
corresponding program fragment is executed. GNU flex generates as output a C
source file named ‘lex.yy.c’ (by default), which defines a routine yylex(). This file is
compiled and linked with the ‘-lfl’ library to produce an executable. The following
flex input specifies a scanner which whenever it encounters the string “username”
will replace it with the user’s login name:

%%
username printf("%s", getlogin());

By default, any text not matched by a flex scanner is copied to the output, so the net
effect of this scanner is to copy its input file to its output with each occurrence of
“username” expanded.

13.3.1.1 Format of the input file

The GNU flex input file consists of three subsections, separated by a line with just
%% in it:

244 13 Compiler Construction

definitions
%%
rules
%%
user code

The definitions subsection contains declarations of simple name definitions to sim-
plify the scanner specification, and declarations of start conditions. The command-
line usage of GNU flex is:

Usage: flex [OPTIONS] [FILE]...
Generates programs that perform pattern-matching on text.

Debugging:
-p, --perf-report write performance report
-v, --verbose write summary of scanner statistics

Files:
-o, --outfile=FILE specify output filename
-S, --skel=FILE specify skeleton file
-t, --stdout write scanner on stdout

--yyclass=NAME name of C++ class
--header-file=FILE create a C header file
--tables-file[=FILE] write tables to FILE

-i, --case-insensitive ignore case in patterns
--yylineno track line count in yylineno

-+, --c++ generate C++ scanner class
-Dmacro[=defn]

#define macro defn (default defn is ’1’)

A more complete list of command line options can be found by running man
flex. Now we present some example of using GNU flex to generate a scanner.

/* A simple lexical scanner
(C) Sandeep Koranne, 2010.

*/
%{

5 #include <stdio.h>
#include <unistd.h>
int num_lines = 0;
char login_name[1024];

%}
10

%%
\n { ++num_lines; printf("\n"); }
username { cuserid(login_name); printf("%s", login_name); }
%%

15 int main()
{
yylex();
printf("# of lines = %d\n", num_lines);

}

Listing 13.1 Lex exampe file for username analysis

We generate a scanner using GNU flex as:

13.3 Lexical Analysis 245

$flex -o username.c username.l
$gcc -o substitute_username username.c -lfl
$ cat scanner_example.txt
This is a simple report generator.
username is writing this.
$ cat scanner_example.txt | ./substitute_username
This is a simple report generator.
skoranne is writing this.
of lines = 2

A slightly more involved example (coming from a Pascal compiler) is shown
below:

";" { return SEMI; }
":" { return COLON;}
"," { return COMA; }
"(" { return LP; }
")" { return RP ; }
"[" { return LB ; }
"]" { return RB ; }
":=" { return ASSGN ; }
and { return AND_TOK ; }
array { return ARRAY; }
[bB][eE][gG][iI][nN]{ return BEGIN_TOK; }
case { return CASE; }
div { return DIV_TOK; }
do { return DO; }
downto { return DOWNTO; }
else { return ELSE; }
end { return END; }
for { return FOR; }
function{ return FUNCTION ; }
if { return IF ; }

This conversion of fixed size and constant strings (mostly coming from the re-
served words and keywords of programming languages) into tokens is so common
that a special tool GNU gperf has been developed which performs perfect hash-
ing. This makes the lexical scanner perform much faster at this task of identifying
keywords.

13.3.1.2 GNU gperf: the perfect hash generator

GNU gperf reads in a set of keywords from a user-provided file (which typically
has a ‘.gperf’ extension, although this is not mandatory)for example, commandop-
tions.gperfand generates C/C++ sources for the hash table, hashing, and lookup
methods. All code is written to standard output (by default).

246 13 Compiler Construction

The input file for gperf is similar in format to GNU flex; it contains

%{
/* C code */
%}
declarations
%%
keywords
%%
functions

The declarations subsection is optional and can be omitted as long as GNU gperf
is not invoked with the -t option. In case the -t option is used, the last component in
the declaration subsection must be a structure whose first field must be a char* or
const char* identifier called name.

The next construct in the file is the keywords subsection. Each line in this sub-
section that begins with the number sign (#) in the first column is a comment. The
keywords are the first field of each non-comment line in the keywords subsection.
Using the Pascal example from above:

/*
GNU gperf input file for the Pascal language
(C) Sandeep Koranne, 2010

*/
5 %{

#include <stdio.h>
#include <string.h>
%}
%%

10 #Pascal keywords
and, AND_TOK
array, ARRAY
begin, BEGIN_TOK
case, CASE

15 div, DIV_TOK
do, DO
downto, DOWNTO
else, ELSE
end, END

20 for, FOR
function, FUNCTION
if, IF
of, OF
or, OR_TOK

25 procedure, PROCEDURE
program, PROGRAM
then, THEN
to, TO
var, VAR_TOK

30 while, WHILE
write, WRITE_TOK
integer, INT_TYPE
real, REAL_TYPE
read, READ_TOK

35 repeat, REPEAT
until, UNTIL
goto, GOTO
%%

Listing 13.2 Example gperf input file for Pascal keywords

13.3 Lexical Analysis 247

A simple test harness to exercise the GNU gperf generated keyword checker com-
pared to a string comparison function was also written.

/*
Test harness for GNU gperf, performance characterization also
(C) Sandeep Koranne, 2010

*/
5

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

10 extern const char *in_word_set (const char *str, unsigned int len);

static const char* PASCAL_KW[] = { "and", "array", "begin",
"case", "div", "do", "downto",

"else", "end", "for",
15 "function", "if", "of", "or",

"procedure", "program","then",
"to", "var", "while", "write",
"integer", "real", "read",
"repeat", "until", "goto"

20 };

int main(int argc, char *argv[])
{
FILE *fp = NULL;

25 int kw_found = 0;
if(argc != 2) {

fprintf(stderr, "usage: pascal_kw <filename>\n");
exit(1);

}
30 fp = fopen(argv[1], "rt");

if(!fp) {
fprintf(stderr, "Unable to open Pascal program file : %s", argv[1]);
exit(1);

}
35

while(1) {
int i;
char kw[1024];
int num_read = fscanf(fp, "%s", kw);

40 if(num_read == 0) break;
if(strcmp(kw, "end.") == 0) { kw_found++; break; }
#ifndef USE_GPERF
for(i=0; i < 27;++i) {

if(strcmp(kw, PASCAL_KW[i]) == 0) { kw_found++; break; }
45 }

#else
if(in_word_set(kw, strlen(kw))) kw_found++;
#endif

}
50 fclose(fp);

printf("%d Pascal keywords found.\n", kw_found);
return 0;

}

Listing 13.3 Test harness for gperf for Pascal keywords

On a collection of Pascal programs totalling 4.9 million lines of code containing 5.7
million Pascal keywords, the gperf based functions are almost 2 times faster than
the string comparison function.

248 13 Compiler Construction

13.3.2 GNU m4

GNU m4 is a macro processor, meaning that it copies its input to the output, ex-
panding macros along the way. In this regard it’s similar to the C pre-processor
‘cpp’. Like cpp, m4 originally was written as the pre-processor for a programming
language (Rational FORTRAN); however, m4 is much more powerful and feature-
rich than ‘cpp’, which makes it much more useful than just defining constants in
programs. Consider the simple example:

$cat expand_hello.m4
define(‘hello’, ‘Hello World from here’)

Note the particular use of quotation mark around the text to be macro processed.
The format is intuitive, wherever the pattern exists, m4 will replace that with the
defined macro. We run m4 as:

$cat m4_example.txt
Are you saying hello
$m4 expand_hello.m4 m4_example.txt
Are you saying Hello World from here

GNU m4 writes the processed output on standard output. Some of the commonly
used command line options for m4 are:

‘--help’
‘--version’
‘-E’
‘--fatal-warnings’

Controls the effect of warnings.
‘-i’
‘--interactive’
‘-e’

Makes this invocation of ‘m4’ interactive.

‘-P’
‘--prefix-builtins’

‘-Q’
‘--quiet’

GNU m4 also allows for defining pre-processor macros on the command line itself.

‘-D NAME[=VALUE]’
‘--define=NAME[=VALUE]’

‘-I DIRECTORY’
‘--include=DIRECTORY’

13.3 Lexical Analysis 249

‘-U NAME’
‘--undefine=NAME’

13.3.3 GNU readline

GNU readline reads a line from the terminal and returns it as a prompt. If prompt
is NULL or the empty string, no prompt is issued. The line returned is allocated with
malloc; the caller must free it when finished. The line returned has the final newline
removed, so only the text of the line remains. GNU readline offers editing capa-
bilities while the user is entering the line. By default, the line editing commands are
similar to those of GNU emacs. Using GNU readline is simple as shown in the
following API example:

#include <stdio.h>
#include <readline/readline.h>
#include <readline/history.h>
char * readline (const char *prompt);

13.3.4 getopt

The getopt() function parses the command-line arguments. Its arguments argc and
argv are the argument count and array as passed to the main() function on program
invocation. An element of argv that starts with ‘-’ is an option element. The charac-
ters of this element (aside from the initial ’-’) are the option characters. If getopt()

is called repeatedly, it returns successively each of the option characters from each
of the option elements. The variable optind is the index of the next element to be
processed in argv. If there are no more option characters, getopt() returns -1. Then
optind is the index in argv of the first argv-element that is not an option. Consider
the following API description:

#include <unistd.h>
int getopt(int argc, char * const argv[],

const char *optstring);

5 extern char *optarg;
extern int optind, opterr, optopt;
#include <getopt.h>

The getopt_long() function works like getopt() except that it also accepts long op-
tions, started with two dashes. A more detailed example from a real example is
shown below:

int main(int argc, char* argv []) {
int polymake_mode=0, graph_extraction_mode=0,latex_mode=0,reduced_mode=1;
char *cano_file_name = NULL;
int c;

5 dimension = 3; // by default

250 13 Compiler Construction

while ((c = getopt(argc, argv, "hprgGlf:d:m:")) != -1) {
switch(c) {
case ’f’:

cano_file_name = new char[strlen(optarg) + 1];
10 strcpy(cano_file_name, optarg);

break;
case ’d’:

dimension = atoi(optarg);
break;

15 case ’g’:
graph_extraction_mode = 1;
break;

case ’G’:
graph_extraction_mode = 2;

20 break;
case ’r’:

reduced_mode = 0;
break;

case ’l’:
25 latex_mode = 1;

break;
case ’m’:

SINGLE_SEPARATION_MODE = atoi(optarg);
break;

30 case ’p’:
polymake_mode = 1;
break;

case ’h’:
case ’?’:

35 std::cerr << "pm_cd -f <cano> -d <dim> [-p | -g]\n";
return 1;

}
}

Listing 13.4 Example of using getopt

13.4 YACC: Yet Another Compiler Compiler

Yacc provides a general tool for describing the input to a computer program. The
user specifies the structures of his input, together with code to be invoked as each
such structure is recognized. Yacc turns such a specification into a subroutine that
handles the input process. The GNU implementation of yacc is called bison. Bi-
son is a general-purpose parser generator that converts a grammar description for
an LALR(1) context-free grammar into a C (as well as C++) program to parse
that grammar. Bison is upward compatible with Yacc. Input files should follow the
yacc convention of ending in ‘.y’. Unlike yacc, the generated files do not have fixed
names, but instead use the prefix of the input file. Usage:

Usage: bison [OPTION]... FILE
Generate LALR(1) and GLR parsers.
Operation modes:
-h, --help display this help and exit
-V, --version output version information
-y, --yacc emulate POSIX Yacc

13.4 YACC: Yet Another Compiler Compiler 251

Output:
--defines[=FILE] also produce a header file
-d likewise
-v, --verbose same as ‘--report=state’
-b, --file-prefix=PREFIX specify a PREFIX for output files
-o, --output=FILE leave output to FILE
-g, --graph[=FILE] also output a graph of the automaton

A more comprehensive listing of command line options can be found by running
man bison. An example of a simple library checkin, and checkout system can
be constructed using GNU flex and GNU bison. The grammar of the library
database control language is very simple; consider an example transcript shown
below:

checkout book 98
checkout book 200
checkin book 76
checkin book 98
checkout book 23
checkout book 465

The grammar of the library database control language in BNF notation is the
following:

commands: /* empty */
| commands command
;

command:
book_check_in | book_check_out
;

book_check_in: CHECKIN_TOKEN BOOK_TOKEN NUMBER_TOKEN
{ gTotalBooksCheckedOut--; } ;

book_check_out: CHECKOUT_TOKEN BOOK_TOKEN NUMBER_TOKEN
{ gTotalBooksCheckedOut++; } ;

The language consists of production rules which refer to tokens and other rules.
To implement the lexical scanner which will translate the keywords checkin,
checkout to a valid representation we use GNU flex with the following input
file.

/*
Simple library checkin, checkout controller.
(C) Sandeep Koranne, 2010

*/
%{
#include <stdio.h>
#include "y.tab.h"
%}

%%
[0-9]+ return NUMBER_TOKEN;
book return BOOK_TOKEN;
checkin return CHECKIN_TOKEN;

252 13 Compiler Construction

checkout return CHECKOUT_TOKEN;
\n ;
[\t]+ ;
%%

The GNU bison input file is shown in Listing 13.5.

/* \file lib.y
\author Sandeep Koranne, (C) 2010
\description Simple library checkin, checkout controller.

5 Library Example:
simple example is
checkin book 76
checkout book 80

*/
10 %{

#include <stdio.h>
#include <string.h>
int gTotalBooksCheckedOut = 0;
void yyerror(const char *str) {

15 fprintf(stderr, "syntax error: %s\n", str);
}
int yywrap() { return 1; }
int main() {

yyparse();
20 printf("\n %d books still checked out.\n", gTotalBooksCheckedOut);

return 0;
}

%}

25 %token NUMBER_TOKEN BOOK_TOKEN CHECKIN_TOKEN CHECKOUT_TOKEN

%%
commands: /* empty */

| commands command
30 ;

command:
book_check_in | book_check_out
;

book_check_in: CHECKIN_TOKEN BOOK_TOKEN NUMBER_TOKEN
35 { gTotalBooksCheckedOut--; } ;

book_check_out: CHECKOUT_TOKEN BOOK_TOKEN NUMBER_TOKEN
{ gTotalBooksCheckedOut++; } ;

Listing 13.5 Example of GNU bison Yacc file

We generate the lexical scanner and parser using the above tools as:

$flex lib.l
$yacc -d lib.y
$gcc lex.yy.c y.tab.c -o library_system -lfl
$cat lib.txt | ./library_system
2 books still checked out.

At this time it is instructive to compare the EBNF grammar with the Yacc de-
scription we input to GNU bison (as shown in Listing 13.5). Mid-rule actions can
also be specified in the rules sections; these can be used to call user defined function
when part of a rule has been successfully matched.

13.4 YACC: Yet Another Compiler Compiler 253

13.4.1 Boost SPIRIT Framework

The Spirit Parser Framework is an object oriented recursive descent parser generator
framework implemented using template meta-programming techniques. Expression
templates allow users to approximate the syntax of Extended Backus Naur Form
(EBNF) completely in C++. Parser objects are composed through operator overload-
ing and the result is a backtracking LL(∞) parser that is capable of parsing rather
ambiguous grammars. Spirit can be used for both lexing and parsing, together or
separately. Consider the following example of parsing a file in the ‘.eqn’ format:

a=b#c;
o=(c&d)$(e#!f);

The above ‘.eqn’ file describes two equations, with output a as the boolean OR
of b and c, and the output o as the Boolean XOR of two sub-expressions; c AND
d and e OR NOT f . Such a format is common in VLSI CAD tools. The SPIRIT
implementation of this parser is shown below:

struct EqnParser : public grammar<EqnParser> {
template <typename ScannerT>
struct definition {
definition(EqnParser const& /*self*/) {
expression
= str_p("INPUT()") [&do_input]
| str_p("OUTPUT()")[&do_output]
| term
>> *((’#’ >> term) [&do_or]

| (’$’ >> term)[&do_xor]
| (’-’ >> term)[&do_subt]
)

;

term
= factor
>> *((’&’ >> factor)[&do_and]

| (’/’ >> factor)[&do_div]
)

;

factor
= lexeme_d[(+digit_p)[&do_int]]
| lexeme_d[(+(alnum_p|’_’|’[’|’]’))[&do_literal]]
| ’(’ >> expression[&do_expr] >> ’)’
| (’!’ >> factor)[&do_neg]
| (’#’ >> factor)
;

assign
= lexeme_d[(+(alnum_p|’_’|’[’|’]’))[&do_lhs]]
>> ’=’ >> expression[&do_final] >> ’;’
;

}

254 13 Compiler Construction

rule<ScannerT> expression, term, factor, assign;
rule<ScannerT> const&
start() const { return assign; }

};
};

The parser is modeled after a classic recursive descent parser for parsing mathe-
matical expressions of the form:

start <- assignment;
assignment <- lhs ’=’ rhs;
lhs <- literal;
rhs <- expression;
expression <- ’(’ expression ’)’ | term op expression;
op <- XOR | NEG;
term <- term AND factor;
factor <- literal | literal OR factor;

Using Boost SPIRIT framework, the formal grammar is translated to C++ code
using the following conventions: (i) production choices are delineated using the |

operator, (ii) Kleene star closures are defined using the ‘*’ operator, (iii) the stream
redirection operator >> is overloaded to define production rules, and (iv) the array
index operator ‘[]’ is overloaded to define the function to be called when the produc-
tion is matched. In the above example, we see that when the operator ‘#’ is matched
for example, the do_or function is called. The function to be called is defined to
accept the left and right operand, i.e.:

void do_xor(char const* l, char const* r) {
// take the 2 top elements from the stack
// and make their tree and add to sub tree
Tree* pT = new Tree(XOR, GetName());

5 pT->left = treeStack.top(); treeStack.pop();
pT->right = treeStack.top(); treeStack.pop();
treeStack.push(pT);

}

Consider a ‘.eqn’ file comprising of a single equation:

o1 = !a # !b;

When we run our equation parser program with this input we get:

$./eqn < b.eqn
LHS = (o1)
PUSH LIT(a)
NEG
PUSH LIT(b)
NEG
ADD
Parsing succeeded

InSet has 2 inputs

13.4 YACC: Yet Another Compiler Compiler 255

OutSet has 1 outputs
INORDER = a b ;
OUTORDER = o1 ;

o1 = T2;
T2 = T1 + T0;
T1 = !b;
T0 = !a;

The parser automatically generates the NEG function calls to compute the comple-
ment of a to get a′, similarly for b. These are then ORed together to produce T 2
which is assigned to the output o1. The complete equation parser program includes
logic to figure out the input set (any literal which is not assigned), and the output set
(any literal which is assigned, but is itself not an operand in any expression). The
final set of outputs is written out to standard out. A more complex example is shown
below:

a=INPUT();
b=INPUT();
c=INPUT();
d=INPUT();
o1=OUTPUT();
o2=OUTPUT();
o1 = (!a # !b) & (!c $ (a&d));
o2 = (!e $ f) $ (a # !b);
o3 = (f $ e) & (a # b);

The generated equations are:

INORDER = a b c d e f ;
OUTORDER = o1 o2 o3 ;

o1 = T6;
T6 = T5 * T2;
T5 = T4 * !T3 + ! T4 * T3 ;
T4 = d * a;
T3 = !c;
T2 = T1 + T0;
T1 = !b;
T0 = !a;

o2 = T11;
T11 = T10 * !T8 + ! T10 * T8 ;
T10 = T9 + a;
T9 = !b;
T8 = f * !T7 + ! f * T7 ;
T7 = !e;

o3 = T14;
T14 = T13 * T12;
T13 = b + a;

256 13 Compiler Construction

T12 = e * !f + ! e * f ;

13.5 Code Generation

In this chapter we discuss the code representation used in the back-end of the com-
piler. System utilities related to compilers, such as assemblers, linkers, archive man-
agers, ELF inspection utilities are also discussed.

13.5.1 GNU Binutils

The GNU Binutils are a collection of binary tools. The main ones are:

1. ld - the GNU linker.
2. as - the GNU assembler.

All the tools within the GNU binutils toolset are listed below:

1. addr2line: converts addresses into filenames and line numbers,
2. ar: a utility for creating, modifying and extracting from archives,
3. c++filt: filter to demangle encoded C++ symbols,
4. gold: a new, faster, ELF only linker,
5. gprof: displays profiling information,
6. nm: lists symbols from object files,
7. objcopy: copys and translates object files,
8. objdump: displays information from object files,
9. ranlib: generates an index to the contents of an archive,

10. readelf: displays information from any ELF format object file,
11. size: lists the subsection sizes of an object or archive file,
12. strings: lists printable strings from files,
13. strip: discards symbols,
14. BFD: binary file descriptor,
15. opcodes: opcode generalization and indirection library.

We discuss each of them in the following sections.

13.5.1.1 GNU Binutils : addr2line and libunwind

We first show the usage of addr2line.

Usage: addr2line [option(s)] [addr(s)]
Convert addresses into line number/file name pairs.
-b --target=<bfdname> Set the binary file format
-e --exe=<executable> Set the input file name

13.5 Code Generation 257

-i --inlines Unwind inlined functions
-f --functions Show function names
-C --demangle[=style] Demangle function names
-h --help Display this information
-v --version Display the program’s version

Consider the C language program:

#include <stdio.h>
#define UNW_LOCAL_ONLY
#include <libunwind.h>

5 void show_backtrace (void) {
unw_cursor_t cursor; unw_context_t uc;
unw_word_t ip, sp;

unw_getcontext(&uc);
10 unw_init_local(&cursor, &uc);

while (unw_step(&cursor) > 0) {
unw_get_reg(&cursor, UNW_REG_IP, &ip);
unw_get_reg(&cursor, UNW_REG_SP, &sp);
printf ("ip = %lx, sp = %lx\n", (long) ip, (long) sp);

15 }
}

int function_one(int x, int y) {
if (y == 0) { show_backtrace(); return 0; }

20 return (x+2)/y;
}

int function_two(int y) {
return function_one(y,0) + 2;

25 }

int main() {
function_two(12);
return 0;

30 }

Listing 13.6 Example of using addr2line

We compile this program with debug as follows:

$gcc -ggdb -c adr_example.c -o adr_example

The advantage of using addr2line is present when debugging a crash where
the stacktrace contains only function addresses. Using this program these function
addresses can be translated into file name and location. By using the libunwind
library we can debug the divide-by-zero problem. Running the executable gives us
the back trace:

ip = 80485df, sp = bfe22490
ip = 804860f, sp = bfe224a0
ip = 8048629, sp = bfe224c0
ip = 126bb6, sp = bfe224e0
ip = 8048491, sp = bfe22560

On a simple executable compiled with debug symbols, running addr2line re-
turns:

258 13 Compiler Construction

$addr2line -e adr_example -f 80485df 804860f 8048629
function_one
/home/skoranne/MYBOOK/adr_example.c:19
function_two
/home/skoranne/MYBOOK/adr_example.c:24
main
/home/skoranne/MYBOOK/adr_example.c:29

Another excellent usage of addr2line is in using the new advice functionality
in GCC 4.5.0. See Section 3.1.4 for more details and an example use.

13.5.1.2 GNU Binutils ar : archive manager

The GNU archive manager ar program creates, modifies, and extracts from archives.
An archive is a single file holding a collection of other files in a structure that makes
it possible to retrieve the original individual files (called members of the archive).
The original files contents, mode (permissions), timestamp, owner, and group are
preserved in the archive, and can be restored on extraction.

commands:
d delete file(s) from the archive
m[ab] move file(s) in the archive
p print file(s) found in the archive
q[f] quick append file(s) to the archive
r[ab][f][u] replace or insert new file(s) into the archive
t display contents of archive
x[o] extract file(s) from the archive
c do not warn if new archive was created
s perform indexing
v be verbose
V display version information and exit.

13.5.1.3 GNU Binutils c++filt : Name de-mangler for C++

Anyone who has every programmed in C++ and used STL knows the reams of
messages and long complex mangled names generated by the compiler to support
everything from operator overloading to lookup resolution. Fortunately, the system
also comes with a name demangler to perform the reverse translation using exactly
the same rules (ABI permitting). Consider the following code fragment:

// example code for C++ de-mangler
#include <vector>
#include <set>
typedef std::vector< std::set<int> > CPLX;

5 int function(void) {
CPLX A;
CPLX::const_iterator it = A.begin();
return (it != A.end());

}

13.5 Code Generation 259

Listing 13.7 Example of using c++filt for demangling C++ names

Now consider a break-point associated with the symbol:

_ZNSaISt3setIiSt4lessIiESaIiEEEC2Ev

Using the c++filt command we can easily translate this to:

$c++filt _ZNSaISt3setIiSt4lessIiESaIiEEEC2Ev
std::allocator<std::set<int, std::less<int>,

std::allocator<int> > >::allocator()

This informs us that the symbol is actually the memory allocator for the STL set.

13.5.1.4 GNU Binutils gprof

This utility is covered in Section 3.12.1.

13.5.1.5 GNU Binutils nm

The nm utility prints symbols present in object and executable files.

Usage: nm [option(s)] [file(s)]
List symbols in [file(s)] (a.out by default).
The options are:
-a, --debug-syms
-A, --print-file-name
-C, --demangle[=STYLE]

--no-demangle
-g, --extern-only
-l, --line-numbers

-n, --numeric-sort
-S, --print-size
-V, --version

The utility prints the function names of referenced functions as well. Consider
the nm utility run on an executable:

$nm adr_example
...
08048500 t frame_dummy
080485ce T function_one
080485f6 T function_two

U getcontext@@GLIBC_2.1
08048614 T main

U printf@@GLIBC_2.0

260 13 Compiler Construction

The nm command can be used to create a map file (a map file lists the address of
functions in the binary and the corresponding function name). A map file can be
passed as an input to the linker program (see Section 13.5.3). which will respect
the addressing information. It can also be reordered, based on profile data (see Sec-
tion 3.12.1). To create a map file using nm:

nm --extern-only --defined-only -v --print-file-name <object-file>

The produced map file has the following syntax:

cano_proc:08049690 T _init
cano_proc:08049cc0 T _start
cano_proc:08049cf0 T __gmon_start__
cano_proc:0804a1cb T _ZlsRSoRK22PolyRep
cano_proc:0804a97c T _ZN22PolyRep13RKSt6vectorIiSaIiEERSs
cano_proc:0804b0e4 T _ZN22PolyRep11ComputeRankEv
cano_proc:0804b12a T _ZN22PolyRep19CalculatePropertiesEv
cano_proc:0804dccc T _ZN13DP14parse_verticesEj
cano_proc:0804eb1c T _ZN13DP22parse_vertices_reducedEj
cano_proc:0804f406 T _ZN13DP12new_polytopeEv
cano_proc:0804f424 T _ZN13DP3RunEv
cano_proc:0804fe64 T main

13.5.1.6 GNU Binutils objcopy

The GNU objcopy utility copies the contents of an object file to another. GNU
objcopy uses the GNU BFD Library to read and write the object files. It can write
the destination object file in a format different from that of the source object file. The
exact behavior of GNU objcopy is controlled by command-line options. Note that
GNU objcopy should be able to copy a fully linked file between any two formats.
However, copying a relocatable object file between any two formats may not work
as expected.

Copies a binary file, possibly transforming it in the process
The options are:
-I --input-target <bfdname>
-O --output-target <bfdname>
-p --preserve-dates
-j --only-subsection <name>

--add-gnu-debuglink=<file>
-R --remove-subsection <name>
-S --strip-all

A more complete set of command line options can be found by running man
objcopy.

13.5.1.7 GNU Binutils objdump

GNU objdump displays information about one or more object files. The options
control what particular information to display. This information is mostly useful

13.5 Code Generation 261

to system programmers who are working on the compilation tools, as opposed to
programmers who just want their program to compile and work.

Usage: objdump <option(s)> <file(s)>
Display information from object <file(s)>.
At least one of the following switches must be given:
-a, --archive-headers
-f, --file-headers
-p, --private-headers
-h, --[subsection-]headers
-x, --all-headers
-d, --disassemble
-D, --disassemble-all
-S, --source
-s, --full-contents
-g, --debugging
-e, --debugging-tags
-G, --stabs
-W[lLiaprmfFsoR] or
-t, --syms
-T, --dynamic-syms
-r, --reloc
-R, --dynamic-reloc
@<file>
-v, --version
-i, --info
-H, --help

Running GNU objdump on an existing archive gives the (i) permission, (ii) file
size, (iii) file modification time stamp, and (iv) name of object file for all objects in
the archive. Example:

In archive /home/skoranne/OSS/lib/libelf.a:

begin.o: file format elf32-i386
rw-rw-r-- 500/500 18308 Jun 12 11:15 2010 begin.o

cntl.o: file format elf32-i386
rw-rw-r-- 500/500 10984 Jun 12 11:15 2010 cntl.o

13.5.1.8 GNU Binutils ranlib

GNU ranlib generates an index to the contents of an archive and stores it in the
archive. The index lists each symbol defined by a member of an archive that is a
relocatable object file. You may use nm -s or nm --print-armap to list this
index. An archive with such an index speeds up linking to the library and allows
routines in the library to call each other without regard to their placement in the
archive. Usage:

262 13 Compiler Construction

-a, archive header information
-f, display file header
-p, display format specific object header
-h, display subsection headers
-x, display all headers
-d, show assembler section
-S, show source code as well
-s, show full contents of subsections.

A more complete list of command line options can be found by running man
ranlib.

13.5.1.9 GNU Binutils readelf

The readelf command displays information about one or more ELF format object
files. The options control what particular information to display. For example, if we
run readelf adr example we get:

$readelf -h adr_example
ELF Header:
Magic: 7f 45 4c 46 01 01 01 03 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2’s complement, little endian
Version: 1 (current)
OS/ABI: UNIX - Linux
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x8048470
Start of program headers: 52 (bytes into file)
Start of subsection headers: 5640 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 8
Size of subsection headers: 40 (bytes)
Number of subsection headers: 38
Subsection header string table index: 35

The command line options for readelf are:

Usage: readelf <option(s)> elf-file(s)
Display information about the contents of ELF format files
Options are:
-a --all Equivalent to: -h -l -S -s -r -d -V -A -I
-h --file-header Display the ELF file header
-l --program-headers Display the program headers

--segments An alias for --program-headers
-S --subsection-headers Display the subsections’ header

--subsections An alias for --subsection-headers
-e --headers Equivalent to: -h -l -S

13.5 Code Generation 263

A more complete list of command line options can be found by running man
readelf.

13.5.1.10 GNU Binutils size

The GNU size utility lists the subsection sizes—and the total size—for each of
the object or archive files objfile in its argument list. By default, one line of output
is generated for each object file or each module in an archive.

Usage: size [option(s)] [file(s)]
Displays sizes of subsections
-t --totals Display the total sizes

--common Display total size
--target=<bfdname> Set binary file format

For example if we run size adr example we get:

$size -d adr_example
text data bss dec hex filename
1616 276 8 1900 76c adr_example

13.5.1.11 GNU Binutils strings

For each file given, GNU strings prints the printable character sequences that are
at least 4 characters long (or the number given with the options below) and are
followed by an unprintable character. By default, it only prints the strings from the
initialized and loaded subsections of object files; for other types of files, it prints the
strings from the whole file.

The options are:
-a - --all Scan the entire file
-f Print name of file as well
-n --bytes=[n] change minimum len to 4
-<number> least [number] characters (default 4).

A more complete list of all command line options can be generated by running man
strings. Consider the following program fragment:

const char RCS_ID[] = "IDversion1.234";
int function(int x) { return x+1; }

Listing 13.8 Example of using the strings program

This program when compiled into object file still contains the string containing
the version string. Using the strings command we can find the version string
embedded inside it.

$strings rcs.o
$ID version 1.234$

264 13 Compiler Construction

13.5.1.12 GNU Binutils strip

GNU strip discards all symbols from object files objfile. The list of object files
may include archives. At least one object file must be given. GNU strip modifies
the files named in its argument, rather than writing modified copies under different
names. It is useful in reducing program size before production, which makes the
program load faster. Usage:

Usage: strip <option(s)> in-file(s)
Removes symbols and subsections from files
The options are:
-I --input-target=<bfdname>
-O --output-target=<bfdname>
-p --preserve-dates
-R --remove-subsection=<name>
-s --strip-all
-K --keep-symbol=<name>
-o <file>

13.5.2 GNU Binutils libelf and elfutils

GNU libelf lets you read, modify or create ELF files in an architecture-independent
way. The library takes care of size and endian issues, e.g. you can process a file for
SPARC processors on an Intel-based system.

/*
* Example of libelf

* (C) Sandeep Koranne, 2010

*/
5 #include <fcntl.h>

#include <stdio.h>
#include <stdlib.h>
#include "libelf.h"

10 int main(int argc, char* argv[]) {
Elf *elf_ptr;
Elf_Kind elf_k;
int fd;
char *c;

15 if(argc != 2) {
fprintf(stderr, "usage: poke_elf <filename>");
exit(1);

}
if(elf_version(EV_CURRENT) == EV_NONE) {

20 fprintf(stderr, "ELF library init failed");
exit(1);

}

fd = open(argv[1], O_RDONLY, 0);
25 if(fd < 0) {

fprintf(stderr, "Unable to open file %s", argv[1]);
exit(1);

}

30 elf_ptr = elf_begin(fd, ELF_C_READ, NULL);
if(elf_ptr == NULL) {

13.5 Code Generation 265

fprintf(stderr, "elf_begin() failed : %s", elf_errmsg(-1));
exit(1);

}
35

elf_k = elf_kind(elf_ptr);

switch(elf_k) {
case ELF_K_ELF: fprintf(stdout, "ELF object"); break;

40 case ELF_K_AR : fprintf(stdout, "ar(1) archive"); break;
case ELF_K_NONE:fprintf(stdout, "data"); break;
default: fprintf(stdout, "_NONE_"); break;
}
elf_end(elf_ptr);

45 close(fd);
exit(0);

}

Listing 13.9 Example of using libelf library

We can compile this file as:

$gcc elf_poke.c -o elf_poke -lelf

And now we have an ELF detection tool which can distinguish between ELF objects
and ‘ar’ archives. We run the executable on itself:

$./elf_poke elf_poke
ELF object[
$./elf_poke libelf.a
ar(1) archive

As shown in Figure 13.2 ever ELF has the following data:

1. ELF executable header: describes the class (whether the file is 32-bit or 64-bit),
type (whether the file is relocatable, shared or executable), and the endianess of
the file,

2. Optional ELF program header table (PHDR)
3. Subsection Data and the subsection header table are used for relocatable data.

Fig. 13.2 Layout of an ELF file

The libelf library contains many examples which show how to analyze the
subsections and headers present inside the ELF file. Using this library interesting
and useful programs can be built for program maintenance and analysis.

266 13 Compiler Construction

13.5.3 GNU Binutils ld

A compiler translates program code (given as human readable text) into into a ma-
chine specific but still readable text called assembler code. Assembly code is a read-
able form of the machine code (CPU instructions) which the computer can execute
directly. A linker converts object files into executables and shared libraries. GNU
linker (or GNU ld) is the GNU Project’s implementation of the Unix command ld.
GNU ld runs the linker, which creates an executable file (or a library) from object
files. A linker script may be passed to GNU ld to exercise greater control over the
linking process. GNU ld combines a number of object and archive files, relocates
their data and ties up symbol references. Usually the last step in compiling a pro-
gram is to run ld. If the linker is being invoked indirectly, via a driver such as gcc
then all the linker command line options should be prefixed by -Wl, as shown below:

$gcc -Wl,--start-group foo.o bar.o -Wl,--end-group

GNU ld command supports a number of options which control its behavior. The
common options are listed below:

‘-E’
‘--export-dynamic’
‘--no-export-dynamic’

‘-L SEARCHDIR’
‘--library-path=SEARCHDIR’

Add SEARCHDIR to list of paths that ‘ld’ will search for

‘-M’
‘--print-map’

‘-o OUTPUT’
‘--output=OUTPUT’

‘-r’
‘--relocatable’

Generate relocatable output

‘-Bdynamic’
‘-dy’
‘-call_shared’

Link against dynamic libraries.

‘-Bstatic’
‘-dn’
‘-non_shared’
‘-static’

Do not link against shared libraries.

‘--cref’
Output a cross reference table.

‘--demangle[=STYLE]’

13.5 Code Generation 267

‘--no-demangle’

For a complete list of command line options for ld, run man ld, or info ld.

13.5.3.1 Linker script and map files

When passing arguments to the linker, the GNU gcc commandline -Wl as follows:

$gcc file.o -o file -Wl, -M

will generate the linker map for the file. The format of the linker map is discussed
below, an example is:

.group 0x0000000000000000 0x8 cano_proc.o
_ZN9__gnu_cxx13new_allocatorISt6vectorIiSaIiEEEC5ERKS4_

0x0000000000000000 0x8 cano_proc.o
.group 0x0000000000000000 0x8 cano_proc.o
.group 0x0000000000000000 0x8 cano_proc.o
.group 0x0000000000000000 0x8 cano_proc.o
.text._ZNSt12__niter_baseIPSt6vectorI7CBTupleSaIS1_EELb0EE3__bES4_

0x0000000000000000 0xd main.o
.text._ZNSt3setIiSt4lessIiESaIiEE6insertERKi

0x0000000008050bb4 0x5f cano_proc.o
0x0000000008050bb4 std::set<int, std::less<int>

fill 0x0000000008050c13 0x1 90909090
...
/DISCARD/

*(.note.GNU-stack)

*(.gnu_debuglink)
OUTPUT(cano_proc elf32-i386)

The .group and .text sections contain the instruction to the loader to place
code and data segments into appropriate sections of the memory. This arrangement
of code blocks from disk to memory can be managed and optimized (for cache line
performance, see Section 3.12.1.1 for more details), using a linker script. The linker
will ensure that each output subsection has the required alignment, by increasing
the location counter if necessary. In this example, the specified addresses for the
‘.text’ and ‘.data’ subsections will probably satisfy any alignment constraints, but
the linker may have to create a small gap between the ‘.data’ and ‘.bss’ subsections.
As with all optimizations, linker scripts should be used when the correctness of
the program has been verified, and especially when using dynamic loaded shared
libraries, linker map scripts should be carefully checked.

13.5.3.2 Linker map cross reference table

The cross reference table is generated using the --cref commandline switch to
the linker. It has the form of ‘function’, ‘object file’, e.g.:

268 13 Compiler Construction

BFS::Run() poly_utils.o
BFS::end_visit(unsigned int) poly_utils.o
BFS::expand(unsigned int) poly_utils.o
BFS::visit(unsigned int) poly_utils.o

When passing arguments to the linker, the GNU gcc commandline -Wl as follows:

$gcc file.o -o file -Wl, --cref

will generate the cross reference table for the file.

13.5.4 BFD: Binary File Descriptor Library

The BFD, or Binary File Descriptor library, is the GNU Project’s main mechanism
for the portable manipulation of object files in a variety of formats. BFD works by
presenting a common abstract view of object files. An object file has a “header” with
descriptive info; a variable number of “subsections” that each have a name, some
attributes, and a block of data; a symbol table; relocation entries; and so forth. To
use the library, include ‘bfd.h’ and link with ‘libbfd.a’. BFD provides a common
interface to the parts of an object file for a calling application. When an application
successfully opens a target file (object or archive), a pointer to an internal structure
is returned. This pointer points to a structure called ‘bfd’, described in ‘bfd.h’. Our
convention is to call this pointer a BFD, and instances of it within code abfd. All
operations on the target object file are applied as methods to the BFD.

#include "bfd.h"
unsigned int number_of_subsections (abfd)
bfd *abfd;
{

5 return bfd_count_subsections (abfd);
}

The abstraction used within BFD is that an object file has:

1. a header,
2. a number of subsections containing raw data,
3. a set of relocations,
4. some symbol information.

Also, BFDs opened for archives have the additional attribute of an index and contain
subordinate BFDs. The design and use of BFD can be organized as follows:

• BFD Front end :

1. Initialization,
2. Subsections,
3. Symbols,
4. Archives,
5. File formats,

13.5 Code Generation 269

6. Relocations,
7. Core files,
8. Targets,
9. Architectures,

10. Opening and closing BFDs,
11. File caching,
12. Linker functions,
13. Hash tables.

• BFD Back end:

1. a.out backends,
2. coff backends,
3. elf backends.

13.5.5 GNU lightning

Dynamic code generation is the generation of machine code at runtime. It is typ-
ically used to strip a layer of interpretation by allowing compilation to occur at
runtime. One of the most well-known applications of dynamic code generation is
perhaps that of interpreters that compile source code to an intermediate bytecode
form, which is then recompiled to machine code at run-time. For performance, gnu
lightning emits machine code without first creating intermediate data structures such
as RTL representations traditionally used by optimizing compilers.

13.5.5.1 GNU lightning instruction set

GNU lightning’s instruction set was designed by deriving instructions that closely
match those of most existing RISC architectures. The library supports a full range
of integer types: operands can be 1, 2 or 4 bytes long (64-bit architectures might
support 8 bytes long operands), either signed or unsigned. The types are listed in
the following table together with the C types they represent: There are at least seven
integer registers, of which six are general-purpose, while the last is used to contain
the frame pointer (FP). The frame pointer can be used to allocate and access local
variables on the stack, using the allocai instruction. A partial list of instruction is
given below in Table 13.2.

13.5.5.2 Instructions in GNU lightning

The instruction set of GNU lightning is modeled after a generic RISC machine. The
list of instructions categorized by their function is shown in Table 13.2.

The following example from GNU lightning is shown:

270 13 Compiler Construction

Table 13.1 Data types supported by GNU lightning

Symbol C Data Type
c signed char
uc unsigned char
s short
us unsigned short
i int
ui unsigned int
l long
ul unsigned long
f float
d double
p void *

#include <stdio.h>
#include "lightning.h"
static jit_insn codeBuffer[1024];
typedef int (*pifi)(int);

5 int main() {
pifi incr = (pifi) (jit_set_ip(codeBuffer).iptr);
int in;
jit_leaf(1); /* leaf 1 */
in = jit_arg_i(); /* in = arg_i */

10 jit_getarg_i(JIT_R0, in); /* getarg_i R0 */
jit_addi_i(JIT_RET, JIT_R0, 1); /* addi_i RET, R0, 1 */
jit_ret(); /* ret */

jit_flush_code(codeBuffer, jit_get_ip().ptr);
15

/* call the generated code, passing 5 as an argument */
printf("%d + 1 = %d\n", 5, incr(5));
return 0;

}

Listing 13.10 Example of using GNU lightning

GNU lightning generates the following code on SPARC:

save %sp, -96, %sp
mov %i0, %l0 retl
add %l0, 1, %i0 add %o0, 1, %o0
ret
restore

13.5 Code Generation 271

Table 13.2 Instruction in GNU lightning

ALU Instructions
add[r,i] O1 = O2 + O3

sub[r,i] O1 = O2 - O3

mul[r,i] O1 = O2 * O3

div[r,i] O1 = O2 / O3

mod[r,i] O1 = O2 % O3

and[r,i] O1 = O2 & O3

or[r,i] O1 = O2 | O3

xor[r,i] O1 = O2 ˆ O3

Compare instructions
lt[r,i] O2 < O3

le[r,i] O2 <= O3

gt[r,i] O2 > O3

ge[r,i] O2 >= O3

eq[r,i] O2 == O3

ne[r,i] O2 != O3

Load and Store Instructions
ld[r,i] O1 = *O2

ldx[r,i] O1 = *(O2+O3)

st[r,i] *O1 = O2

stx[r,i] *(O1+O2) = O3

Branch Instructions
blt[r,i] if (O2 < O3) goto O1
ble[r,i] if (O2 ≤ O3) goto O1
bgt[r,i] if (O2 > O3) goto O1
Jump and Return Instructions
call[r,i] function call to O1
finish function call to O1
finishr function call to a register
jmp[r,i] unconditional jump to O1
ret return from subroutine
retval move return value

13.5.6 ANTLR

Before we move on to a compiler optimization and representation framework
(LLVM) it is only apt to mention ANTLR, which is a complete suite of compiler
construction tools. An example of the ANTRL screen and DFA definition is shown
in Figure 13.3.

272 13 Compiler Construction

(a) Introductory screen

(b) DFA of phone number grammar in ANTLR

Fig. 13.3 ANTLRWorks introductory screen

13.6 LLVM: Low Level Virtual Machine 273

13.6 LLVM: Low Level Virtual Machine

LLVM (Low Level Virtual Machine), is a compiler framework designed to support
transparent, lifelong program analysis and transformation for arbitrary programs, by
providing high-level information to compiler transformations at compile-time, link-
time, run-time, and in idle time between runs. LLVM defines a common, low-level
code representation in Static Single Assignment (SSA) form, with several novel fea-
tures: a simple, language-independent type-system that exposes the primitives com-
monly used to implement high-level language features; an instruction for typed ad-
dress arithmetic; and a simple mechanism that can be used to implement the excep-
tion handling features of high-level languages (and setjmp/longjmp in C) uniformly
and efficiently. The main projects under the LLVM are (from http://www.llvm.org):

• LLVM Core: the LLVM core provides source and target independent optimiza-
tion based on SSA, alongwith code generation for modern architectures. The
LLVM intermediate representation is well specified and documented,

• Clang: is an LLVM native, C/C++/Objective-C compiler,
• llvm-gcc and dragonegg: integration of LLVM with GCC frontend,
• LLDB: using LLVM and Clang to produce native debugger.

LLVM core and LLVM IR (intermediate representation) are useful in compiler
construction, as they provide a generic optimization and instruction scheduling, gen-
eration system. Using the front-end tools (Flex and Bison) alongwith LLVM a pro-
totypical compiler can be constructed rapidly, and with ease.

13.6.1 LLVM Core and LLVM IR

Above we saw the GNU lightning (Subsection 13.5.5) and its associated RISC in-
struction model. In this section we present the LLVM instructions and their inter-
mediate representations.

13.6.1.1 LLVM Intermediate Representation

The LLVM IR can be thought of as the assembly language, or mnemonic instruction
set of the low-level virtual machine (LLVM). LLVM is a Single Static Assignment
(SSA) representation that provides type safety, flexibility and sufficient breadth to
implement all the high level language constructs. LLVM code representation was
designed to be used in the following scenarios:

1. in-memory compiler IR,
2. on-disk instruction bit-code, and
3. human readable assembly language.

The use of LLVM instructions are shown below:

274 13 Compiler Construction

%result = mul i32 %X, 8

Without even going into specifics, it is clear that the above multiplies the content of
variable %X with 8, and places the result in %result. LLVM’s optimization can do
strength reduction to convert the above multiply by 8 to a shift left by 3 operation
to get:

%result = shl i32 %X, i8 3

Before we present more examples of LLVM textual IR, and the instructions, we
should note that:

• LLVM comments: are delimited by ‘;’ character
• unnamed temporaries: are created when lval is not present, and
• unnamed temporaries: are numbered sequentially.

13.6.1.2 LLVM Program High Level Structure

LLVM programs are composed of Modules, each of which corresponds to a transla-
tion unit (mostly a single file) of the input program. Each module consists of:

1. functions,
2. global variables,
3. symbol table entries.

Alongwith the module composition, the Linkage types, and calling conventions for
the function calls are important considerations when designing an LLVM based IR.
LLVM also allows for type aliasing, for example, we can define:

%point_type = type { %point_type*, i32 }

Functions defined using LLVM have (i) linkage types, (ii) visibility types, (iii) call-
ing convention, (iv) return type, (v) parameter attribute for return type, (vi) function
name, (vii) argument list (possibly empty), (viii) optional subsection, (ix) optional
alignment, (x) optional garbage collector name, (xi) opening curly brace, (xii) list
of basic blocks, and (xiii) closing curly braces. For example:

extern int fibo(int n);
=>
define i32 @fibo(i32 %n) nounwind readnone {

static int fibo(int n);
=>
define internal fastcc i32

@fibo(i32 %n) nounwind readnone {

The function attributes and linkage vary depending upon the data present in the
translation unit. The actual code of the function:

13.6 LLVM: Low Level Virtual Machine 275

static int fibo(int n) {
int i,f0=0,f1=1,f;
for(i=0; i < n; ++i) {

f = f0 + f1;
5 f0 = f1;

f1 = f;
}
return f;

}

is assembled by LLVM into:

define internal fastcc i32 @fibo(i32 %n)
nounwind readnone {

entry:
%0 = icmp sgt i32 %n, 0 ; <i1> [#uses=1]
br i1 %0, label %"4", label %"5"

"4": ; preds = %"4", %entry
%1 = phi i32 [%4, %"4"], [1, %entry ; <i32> [#uses=2]
%2 = phi i32 [%1, %"4"], [0, %entry ; <i32> [#uses=1]
%3 = phi i32 [%5, %"4"], [0, %entry ; <i32> [#uses=1]
%4 = add nsw i32 %1, %2 ; <i32> [#uses=2]
%5 = add nsw i32 %3, 1 ; <i32> [#uses=2]
%exitcond = icmp eq i32 %5, %n ; <i1> [#uses=1]
br i1 %exitcond, label %"5", label %"4"

"5": ; preds = %"4", %entry
%.lcssa = phi i32 [undef, %entry],
[%4, %"4"] ; <i32> [#uses=1]
ret i32 %.lcssa

}

Function attributes are an important part of the optimization performed by LLVM.
The following are some of the function attributes that can be specified per function
(their use is self explanatory):

• alignstack
• alwaysinline
• noinline
• optsize
• noreturn
• nounwind
• readnone
• readonly

13.6.1.3 LLVM Instruction Summary: Terminators

The following table presents the terminator instructions in LLVM. Every basic block
must end with one of these instruction: The computation instructions in LLVM are
standard RISC style instructions; a short summary is presented in the following
table.

276 13 Compiler Construction

Table 13.3 LLVM Terminator instructions

ret ret <void> or ret <type> <value>
br br <label> or br i1 <cond>, label <iftrue>, label <iffalse>
switch switch <intty> <value>, label <defaultdest> [..]
indirectbr indirect branch
invoke transfer control to specified function
unwind unwind the stack, transfer control to first callee,
unreachable optimizer hint

13.6.1.4 LLVM Instruction Summary: Computation

Table 13.4 LLVM Instructions for computation

add = add <ty> <op1> <op2>
sub = sub <ty> <op1> <op2>
mul = mul <ty> <op1> <op2>
div = div <ty> <op1> <op2>
rem = rem <ty> <op1> <op2>
shl = shl <ty> <op1> <op2>
lshr = lshr <ty> <op1> <op2>
ashr = ashr <ty> <op1> <op2>
and = and <ty> <op1> <op2>
or = or <ty> <op1> <op2>
xor = xor <ty> <op1> <op2>

There are some other special instructions:

• Vector extractelement,
• Vector insertelement,
• Vector shufflevector,
• Memory alloca,
• load,
• store,
• ptrtoint,
• inttoptr,
• icmp,
• fcmp,
• phi: implement the φ node in SSA graph,
• call: function call instruction.

LLVM also supports a number of intrinsic functions, a representative set is shown
below:

13.6 LLVM: Low Level Virtual Machine 277

• llvm.va start
• llvm.gcroot
• llvm.returnaddress
• llvm.stacksave
• llvm.prefetch
• llvm.readycyclecounter
• llvm.memcpy
• llvm.sqrt.*
• llvm.bswap.*
• llvm.ctpop.* :
• llvm.cttz.* :
• llvm.memory.barrier llvm.atomic.load.add.* and sub

13.6.2 LLVM dragonegg

LLVM dragonegg is a plugin to GCC, thus it requires a fairly recent GCC version.
GCC 4.5.0 works with dragonegg 2.7, and this version is used in the following
examples. Consider the following C language program:

int function_one(int x) {
int i;
int sum;
for(i = 0; i < x; ++i) sum += i;

5 return sum;
}

Compiling this program with GCC using the -S option produces the assembly code
(this assembly code is for x86 architecture):

.file "sum.c"

.text
.globl function_one

.type function_one, @function
function_one:

pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl $0, -8(%ebp)
jmp .L2

.L3:
movl -8(%ebp), %eax
addl %eax, -4(%ebp)
addl $1, -8(%ebp)

.L2:
movl -8(%ebp), %eax
cmpl 8(%ebp), %eax
jl .L3
movl -4(%ebp), %eax
leave
ret

278 13 Compiler Construction

.size function_one, .-function_one

.ident "GCC: (GNU) 4.4.2 20091027 (Red Hat 4.4.2-7)"

.subsection .note.GNU-stack,"",@progbits

We can use the dragonegg plugin to use the LLVM intermediate representation,
optimization and scheduler. Running:

$gcc -fplugin=dragonegg.so -O1 -S sum.c

produces:

.file "sum.c"
Start of file scope inline assembly

.ident "GCC: (GNU) 4.5.0 LLVM: exported"
End of file scope inline assembly

.text

.globl function_one

.align 16, 0x90

.type function_one,@function
function_one:

pushl %ebp
movl %esp, %ebp
pushl %edi
pushl %esi
subl $28, %esp
movl 8(%ebp), %eax
movl %eax, -12(%ebp)
movl -12(%ebp), %eax
movl %eax, -20(%ebp)
movl $0, %eax
movl %eax, -24(%ebp)
jmp .LBB1_3

.LBB1_2:
movl -28(%ebp), %eax
movl %eax, %ecx
movl -32(%ebp), %edx
addl %edx, %ecx
movl %edx, %esi
addl $1, %esi
movl %ecx, -36(%ebp)
movl %esi, -24(%ebp)

.LBB1_3:
movl -24(%ebp), %eax
movl %eax, %ecx
movl -36(%ebp), %edx
movl %edx, %esi
movl -20(%ebp), %edi
cmpl %edi, %ecx
movl %ecx, -32(%ebp)
movl %esi, -28(%ebp)
jl .LBB1_2
movl -28(%ebp), %eax
movl %eax, -16(%ebp)
movl -16(%ebp), %eax
addl $28, %esp

13.6 LLVM: Low Level Virtual Machine 279

popl %esi
popl %edi
popl %ebp
ret
.size function_one, .-function_one

.subsection .note.GNU-stack,"",@progbits

To produce the LLVM IR we can add

-fplugin-arg-dragonegg-emit-ir

to produce:

; ModuleID = ’sum.c’
target triple = "i386-pc-linux-gnu"
module asm "\09.ident\09\22GCC: (GNU) 4.5.0 LLVM: exported\22"
%int = type i32

define i32 @function_one(i32 %x) nounwind {
entry:
%x_addr = alloca i32]
%memtmp = alloca i32]
%"alloca point" = bitcast i32 0 to i32
store i32 %x, i32* %x_addr
%0 = load i32* %x_addr, align 32
%"ssa point" = bitcast i32 0 to i32
br label %"2"

"2":
br label %"4"

"3":
%1 = add nsw i32 %4, %3
%2 = add nsw i32 %3, 1
br label %"4"

"4":
%3 = phi i32 [%2, %"3"], [0, %"2"]
%4 = phi i32 [%1, %"3"], [undef, %"2"]
%5 = icmp slt i32 %3, %0
br i1 %5, label %"3", label %"5"

"5":
store i32 %4, i32* %memtmp, align 1
br label %return

return:
%retval = load i32* %memtmp
ret i32 %retval

}

Thus, using the plugin we can quickly experiment with LLVM, while maintaining
the front-end capabilities of GCC. It is indeed possible to compile some parts of an

280 13 Compiler Construction

application with LLVM based tools, while compiling the remaining with GCC. In
the next section we describe the LLVM compiler and optimization system.

13.6.3 LLVM System

The LLVM system for the end-user (not the developer) comprises of a number of
programs and utilities which manipulate, optimize and analyze LLVM ‘.ll’ and ‘.bc’
files. The utilities are:

1. lli: LLVM interpreter and dynamic compiler,
2. llc: LLVM system compiler and optimizer,
3. llvm-ar: LLVM archiver, archives several bit-code files into a single archive.

It can optionally compress the members to save space, and it generates a symbol
table for efficient lookup during linking,

4. llvm-as: LLVM assembler (.ll to .bc),
5. llvm-bcanalyzer: LLVM bit-code analyzer,
6. llvmc: LLVM compiler driver,
7. llvm-dis: LLVM disassembler. It takes the LLVM bit-code file and converts

it to LLVM assembly,
8. llvm-extract: this command takes the name of a function and extracts that

function’s code from the bit-code file,
9. llvm-ld: LLVM linker, takes a number of LLVM bit-code files and links them

together into a single LLVM object. It can also produce native code executables,
10. llvm-nm: GNU nm equivalent for LLVM, reports names of symbols from the

LLVM bit-code file,
11. llvm-prof: LLVM profiler, reads in a llvmprof.out file, a bit-code pro-

gram file, and produces reports, which can be used to deduce program’s hotspots,
12. llvm-ranlib: adds or updates the symbol table in an LLVM archive file,
13. llvm-stub:

We discuss some of the important utilities below.

13.6.3.1 LLVM interpreter and dynamic compiler: lli

LLVM lli can directly execute programs in LLVM bitcode (‘.bc’) format. It uses
JIT (just in time) compilation on the bit-code for JIT supported architectures, else it
uses an interpreter. LLVM lli has a number of command-line options which con-
trol its behavior, including floating-point operation, code model (to choose from (i)
small, (ii) kernel, (iii) medium, and (iv) large). It can also be used as a JIT compiler,
and for this it accepts the -march and -mcpu command-line options.

13.6 LLVM: Low Level Virtual Machine 281

13.6.3.2 LLVM System Compiler

Once we have generated the bit-code from the LLVM assembler we can experiment
with optimization and instruction scheduling, and other advanced compiler opti-
mizations. One of the design goals of LLVM is that such optimization will happen
concurrently with the life of the executable. In the context of mobile applications,
this is not as far-fetched as originally thought.

We use llc to recompile the bit-code of our Fibonacci example:

$llc -O3 fibo.bc -o fibo.opt.bc -stats \
-tailcallopt -time-passes

We generate statistics about the optimization passes as well as the number of ma-
chine instructions generated, instructions scheduled.

13.6.3.3 Statistics for fibo.bc

23 asm-printer - No. machine instrs printed
1 branchfolding - No. branches optimized
1 branchfolding - No. dead blocks removed
1 code-placement - No. intra loop branches moved
1 code-placement - No. loop header aligned
7 dagcombine - No. dag nodes combined

102 liveintervals - No. original intervals
1 loop-reduce - No. IV uses strength reduced
1 loop-reduce - No. PHIs inserted
1 loop-reduce - No. loop terminating conds optimized
2 loopsimplify - No. pre-header or exit blocks inserted
1 machine-sink - No. machine instructions sunk
4 phielim - No. atomic phis lowered
2 regalloc - No. iterations performed
22 regcoalescing - No. identity moves eliminated
1 regcoalescing - No. instructions re-materialized
20 regcoalescing - No. interval joins performed
2 regcoalescing - No. valno def marked dead
1 scalar-evolution - No. loops with predictable loop counts
1 twoaddrinstr - No. instructions commuted to coalesce
2 twoaddrinstr - No. two-address instructions
1 x86-codegen - No. floating point instructions

13.6.3.4 Instruction scheduling

--- Name ---
DAG Legalization
Type Legalization
Instruction Scheduling
Instruction Creation
Vector Legalization
Instruction Selection

282 13 Compiler Construction

DAG Combining 1
DAG Combining after legalize types
DAG Combining 2
Instruction Scheduling Cleanup
TOTAL

13.6.3.5 Compiler optimization passes

1. X86 DAG→ DAG Instruction Selection
2. Live Variable Analysis
3. Simple Register Coalescing
4. Live Interval Analysis
5. Linear Scan Register Allocator
6. Loop Strength Reduction
7. X86 AT&T-Style Assembly Printer
8. Induction Variable Users
9. Optimize for code generation

10. Machine Function Analysis
11. Module Verifier
12. Canonicalize natural loops
13. Two-Address instruction pass
14. Virtual Register Map
15. Control Flow Optimizer
16. Eliminate PHI nodes for register allocation
17. Dominator Tree Construction
18. Prolog/Epilog Insertion & Frame Finalization
19. MachineDominator Tree Construction
20. Dominance Frontier Construction
21. Natural Loop Information
22. MachineDominator Tree Construction
23. Machine Natural Loop Construction
24. Remove unreachable machine basic blocks
25. Remove unreachable blocks from the CFG
26. Machine code sinking
27. Machine Natural Loop Construction
28. Exception handling preparation
29. Machine Natural Loop Construction
30. Scalar Evolution Analysis
31. X86 FP Stackifier
32. Code Placement Optimizater
33. Label Folder
34. Machine Instruction LICM
35. Stack Slot Coloring
36. Subregister lowering instruction pass
37. X86 FP REG KILL inserter

13.6 LLVM: Low Level Virtual Machine 283

38. Live Stack Slot Analysis
39. X86 Maximal Stack Alignment Calculator
40. Analyze Machine Code For Garbage Collection
41. Preliminary module verification
42. Insert stack protectors
43. Lower Garbage Collection Instructions
44. Delete Garbage Collector Information

The list of compiler optimization can be better understood by referring to an ad-
vanced compiler optimization book such as Muchnik or Kennedy.

13.6.4 Using Clang

Using LLVM Clang, we can dispense with the plugin approach for compiling pro-
grams. Again consider the Fibonacci C program, but this time we compile it with
clang:

$clang -O1 -S -c -emit-llvm -o fibo.ll fibo.c

The produced LLVM IR in textual form is similar to the one produced by dragonegg
plugin, and it can be assembled using the LLVM assembler, llvm-as,

$llvm-as fibo.ll

This assembles the textual representation into the bit-code we alluded to earlier in
this subsection. This bit-code can be inspected with the help of llvm-bcanalyzer,
we present a portion of the ‘fibo.bc’ below:

Summary of fibo.bc:
Total size: 6432b/804.00B/201W
Stream type: LLVM IR

Toplevel Blocks: 1

Per-block Summary:
Block ID #0 (BLOCKINFO_BLOCK):

Num Instances: 1
Total Size: 637b/79.62B/19W
% of file: 9.903607e+00

Num SubBlocks: 0
Num Abbrevs: 0
Num Records: 0

Block ID #8 (MODULE_BLOCK):
Num Instances: 1

Total Size: 2270b/283.75B/70W
% of file: 3.529229e+01

Num SubBlocks: 7
Num Abbrevs: 1
Num Records: 6

% Abbrev Recs: 1.666667e+01

284 13 Compiler Construction

Record Histogram:
Count # Bits % Abv Record Kind

3 207 FUNCTION
1 17 100.00 GLOBALVAR
1 1557 DATALAYOUT
1 303 TRIPLE

Block ID #9 (PARAMATTR_BLOCK):
Num Instances: 1

Once the bit-code has been generated, it can be analyzed and also optimized. For
this we use the LLVM System Compiler which implements the compiler optimiza-
tions (see 13.6.3.5). The LLVM system compiler is run using llc command, and it
has a number of useful command line options:

-O=<char>
-asm-verbose
-load=<pluginfilename>
-march -mcpu=<cpu-name>
-o=<filename>
-realign-stack
-stack-protector-buffer-size=<uint>
-stats
-tailcallopt
-time-passes
-unwind-tables
-verify-dom-info
-version
-x86-asm-syntax
=att
=intel

13.7 Conclusion

Domain specific languages have re-invigorated the need for writing lexical analyz-
ers, parsers, optimizers and instruction analysis engines. From reading configuration
files, to writing domanin specific optimized languages for applications, compiler
writing remains an important and integral part of scientific computing and engi-
neering. In this chapter we have described several open-source tools for compiler
writers. These include lexical analysis generators, macro processing, perfect hash
generators, parser generator, and several compiler frameworks. The most important
compiler framework discussed is LLVM (low level virtual machine) which provides
a complete infrastructure for not only domain specific language development, but
also optimization algorithms for existing languages such as C, C++ and Java.

Part IV
Engineering and Mathematical Software

Chapter 14
Scientific Software

Abstract In this chapter we present engineering libraries such as Computer Vi-
sion, CImg and FWTools. Geospatial data abstractions are becoming very impor-
tant with the rise of location aware computing, and several open-source tools such
as GDAL and PROJ4 are described in this chapter. Image processing, audio process-
ing, and computational fluid dynamics (CFD) have been part of many engineering
applications. More recently, molecular dynamics and simulation programs have also
become heavy contenders for the compute time on grids. Molecular dynamics pro-
grams (GROMACS, NAMD) as well molecule viewers (JMol) are described in this
chapter. Geographical Information Systems (GIS) including GRASS and QGIS are
described in Section 14.9.1. Mechanical engineering, as well as use of mechani-
cal CAD software in other disciplines can be accomplished using open-source tools
such as QCAD. Solid modeling tools BRL-CAD are described in Section 14.11 as
well as Blender 14.12.

Contents
14.1 Computer Vision with OpenCV . 288
14.2 CImg: C Image Processing Toolkit . 289
14.3 Binary Decision Diagram (bdd): CUDD Library 291
14.4 FWTools: Open Source GIS . 295
14.5 GNU Image Manipulation Program . 298
14.6 Computational Fluid Dynamics using OpenFOAM 300
14.7 Molecular Dynamics . 303
14.8 Audacity . 306
14.9 Geographical Information Systems . 307
14.10 QCAD : 2d CAD Tools . 309
14.11 BRL-CAD . 311
14.12 Blender . 314
14.13 Conclusion . 315

In previous chapters we have discussed the underlying operating system, user
shell interaction, various application libraries, compilers and more. In this chapter
we focus on integrated open-source software solutions for engineering problems.
The domains of engineering include (i) image processing, (ii) audio processing,

S. Koranne, Handbook of Open Source Tools, 287
DOI 10.1007/978-1-4419-7719-9_14, © Springer Science+Business Media, LLC 2011

288 14 Scientific Software

(iii) finite-element analysis, (iv) computational biology, (v) geographical informa-
tion systems, and (vi) VLSI and electronics. This list is not exhaustive, but is rep-
resentative of the many domains in which open-source software has been used with
great positive effect. We first discuss engineering libraries which are used in many
open-source software for engineering.

14.1 Computer Vision with OpenCV

OpenCV (Open Source Computer Vision) is a library for real time computer vision.
OpenCV has the following modules in its source-code:

1. cxcore: Core functionality including basic structures, array operations, drawing
functions, XML, clustering and utility system function. An example of using
OpenCV core library is shown in Listing 14.1.

// \file cv_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using cxCore
#include <iostream> // Program IO

5 #include <cassert> // assertions
#include <cv.h> // OpenCV
#include <highgui.h> // OpenCV GUI

static CvMemStorage *storage;
10 static CvRect gRectA;

static void *data = NULL;
static void InitializeData() {

gRectA.x = 0, gRectA.y = 0;
gRectA.width = 100, gRectA.height = 100;

15 storage = cvCreateMemStorage(0);
data = cvMemStorageAlloc(storage, 1024);

}

static void PrintImageInformation(const IplImage* image) {
20 std::cout << "Image size = " << image->nSize

<< "Num channels = " << image->nChannels
<< "Depth = " << image->depth
<< std::endl;

}
25

int main(int argc, char* argv[]) {
if(argc != 3) {

std::cerr << "Usage: ./ipl_example <file> <file>...\n";
30 exit(1);

}
IplImage *image = cvLoadImage(argv[1]);
assert(image && "Unable to load image ");
PrintImageInformation(image);

35 InitializeData();
CvSize dsize; dsize.width = dsize.height = 100;
//IplImage *dest = cvCreateImageHeader(dsize, 8, 3);
IplImage *dest = cvCreateImage(dsize, 8, 3);
CvSeq *contour = NULL;

40 cvThreshold(image, image, 1, 255, CV_THRESH_BINARY);
cvFindContours(image, storage, &contour,

sizeof(CvContour), CV_RETR_CCOMP,
CV_CHAIN_APPROX_SIMPLE);

CvScalar color = CV_RGB(143, 100, 200);

14.2 CImg: C Image Processing Toolkit 289

45 for(; contour; contour = contour->h_next) {
cvDrawContours(dest, contour, color, color,

-1, CV_FILLED, 8);
}
cvSaveImage(argv[2], dest);

50 cvReleaseImage(&image);
cvReleaseImage(&dest);
cvReleaseMemStorage(&storage);
std::cout << std::endl;
return (0);

55 }

Listing 14.1 OpenCV core functionality

2. cv : Image processing and computer vision: image filtering, geometric image
transforms, histograms, feature detection, motion analysis and object tracking,
planar subdivisions, object detection and camera calibration,

3. ml : Machine Learning: statistical models, Bayesian classifier, k-nearest neigh-
bors, support vector machines (SVM), decision trees, boosting, random trees and
neural networks.

An example of using OpenCV for image processing and display is shown in
Listing 14.2.

// \file ipl_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using OpenCV
#include <iostream> // Program IO

5 #include <cstdlib> // exit
#include <highgui.h> // OpenCV GUI

// Simple program to display an image
int main(int argc, char* argv[]) {

10 if(argc != 2) {
std::cerr << "Usage: ./ipl_example <file>...\n";
exit(1);

}
IplImage *image = cvLoadImage(argv[1]);

15 assert(image && "Unable to load image ");
cvNamedWindow("IPL_EXAMPLE", CV_WINDOW_AUTOSIZE);
cvShowImage("IMAGE", image);
cvWaitKey(0); // get user input
cvReleaseImage(&image);

20 cvDestroyWindow("IPL_EXAMPLE");
std::cout << std::endl;
return(0);

}

Listing 14.2 Displaying images using OpenCV

Compiling and running this program produces the image as shown in Figure 14.1.

14.2 CImg: C Image Processing Toolkit

The CIMG (C++ Template Image Processing Toolkit) defines classes and method to
process image in C++ programs. It defines a single Image class which can represent
multi-dimensional datasets upto 4-dimensions with templatized pixel types. It can

290 14 Scientific Software

Fig. 14.1 OpenCV ‘highgui’
image display example

also handle image collections and sequences. CIMG is also very efficient and simple
to use since only the single header file CImg.h needs to be included, and all functions
and classes or CIMG are encapsulated in its own namespace. It is self-contained,
however, it can be used alongwith other open-source packages such as libpng (see
Section 11.2.1), libjpeg (see Section 11.2.1.2), FFTW3 (see Section 16.8) and LA-
PACK (see Section 16.3).

A small example to demonstrate CIMG Toolkit is shown in Listing 14.3.

// \file cimg_color.cpp
// \author Sandeep Koranne (C) 2010
// \description Example of using CImg toolkit
#include <cstdlib> // for exit

5 #include <iostream> // for program IO
#include <fstream> // std::ofstream
#include <CImg.h> // CIMG Toolkit
#include <vector> // std::vector
#include <algorithm> // std::copy

10 #include <iterator> // ostream iterator
#include <cassert> // assertion checking

using namespace cimg_library;

15 int main(int argc, char *argv []) {
if(argc != 2) {

std::cerr << "Usage: ./cimg_color <file>...\n";
exit(1);

}
20 const CImg<unsigned char> image = CImg<>(argv[1]);

const unsigned int W = image.width();
const unsigned int H = image.height();
const unsigned int D = std::min(W, H);
std::assert(D > 0);

25 std::cout << "Image H = " << H << "\t"
<< "Image W = " << W << std::endl;

// calculate the color profile on line going from (0,0) -> (W,H)
std::vector<unsigned int> RED(D);
std::vector<unsigned int> GREEN(D);

30 std::vector<unsigned int> BLUE(D);
for(unsigned int i=0; i < std::min(W, H); ++i) {

RED[i] = image(i, i, 0);
GREEN[i] = image(i, i, 1); // RGB = (0,1,2)
BLUE[i] = image(i, i, 2);

35 }
std::ofstream r_dat("red.dat"), g_dat("green.dat"), b_dat("blue.dat");

14.3 Binary Decision Diagram (bdd): CUDD Library 291

std::copy(RED.begin(), RED.end(),
std::ostream_iterator<unsigned int>(r_dat, "\n"));

std::copy(GREEN.begin(), GREEN.end(),
40 std::ostream_iterator<unsigned int>(g_dat, "\n"));

std::copy(BLUE.begin(), BLUE.end(),
std::ostream_iterator<unsigned int>(b_dat, "\n"));

std::cout << std::endl;
return (0);

45 }

Listing 14.3 Example of using CImg Toolkit

The program shown in Listing 14.3 calculates the color profile (RGB value) on
the diagonal line joining (0,0) to min(W,H) of the given image. The use of C++
templates in CImg is shown as well.

14.3 Binary Decision Diagram (bdd): CUDD Library

Binary Decision Diagrams, are a very useful tool for modeling binary variables and
systems. They are primarily used in VLSI CAD for logic synthesis and optimization.
They can also be used to perform optimization and Boolean reductions in domains
where the problem can be expressed as a Boolean decision problem.

CUDD is an acronym for the Colorado University Decision Diagram Package.
It is an open-source C/C++ library for creating and managing BDDs as well as
ZBDDs (zero-suppressed BDDs). CUDD implements an internal garbage-collector
(see Section 7.3 for a discussion of garbage-collectors), thus the programmer must
reference and dereference BDD nodes during the program computation. By design,
CUDD uses an unique table to record BDDs; this ensures that identical functions
map to the same BDD node and is used for canonical checking on functions for
equivalence.

Binary Decision Variables are implemented as a binary tree, where each node
has a then child, and an else child (which are traversed when we assign the value
of this BDD node to true, or false, respectively). For each variable listed in the
function we traverse the path, and the value of the function is the value of the leaf
node we arrive at (true or false). However, for efficiency, the children nodes of a
node can be complemented, which complements the value of our assignment. The
CUDD library implements Reduced Ordered BDDs, and in this section we present
examples of using CUDD to solve problems with BDDs. A short example is shown
in Listing 14.4.

// \file bdd_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using BDD with CUDD library
#include <iostream> // program IO

5 #include <cassert> // assertion checking
#include <cstdio> // C stdio
#include <cudd.h> // CUDD BDD library

10 static DdManager* gManager; // global DD Manager
static DdNode** gNodeArray; // pointer to nodes

292 14 Scientific Software

static unsigned int numVars; // number of variables

static void PrintStats(void) {
15 std::cout

<< "CUDD Statistics"
<< "\nNum. vars: " << Cudd_ReadSize(gManager)
<< "\nNum. count:" << Cudd_ReadNodeCount(gManager)
<< "\nNum. order:" << Cudd_ReadReorderings(gManager)

20 << "\nMemory :" << Cudd_ReadMemoryInUse(gManager)
<< std::endl;

}

int main(int argc, char* argv[]) {
25 // print CUDD version information

std::cout << "CUDD Version = ";
Cudd_PrintVersion(stdout);
numVars = 4; // simple example
gManager = Cudd_Init(numVars, 0, CUDD_UNIQUE_SLOTS,

30 CUDD_CACHE_SLOTS, 1024*1024);
assert(gManager && "Unable to create CUDD Manager");

DdNode *x0 = Cudd_bddIthVar(gManager, 0); // x0
DdNode *x1 = Cudd_bddIthVar(gManager, 1); // x1

35 DdNode *x0_and_x1 = Cudd_bddAnd(gManager, x0, x1);
Cudd_Ref(x0_and_x1);
DdNode *x0_and_bar_x1 =

Cudd_bddAnd(gManager, x0, Cudd_Not(x1));
Cudd_Ref(x0_and_bar_x1);

40 DdNode *functionA = Cudd_bddAnd(gManager, x0_and_bar_x1,
x0_and_x1);

DdNode *functionB = Cudd_bddOr(gManager, x0_and_bar_x1,
x0_and_x1);

45 Cudd_Ref(functionA);
Cudd_Ref(functionB);
Cudd_Ref(x0_and_x1);
FILE* f = fopen("bdd.dot","w");
char **inputNames = new char*[2];

50 inputNames[0] = new char[3]; inputNames[0] = "x0";
inputNames[1] = new char[3]; inputNames[0] = "x1";
char **outputNames = new char*[3];
outputNames[0] = new char[10]; outputNames[0] = "functionA";
outputNames[1] = new char[10]; outputNames[1] = "functionB";

55 outputNames[2] = new char[10]; outputNames[2] = "x0_and_x1";

DdNode **outputs = new DdNode*[3];
outputs[0] = functionA;
outputs[1] = functionB;

60 outputs[2] = x0_and_x1;
Cudd_DumpDot(gManager, 3, outputs,

inputNames, outputNames, f);
PrintStats();
std::cout << std::endl;

65 return(0);
}

Listing 14.4 Using CUDD BDD Library

As shown in Listing 14.4 operations on BDDs are managed by the DdManager

opaque object. To start the CUDD system we call the Cudd_Init function which sets
up the memory space for the required number of variables.

Each DdNode represents a variable in the system. The data-structure for DdNode

contains the variable index, reference count, a next pointer for the unique table, and
a union type containing either the constant nodes or the BDD children.

14.3 Binary Decision Diagram (bdd): CUDD Library 293

The following functions operate on the BDD Node structure DdNode:

Table 14.1 CUDD DdNode Functions

Name Description and Return value
Cudd_IsConstant 1 if node is leaf
Cudd_T a pointer to “then” child
Cudd_E a pointer to “else” child
Cudd_IsComplement 1 if node is complement
Cudd_Regular 1 if node is regular
Cudd_V value of constant node

To build the example shown in Listing 14.4 we use the following SConstruct file:

CUDD="/home/skoranne/cudd-2.4.1/"
Program(’bdd_example’,[’bdd_example.cpp’],

CPPPATH=CUDD+"include",
LIBPATH=[CUDD+"cudd",

CUDD+"st",
CUDD+"mtr",
CUDD+"epd",
CUDD+"util"],

LIBS=[’cudd’,’util’,’st’,’mtr’,’epd’])

Running scons gives:

$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
g++ -o bdd_example.o -c

-I/home/skoranne/cudd-2.4.1/include bdd_example.cpp
g++ -o bdd_example bdd_example.o

-L/home/skoranne/cudd-2.4.1/cudd
-L/home/skoranne/cudd-2.4.1/st
-L/home/skoranne/cudd-2.4.1/mtr
-L/home/skoranne/cudd-2.4.1/epd
-L/home/skoranne/cudd-2.4.1/util
-lcudd -lutil -lst -lmtr -lepd

scons: done building targets.

Running the program
$./bdd_example
CUDD Version = 2.4.1
CUDD Statistics
Num. vars: 4
Num. count:5
Num. order:0
Memory :4225732

294 14 Scientific Software

Using the BDD function we can model the Boolean functions using combina-
tions of AND and OR functions. We can also print the BDD collection to a DOT
(see Section 19.4) file. The produced BDD collection is shown in Figure 14.2. It
is instructive to see the relationship between the paths, complemented paths from
variables in Figure 14.2, to the BDD construction code shown in Listing 14.4.

Fig. 14.2 BDD produced using CUDD library

The produced DOT file is shown for reference (and also as an example to writing
DOT files, as explained in Section 19.4).

digraph "DD" {
size = "7.5,10"
center = true;
edge [dir = none];
{ node [shape = plaintext];

edge [style = invis];
"CONST NODES" [style = invis];

" x1 " -> " " -> "CONST NODES"; }
{ rank = same; node [shape = box]; edge [style = invis];
" functionA " -> " functionB " -> " x0_and_x1 "; }
{ rank = same; " x1 ";
"a";"6";}
{ rank = same; " ";"7";}
{ rank = same; "CONST NODES";
{ node [shape = box]; "2";}}
" functionA " -> "2" [style = dotted];
" functionB " -> "6" [style = solid];
" x0_and_x1 " -> "a" [style = solid];
"a" -> "7";
"a" -> "2" [style = dotted];

14.4 FWTools: Open Source GIS 295

"6" -> "2";
"6" -> "2" [style = dotted];
"7" -> "2";
"7" -> "2" [style = dotted];
"2" [label = "1"];}

14.4 FWTools: Open Source GIS

FWTools include OpenEV, GDAL, MapServer, PROJ.4 and OGDI. These tools are
described below. More details on Geographical Information Systems (GIS) is given
in Section 14.9. OpenEV is a high-performance raster/vector desktop data viewer
and analysis tool; an example is shown in Figure 14.3.

Fig. 14.3 OpenEV : Raster/Vector viewer

296 14 Scientific Software

14.4.1 PROJ4

PROJ.4 is a cartographic projection library. PROJ4 is used by GIS projects (includ-
ing GRASS, Section 14.9.1) to convert between coordinate systems. Listing 14.5
shows an example of coordinate conversion using PROJ4. It is also possible to per-
form conversion on the command line using the tools proj and invproj. Their
usage is described below.

// \file proj4_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of using PROJ4
// for Cartographic Projection

5 #include <iostream> // for program IO
#include <cassert> // assertion checking
#include <cstdlib> // exit
#include <proj_api.h> // PROJ4 library

10 int main(int argc, char* argv[]) {
projPJ transformer, latitude_longitude;
double gx, gy;

transformer = pj_init_plus("+proj=utm +lon_0=112w +ellps=clrk66");
15 if(!transformer) {

std::cerr << "Unable to construct PROJ..\n";
exit(1);

}
latitude_longitude = pj_init_plus("+proj=latlong +ellps=clrk66");

20 std::cout << "Enter value:";
std::cin >> gx >> gy;
pj_transform(latitude_longitude, transformer, 1, 1, &gx, &gy, NULL);
std::cout << "Output : " << gx << "\t" << gy;
std::cout << std::endl;

25 return(0);
}

Listing 14.5 Example of cartographic projection using PROJ4

PROJ4 includes many projection systems including cylindrical, transverse Mer-
cator, universal transverse Mercator (UTM), central cylinder projection, Airy pro-
jection and Miller projection.

The API of PROJ4 includes the pj transform function:

int pj_transform(projPJ srcdefn, // source projection format
projPJ dstdefn, // destination projection format
long point_count, // number of points,
int point_offset, // which point in the data set,

5 double *x, double *y, // data input-output
double *z); // for 3d transforms.

The API is initialized using a string which is the same as the proj filter as described
below.

14.4.1.1 proj: forward cartographic projection filter

The command line tool proj implements the PROJ4 library as a command line pro-
gram and can be used to perform coordinate conversions (e.g., UTM projections).

14.4 FWTools: Open Source GIS 297

Consider the following example which calculates Boston’s (approximately) UTM
coordinates using a standard UTM central meridian of 112 degrees west. The com-
mand line option ‘-r’ is used to reverse the default ordering of latitude-longitude
coordinates.

$ proj -E +proj=utm +lon_0=112w +ellps=clrk66 -r << EOF
> 45 111.5W
> 75N -111
> EOF
45 111.5W 460591.19 4982854.80
75N -111 500000.00 8323452.59

In the above transcript we used the -E option which prints the input coordinates
on the output as well. The related tool geod performs direct geodesic conversions.
Geodesic (Great Circle) computations for determining latitude, longitude and back
azimuth of a point given initial point latitude, longitude and azimuth and distance
is supported. For example, to compute the azimuths and distance from Boston to
Portland we can use:

$geod +ellps=clrk66 <<EOF -I +units=us-mi
42d15N 71d07W 45d31N 123d41W
EOF

-180d 0d 2907.509N 71d07W 45d31N 123d41W

To calculate Portland’s location from Boston use:

$geod +ellps=clrk66 <<EOF +units=us-mi
42d15N 71d07W -66d3150.141" 2587.504
EOF

45d310.003"N 123d4059.985"W
75d3913.094"

The inverse projection tools are also available as invproj and invgeod.

14.4.2 GDAL : Geospatial Data Abstraction Library and OGR

GDAL is an open-source translator library and command-line utility tools for read-
ing and writing a wide variety of geospatial raster (GDAL) and vector (OGR) for-
mats. GDAL data model prescribes a GDAL Data Set as having a list of raster bands
all corresponding to the same physical area, and having the same resolution. GDAL
Data also has meta-data, a coordinate system and a geo-referencing transform. The
size of the raster is included in the data itself. Using GDAL library we can write a
C++ function to print the size of the dataset as:

#include <gdal_priv.h>
int WriteDataSetSize(const char* fileName) {
GDALDataset *pData;
GDALAllRegister();

298 14 Scientific Software

5 pData = (GDALDataset*) GDALOpen(fileName, GA_ReadOnly);
if(pData == NULL) {

std::cerr << ‘‘Unable to open file : ‘‘ << fileName ;
exit(1);

}
10 std::cout << ‘‘Raster X Size = ‘‘ << pData->GetRasterXSize()

<< ‘‘\n Raster Y Size = ‘‘ << pData->GetRasterYSize()
<< ‘‘\n Raster Count = ‘‘ << pData->GetRasterCount()
<< std::endl;

}

Listing 14.6 Example of using GDAL library

The GDAL library provides access to the raster band data, one band at a time us-
ing the GDALRasterBand object. Related tools include OGDI, which is a multi-format
raster and vector reading technology, and MapServer which is a map server using
Web CGI and GeoCode is a geocoding library.

14.5 GNU Image Manipulation Program

GNU Image Manipulation Program (GIMP) is an image processing and paint pro-
gram which is able to process a number of graphic file formats. GIMP is used to
edit and manipulate bitmap images and can be used to convert between formats. It
is also possible to use GIMP as a paint program as it features drawing tools such as
brush, pencil and clone. An example of an image opened in GIMP for processing is
shown in Figure 14.4.

Fig. 14.4 GNU Image Manipulation Program (GIMP)

GIMP has a number of tools built into it, as shown in Figure 14.5.
GIMP also supports plugins which provide additional functionality. A plugin can

access the bitmap contents of the image currently loaded into the GIMP program and
perform analysis, and processing on it. If the image contents are modified, GIMP
can then write the resulting output to disk in any supported file format.

14.5 GNU Image Manipulation Program 299

(a) GIMP Tools (b) Color (c) Filters

(d) Color levels

Fig. 14.5 GIMP built in tools and filters

300 14 Scientific Software

14.6 Computational Fluid Dynamics using OpenFOAM

OpenFOAM is an acronym for Open Field Operation and Manipulation. Open-
FOAM is an open-source computational fluid dynamics package and it can support
CFD applications on complex flows involving chemical reactions turbulence and
heat transfers. It has a plugin to ParaView (see Section 19.17), which is used to
view the CFD geometry and perform analysis using the GUI.

Fig. 14.6 ParaView as a frontend to OpenFOAM

The geometry for analysis can be defined as an ASCII file:

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object blockMeshDict;

}

convertToMeters 1;

vertices
(

(0.5 0 0)
(1 0 0)
(2 0 0)
(2 0.707107 0)

14.6 Computational Fluid Dynamics using OpenFOAM 301

(0.707107 0.707107 0)
...

(0 2 0.5)
(0 1 0.5)
(0 0.5 0.5)

);

blocks
(

hex (5 4 9 10 16 15 20 21) (10 10 1)
simpleGrading (1 1 1)

hex (0 1 4 5 11 12 15 16) (10 10 1)
simpleGrading (1 1 1)

hex (1 2 3 4 12 13 14 15) (20 10 1)
simpleGrading (1 1 1)

hex (4 3 6 7 15 14 17 18) (20 20 1)
simpleGrading (1 1 1)

hex (9 4 7 8 20 15 18 19) (10 20 1)
simpleGrading (1 1 1)

);

edges
(

arc 0 5 (0.469846 0.17101 0)
arc 5 10 (0.17101 0.469846 0)
arc 1 4 (0.939693 0.34202 0)
arc 4 9 (0.34202 0.939693 0)
arc 11 16 (0.469846 0.17101 0.5)
arc 16 21 (0.17101 0.469846 0.5)
arc 12 15 (0.939693 0.34202 0.5)
arc 15 20 (0.34202 0.939693 0.5)

);

Figure 14.6 shows the geometry of the plate with a corner cut off. OpenFOAM
has a mesh generator which can be invoked with the blockMesh command; this
command converts the geometry into mesh form. The size of the mesh can be spec-
ified.

Once the design has been meshed we can perform analysis using a number of
tools provided with OpenFOAM. OpenFOAM by itself is a collection of C++ li-
braries, but several applications come pre-built with the OpenFOAM release. The
applications can be divided into two categories:

1. solvers: each application is designed to solve a very specific problem in CFD,
2. utilities: pre-processors, format converters, data manipulation and post-processing

tools.

OpenFOAM allows (and indeed is designed) for runtime linking of user-defined
code to provide either new solvers, or new data representations. The shared libraries
(which have to be compiled using the OpenFOAM header files) can be placed in the
‘controlDict’ file for a case using the ‘libs’ keyword. Then at runtime OpenFOAM
will automatically load the shared libraries into the analysis tool for that case.

302 14 Scientific Software

(a) OpenFOAM mesh (b) OpenFOAM surface with edges

Fig. 14.7 OpenFOAM block mesh

14.6.0.1 Case and File Structure in OpenFOAM

The basic directory structure for an example is shown below:

$ ls
0 0.1 0.2 0.3 0.4 0.5 cavity.OpenFOAM
constant system
$ ls -l system/
total 12
controlDict
fvSchemes
fvSolution

$ ls -l constant/
total 8
polyMesh
transportProperties
[skoranne@celex cavity]$ ls -l constant/polyMesh/
total 68
blockMeshDict
boundary
faces
neighbour
owner
points

The ‘system’ directory is used for setting parameters associated with the solution
procedure. The ‘constant’ directory contains a description of the case mesh in the
‘polyMesh’ sub-directory (as shown above). The physical properties for the appli-

14.7 Molecular Dynamics 303

cation are located in files such as ‘transportProperties’. Data in OpenFOAM files is
stored as Key-Value dictionaries.

14.6.0.2 CFD Solvers in OpenFOAM

OpenFOAM contains solvers for incompressible flow, solid body stress analysis and
combustion analysis. In addition the conventional CFD solvers such as Laplacian
solver, scalar transport and laminar flow are also included. In-fact, OpenFOAM also
includes a solver for Black-Scholes option pricing (the financialFoam solver).

14.6.0.3 Utilities in OpenFOAM

The utilities in OpenFOAM can be classified into the following categories:

1. Pre-processing: box-drawing, initialization of data into OpenFOAM case direc-
tories, volume field mapping, and molecular dynamics,

2. Mesh generation and conversion: in the example above we saw the use of
blockMesh for mesh generation. OpenFOAM also has utilities for converting
formats from other CFD packages to the OpenFOAM format,

3. post-processing: these utilities include graphical display and rendering as well as
data export from OpenFOAM format to other CFD packages,

4. Sampling Utilities: OpenFOAM sample command can be used to probe loca-
tions and cells in the case data for a design in OpenFOAM. It can be used to
sample field data and generate interpolation data points which are amenable for
plotting and external analysis.

14.7 Molecular Dynamics

Computational Molecular Dynamics has become a major driver of high-performance
computing. Computer simulations of molecules are used in solving problems in
physical chemistry, structure determination in crystallography, and in experimental
drug discovery. The latter has significant potential to improve the current treatment
options for many of the common ailments, and thus is of considerable social and
financial value. In most of the above application domains, a collection of physical
structures (atoms, molecules, proteins, etc) are suspended in a fluid of known prop-
erties. Starting with a known state (or preconditioned state), the goal of the computer
simulation is to calculate the trajectory (physical motion) of the structure’s compo-
nents over a time step. Integrating the motion of individual components over a long
enough time period can be used to gather information about the physical proper-
ties of the compound under study. In this section we describe some of the common
molecular dynamics codes and applications.

304 14 Scientific Software

14.7.1 NAMD

NAMD was designed to support parallel execution on a networked cluster and thus
is able to harness the power of a Beowulf class PC-clusters. NAMD supports the
following analysis:

1. PME (Particle Mesh Ewald): NAMD implements the PME algorithm for full
electrostatic interaction computation. This algorithm reduces the time complexity
of the computation to O(n logn) from O(n2), which provides significant speedup,

2. Force field compatibility: the force field used in NAMD is the same as those used
by other molecular dynamics programs which can help in correlating results, as
as well migration of simulations from one software to another,

3. Multiple time stepping: NAMD used Verlet integration method to advance the
time step,

4. Interactive simulations
5. Load Balancing.

14.7.2 GROMACS

GROMACS is an open-source package to perform molecular dynamics. Its main
features are:

1. Efficiency: GROMACS code base has been systematically optimized for high-
performance using latest compilers, and CPU instructions, including 64-bit reg-
isters and SSE2,

2. User friendly: GROMACS topology files are plain ASCII text files which are
simple to generate and edit,

3. Writing trajectory data using lossy compression :accuracy of compression is user
selectable, but provides significant compaction,

4. MPI based parallel programming

14.7.3 Molecular Visualization

Molecules can be viewed using JMol or RasMol, both open-source packages for
molecular visualization.

14.7.3.1 JMol

JMol is an open-source molecule viewer which comprises of:

1. JMolApplet: web browser applet which can be integrated into web pages,

14.7 Molecular Dynamics 305

2. JMol Application: is a standalone Java application,
3. JMolViewer: is a development tool that can be integrated into other Java pro-

grams.

An example of JMol application viewing a PDB file is shown in Figure 14.8.

Fig. 14.8 JMol : Molecule Viewer application

14.7.4 Foldng@Home

No section on open-source molecular dynamics can be complete without a reference
to Folding@Home. Folding@Home is a distributed computing project, which har-
nesses the power of idle desktop personal computers from all over the world ti run

306 14 Scientific Software

software to perform protein folding. Work units are distributed to each of the com-
puters, each unit represents some folding computation problem which needs to be
solved. Collectively, Folding@Home, represents one of the largest supercomputers
implemented using distributed computing. Folding@Home clients are available for
a number of operating systems, computers and even supercomputers.

14.8 Audacity

Audacity is a graphical audio editor. It uses the libsndfile library to read/write many
uncompressed file formats. An example of a WAV file being edited is shown in
Figure 14.9. It includes support for filters such as noise removal and stereo editing.
Batch processing applications use sox which is described in Section 14.8.1.

Fig. 14.9 Audacity : audio editor

14.8.1 Sound Exchange : sox

Sound Exchange (sox) is a computer program that can read/write audio files and
perform audio processing on them. It can combine various input file, synthesize

14.9 Geographical Information Systems 307

sounds, and even act as a simple audio player. The sox processing chain can be
described as:

Input -> Combiner -> Effects -> Output

The input and output phases can perform conversion to/from a wide variety of file
formats. The combiner and effects can include (i) sampling rate change, (ii) sam-
pling size change, (iii) mono down mix, (iv) volume and dither control, and (v) speed
control (to speedup or slow down the audio). sox can also act as a sound recorder
with auto detection of sound.

14.9 Geographical Information Systems

With the advent of localization based services and the widespread use of information
technology in urban planning, the role of geographical information systems (GIS)
software has burgeoned. In the open-source community the GRASS GIS system,
and Quantum GIS (qgis) are popular, and we describe these below.

14.9.1 GRASS GIS

GRASS is an open-source geographical information system (GIS) which can handle
raster, topological vector, image processing, and graphic data. An example of using
GRASS GIS is shown in Figure 14.10 which shows county data in the USA.

Fig. 14.10 GRASS GIS (geographical information system)

308 14 Scientific Software

Recently a new topological 2D/3D vector engine has been added to GRASS (ver-
sion 6.0) which adds support for vector network analysis. Moreover, GRASS can
store attributes in SQL-based databases such as MySQL (see Section 20.6), Post-
greSQL/PostGIS (see Section 20.5) and SQLite (see Section 20.7).

14.9.2 Quantum GIS

Quantum GIS (QGIS) is another open-source GIS software. QGIS is written in
C++ and uses the Qt libraries (see Section 19.1.3), and as such is very portable
and runs on GNU/Linux as well as Mac OS X, and Microsoft Windows. An ex-
ample of QGIS is shown in Figure 14.11. Map data from USA atlas is available at
http://nationalatlas.gov and we have used the county map, location of
dams, and road network in the examples below. The county area of Portland, Oregon
is shown in Figure 14.11.

Fig. 14.11 Quantum GIS (geographical information system)

We add another vector shape file, the location of dams, and urban areas. We
see that there are a number of dams located near the urban areas as shown in Fig-
ure 14.12.

A common use of GIS is in road network planning, and transportation planning.
The road network near Portland is loaded from the data file and can be overlayed on
the existing maps, as shown in Figure 14.13.

14.10 QCAD : 2d CAD Tools 309

Fig. 14.12 Portland and surrounding area, urban area, county and dams.

Fig. 14.13 Road network, vector shape file

14.10 QCAD : 2d CAD Tools

Computer Aided Design is the discipline of using computer and information pro-
cessing to aid in mechanical design. There is a fundamental difference between a
CAD program and a general drawing program as shown in Section 19.7, although
it is possible to use a general drawing program for initial schematics, the CAD
program provides additional features such as ISO compliant dimensioning, exact
measurement, wide variety of grid snapping and more. In this section we describe

310 14 Scientific Software

QCad an open-source CAD program for two-dimensional drafting. An example of
QCad drawing is shown in Figure 14.14.

Fig. 14.14 QCad: Computer Aided Design

14.11 BRL-CAD 311

14.11 BRL-CAD

BRL-CAD is a constructive solid geometry package designed for a wide variety
of military and industrial purposes. The software is open-source and as of version
7.16B contains a number of tools including (a) interactive geometry editor, (b) ray-
tracing, and (c) network distributed image processing.

The interactive geometry editor is termed the Multi-Device Geometry Editor
(mged).

14.11.0.1 Multi-Device Geometry Editor

The editor can be launched using the mged command line tool. An existing geometry
database can be specified on the command-line or opened using the GUI. The GUI
has an interactive shell window which accepts text commands, while the GUI menus
provide the same functionality graphically.

Constructive Solid Geometry (CSG), as the name implies, is the process of model
construction through the use and combination of primitive objects such as (a) ellip-
soid (generalized sphere), (b) right parallelepiped, (c) toric shapes, and more. These
primitives can be placed in the model at appropriate coordinates, scaled and trans-
formed using the editor to form the desired model. The center-of-view, scaling and
zooming, azimuth view, of the current display can be controlled by the user. Con-
sider an example shown in Figure 14.15.

Fig. 14.15 BRL-CAD mged Geometry Editor

The construction of objects can be carried out by entering commands in the con-
sole:

in rcc3s rcc 3 2 4 0.2 0.2 0.3 0.4

312 14 Scientific Software

in rcc4s rcc -3 2 4 0.2 0.2 5.0 0.4
mged> in rcc5s
Enter solid type: rcc
Enter X, Y, Z of vertex: 3 3 4
Enter X, Y, Z of height (H) vector: 0 0 1
Enter radius: 0.4

This command in, inserts a right circular cylinder at the given (x,y,z) coordinates as
the RCC’s center. The height of the RCC is entered next in the current unit, followed
by the radius of the cylinder.

Since BRL-CAD is used to order parts for machining directly from the model,
the engineering drawing views of the model also need to be generated as shown in
Figure 14.16.

(a) Perspective view (b) Top view (c) Front view

Fig. 14.16 Perspective view, top and front view

A realistic image of the constructed model can be generated using the raytracer
which is included with the software. An example of the raytracer in action and the
produced final image is shown in Figure 14.17(a) and (b).

Moreover, BRL-CAD also supports performing Boolean operation on the solid
volumes. The Boolean can be union, subtraction and intersection. Consider a ma-
chine part comprised of a cylinder in which cutouts for rivet-heads have to be drilled
as shown in Figure 14.18(a). The part itself comprises of a RCC, on top of which
we add 4 spheres and a small RCC. The content of the current file can be listed us-
ing the ls command; while the hierarchical constituents of a model can be analyzed
using the tree command. The Boolean operation can be performed as:

r mp1.part u rcc1 - sph1 - sph2 - sph3 - sph4 - rcc2

The final rendering of the machine part is shown in Figure 14.18(b). The ren-
dering can be influenced by choosing a material to apply for the object. The trans-
parency and reflectance of the surface can be changed using this property. Figures

14.11 BRL-CAD 313

(a) Partial raytracer (b) Raytraced image

Fig. 14.17 Raytracer in BRL-CAD

(a) Machine part (b) Final rendering

Fig. 14.18 Example machine part in BRL-CAD

can be rotated in the editor using the ‘Z’ command, and using the arrow keys various
azimuth and elevation angle views can be generated. Multiple parts of the drawing
can be constructed separately and assembled later using the comb function and ray-
traced together.

(a) Another machine part (b) Final rendering

Fig. 14.19 Example machine part in BRL-CAD

An object can be copied to another using the cp command in the console. At-
tributes of objects such as scale, translation and individual object property such

314 14 Scientific Software

as radius, height can also be changed. Another 3d geometry construction soft-
ware named Blender is discussed in Section 14.12. A dedicated raytracing program
(POVray) is discussed in Section 19.9.

14.12 Blender

Blender is an open-source software to create 2d and 3d content aimed at media
professionals and artists. An example of Blender is shown in Figure 14.20 and Fig-
ure 14.21.

Fig. 14.20 Main GUI screen of Blender

The key features of Blender include:

1. Tools for content creation: including modeling, UV-mapping, texturing, rigging,
animation, rendering, compositing, post-production and game creation,

2. Cross platform availability,

14.13 Conclusion 315

3. Small executable size.

(a) A cylinder in Blender (b) Raytraced rendering

Fig. 14.21 Rendering in Blender

Blender has its unique GUI with many actions tied to single key shortcuts which
increases the productivity of the designer, but has a learning curve.

14.13 Conclusion

In this chapter we presented engineering libraries such as Computer Vision, CImg
and FWTools. Geospatial data abstractions are becoming very important with the
rise of location aware computing, and several open-source tools such as GDAL
and PROJ4 were described in this chapter. Image processing, audio processing,
and computational fluid dynamics (CFD) that are part of many engineering were
presented. Molecular dynamics simulators and viewers were also discussed. Infor-
mation Systems (GIS) including GRASS and QGIS are described in Section 14.9.1.
Mechanical engineering, as well as use of mechanical CAD software in other disci-
plines can be accomplished using open-source tools such as QCAD. Solid modeling
tools BRL-CAD and Blender were described in this chapter.

Chapter 15
VLSI CAD Tools

In this chapter we describe the various steps in the design flow of an integrated
circuit, starting from the algorithmic description of the functionality, to its represen-
tation and model in a High Level hardware description language(HDL). For each
step we present open-source VLSI CAD tools. We limit our attention to standard
cell based design methodology, but we should point out that in addition to this style
there are these other techniques which are also used:

1. Full-custom: the complete chip is directly drawn as a layout. This is useful for
analog and radio-frequency (RF) block design. It is also used in custom bus de-
sign where the performance of the block is critical to the chip,

2. Data-path design: used in arithmetic blocks where similar operations happen on
a wide-bus.

3. Memory array: memory arrays are often designed as a single bit-cell, which is
then regularly placed by automated tools,

4. PLA design: control logic can be represented as sum-of-products(SOP), and PLA
(programmable logic arrays) can be automatically drawn from SOP functions.
The array is not run-time programmable, only that the choice of which products
to sum is made by switches which are programmed when the PLA is drawn.

5. FPGA design:field-programmable gate arrays use arrays of logic elements (LEs)
connected by a fabric of programmable routing. Some of the problems, such as
floorplanning, and placement can be put in FPGA context as well.

VLSI design has been the study of automation and computer science, and many
tools have been written to solve one or more problems associated with the VLSI
design flow. Thus a number of standard (and not so standard) file-formats have
emerged to communicate data from one step of the flow to another.

We first describe the syntax of the Berkeley Logic Interchange Format, and
present several tools to analyze BLIF data, as BLIF is a standardized logic inter-
change format for synthesis tools. Post synthesis the logic design has been converted
into a gate-level netlist we discuss the problem of timing estimation, buffer-insertion
and logic checking. This part of the flow is traditionally known as front-end of the
VLSI flow, and the timing correct gate-level netlist was the accepted handoff to

S. Koranne, Handbook of Open Source Tools, 317
DOI 10.1007/978-1-4419-7719-9_15, © Springer Science+Business Media, LLC 2011

318 15 VLSI CAD Tools

the physical design flow to follow. The major design flow stages are (i) front-end
design and HDL capture, (ii) synthesis to gate level netlist, (iii) floorplanning, (iv)
placement, (v) global routing, (vi) detailed routing, and (vii) mask level processing.

15.1 Algorithmic Design and HDL Capture

We state the title of this section as “algorithmic design”, which refers to the task
of solving a given problem by using an algorithm. Consider the problem of design-
ing an elevator control module which services four elevators in a building with ten
floors. The requirement analysis of this problem in detail may produces a list as
follows:

1. Interact with sensors, lighting and control switches inside the elevator, in the floor
and the main control room of the building,

2. Minimize the number of physical connections to the unit,
3. Minimize wait times,
4. Conserve power by maximizing idle item,

A system architect will perform a Pareto analysis of various solutions to this prob-
lem. He may consider using an off-the-shelf micro-controller (e.g, 8051,or i486),
program an FPGA, design a custom ASIC (chip). The architect will then proceed to
design an algorithm to solve the presented problem (within the constraints placed
by the system requirements). This algorithm is then captured in an HDL for sim-
ulation and synthesis. Simulation is yet another area of VLSI CAD which is very
important, but we have side-stepped, as writing a correct simulator for a modern
HDL is non-trivial. By simulating the HDL of the elevator-controller module, its
behavior under various conditions can be tested, and its properties measured. CAD
tools to calculate expected power dissipation are also available, and expected wait-
times can be checked with random initial conditions. The controller’s response to
emergency inputs under various states and its guarantee of a maximum service time
per request can be checked formally using a technique known as model checking,
which is derived from finite-state-machine state exploration.

15.2 HDL Capture

Common HDLs are Verilog and VHDL. Both offer similar features in terms of spec-
ifying the structure of the logic module, and its behavior using (i) combinational, and
(ii) sequential processing elements. Combinational elements are logic circuits which
have no state, and their outputs depend on their current inputs only. There may still
be a logic-delay between the time an input changes, and the time this change is
reflected in a change to the output. Combinational logic circuits are manipulated
using Boolean algebra, and their properties have been extensively studied and un-

15.2 HDL Capture 319

derstood. Sequential processing elements have state, and thus, their current output
depends not only on their input, but also the current state of the element. This make
sequential analysis more complex, but it also allows for a significant reduction in
the size of the Boolean circuit needed to implement a given algorithm. For exam-
ple, 16-bit multiplication would need thousands of logic elements to produce a valid
output given only combinational element, but a sequential process combined with
combinational logic can perform the same computation (albeit in multiple clock
cycles) in only few hundred elements. Sequential elements are often modeled as
state-machines, and are represented in Verilog/VHDL as encoded state-registers.
Consider the following Verilog HDL fragment:

module ElevatorControl(clk, rst, swButton,
elvButton, emgButton,
sensor, opControl);

input clk,rst;
input [31:0] swButton; //switches in floor, control room
input [63:0] elvButton;// switches inside 4 elevators
...
output [31:0] opControl;// motor control switch lights
endmodule;

Although automated tools to convert a given algorithmic description (which may
have been done using another language) to HDLs exist, most of the time, the HDL
is written by hand in conjunction with the system architect. Key system parameters,
such as, interface registers, IO register locations, interface pin-diagrams, need to be
created and frozen. Many of these physical parameters have no equivalence in the
algorithmic description (what is the weight of an algorithm ?, the controller once
manufactured will have weight and dimensions which need to be specified so that
the rest of the system can be built around the controller).

As we mentioned earlier, HDL descriptions are simulated and analyzed for their
properties. Once the designers are satisfied that the design meets the functional re-
quirements, the design is synthesized. Synthesis is the process of taking HDL de-
scriptions, converting them to Boolean logic expressions (using combinational and
sequential elements), and finally writing out an equivalent Boolean description of
the circuit with each logic elements mapped to a given primitive logic element.
The set of primitives is also given to the synthesis tool, and this element set is
called a library. Each library element has been designed to have a physical rep-
resentation on the chip, and once the circuit is mapped onto the library elements, it
can be manufactured purely as a connected graph of these library elements. Each
library element provides the synthesis tool the single (for single-output standard
cells) Boolean function it can implement. It is the task of the synthesis tool to map
the given Boolean circuit using these primitives. Obviously, an universal primitive
like two-input NAND can be used to map the complete combinational portion of
the circuit, but it has been known that providing higher levels of Boolean primitives
(for example, primitives which compute AND-OR-INV, or AOI, combinations of
their input, not only reduce the number of total primitives used, but also reduce the
maximum depth of the circuit). The maximum depth of the combinational circuit

320 15 VLSI CAD Tools

determines the clock cycle of the chip, as each clock cycle must leave enough time
for the output of every combinational block in the chip to be computed.

Synthesis tools have a rich history, and UC Berkeley provided many of the fun-
damental results which are now part of every synthesis CAD tool. Thus it is only
fitting that we present BLIF (Berkeley Logic Interchange Format) syntax before
continuing on to the next steps of the VLSI flow.

15.3 BLIF Format in a nutshell

The BLIF format describes a circuit in terms of models. A model is an arbitrary
combinational or sequential network of logic functions. A circuit is built up of mod-
ules connected together to form a connected, directed graph. Each cyclic edge in
this network must go through a latch element. Each net has a single driver, which
must be named without ambiguity. A model is declared in BLIF as

.model <name>

.inputs <input-list>

.outputs <output-list>
<command>
...
<command>
.end

The command is one of:

1. logic gate
2. generic latch
3. library-gate: library format is described below,
4. model reference:
5. subfile reference:
6. fsm-description:
7. clock constraint
8. delay constraint

A # begins a comment line which continues to the end of the line. A logic gate
associates a logic function with a signal in the model, which can be used as an input
to another logic function. A logic gate is declared as follows:

.names <in-1> <in-2> ... <in-n> <output>
<single-output-cover>

An example of a logic-gate is shown below:

.names x y z
1- 1
01 1

15.3 BLIF Format in a nutshell 321

The single-output cover may include – to represent a don’t care. Library gates are
specified using .gate construct, where the syntax is as follows:

.gate <name> <formal-argument>

The argument list of the gate is looked up from the library file, and is matched by
name.

Consider a very small model represented as a BLIF file:

.model small

.inputs ck i0 i1 i2 i3

.outputs o0 o1

.names i0 i1 i2 i3 o0
0001 1
0000 1
0010 1
.names i0 i1 i2 i3 o1
0001 1
0000 1
0010 1
.end

This model has 4 inputs (i0,i1,i2 and i3), and 2 outputs (o0 and o1). The truth table
(or single-output cover) for o0 and o1 is given in the BLIF file.

Next we write a library description file containing the four gates of INV, BUF,
2-AND and 2-OR. This is shown below:

GATE inv_x1 1 q=!i;
PIN i INV 1 999 1.00 0.00 1.00 0.00

GATE buf_x2 1 q=i;
PIN i INV 1 999 1.00 0.00 1.00 0.00

GATE a2_x2 2 q=(i0*i1);
PIN i0 INV 1 999 1.00 0.00 1.00 0.00
PIN i1 INV 1 999 1.00 0.00 1.00 0.00

GATE o2_x2 2 q=(i0+i1);
PIN i0 INV 1 999 1.00 0.00 1.00 0.00
PIN i1 INV 1 999 1.00 0.00 1.00 0.00

Fig. 15.1 Gate level netlist,
schematic is shown after
mapping onto library.

322 15 VLSI CAD Tools

Using ABC Synthesis tool we map the BLIF file using the library to produce a
gate-level mapped netlist as shown below. The ABC commands necessary to do the
mapping were: (i) read blif (ii) read library, (iii) map, and (iv) write blif. We get the
following BLIF file.

.model small

.inputs ck i0 i1 i2 i3

.outputs o0 o1

.gate inv_x1 i=i2 q=n7

.gate inv_x1 i=i3 q=n8

.gate o2_x2 i0=n8 i1=n7 q=n9

.gate inv_x1 i=i0 q=n10

.gate inv_x1 i=i1 q=n11

.gate a2_x2 i0=n11 i1=n10 q=n12

.gate a2_x2 i0=n12 i1=n9 q=o0

.gate a2_x2 i0=n12 i1=n9 q=o1

.end

Once the following gate is introduced in the library, the number of elements and
the critical path get reduced.

GATE noa22_x1 3 nq=((!i0+!i1)*!i2);
PIN i0 INV 1 999 1.00 0.00 1.00 0.00
PIN i1 INV 1 999 1.00 0.00 1.00 0.00
PIN i2 INV 1 999 1.00 0.00 1.00 0.00

We again map the original input BLIF using the augmented library to get the fol-
lowing BLIF file.

.model small

.inputs ck i0 i1 i2 i3

.outputs o0 o1

.gate o2_x2 i0=i1 i1=i0 q=n7

.gate noa22_x1 i0=i3 i1=i2 i2=n7 nq=o0

.gate noa22_x1 i0=i3 i1=i2 i2=n7 nq=o1

.end

Thus, it is obvious, how large an impact, choosing a good set of primitive elements
in the library can have on the size of the chip and its critical path.

This gate level netlist is the traditional hand-off from front-end design tools to
the back-end processing, also known as the physical design flow. In the physical
design flow, the netlist is first divided into block regions at the chip level using an
automated tool called the floorplanner. The input to this tool is the bounding box
of each module of the netlist, and it calculates relative positions of the modules to
minimize the overall size of this chip.

Once the floorplan is complete, we perform cell-placement. Standard cell place-
ment has been an extensively researched topic, with recent publications (as late as
Jan. 2009) reporting break-throughs in technology. We present simple, but effective

15.4 Schematic capture 323

and time-tested placement solutions based on simulated annealing, and spectral par-
titioning. Both methods are fully described earlier in the context of graph partition-
ing (Breuer had shown in the 1970s an interesting relationship between placement
and partitioning).

Placement is followed by global routing, a process, in which we assign nets to
channels, which are defined as pathways on the grid of the chip with exclusive reser-
vation of a limited number of nets (to avoid congestion when we perform final de-
tailed routing). An obvious optimization criterion is the minimization of wirelength
used to connect any net, but secondary objectives, such as minimizing via-counts (a
via occurs whenever a wire changes direction on a net), minimizing coupling-length
between long and crosstalk sensitive wires, and minimizing skew. In our formula-
tion of global routing we have used wirelength as the primary objective, with via-
minimization and coupling analysis and minimization as the secondary objectives.
Our formulation of global routing is based on flows in the grid-graph.

Global routing is followed by detailed routing. Detailed routing has developed
into its own industry as it needs to cater to foundry specific design rules, timing
calculations, and yield analysis. Thus, we shall not present any detailed router in
this text (it is fit to be the topic of a book by itself).

A completely routed design database is processed at the mask shop where image
processing of the data is done to verify printability on the wafer. This is done using
a combination of image processing tasks such as optical proximity correction, res-
olution enhancement and sub-resolution assist features. Like detailed routing, mask
optimization is also an industry within its own right, and we defer on that topic as
well.

15.4 Schematic capture

15.4.1 Xcircuit

The program xcircuit is a generic drawing program tailored especially for making
publication-quality renderings of circuit diagrams (hence the name). The output is
pure PostScript, and the graphical interface attempts to maintain as much consis-
tency as possible between the X11 window rendering and the final printer output.
An example of a simple circuit being drawn in Xcircuit is shown in Figure 15.2.
Xcircuit has five drawing elements:

1. polygon: (multiple lines which may or may not be closed and filled)
2. arc: (ellipse segment which may be closed and/or filled as above)
3. label: any text placed on the sheet,
4. curve: based on PostScript curveto command,
5. instance: object instance of another block.

Schematic representation (as produced from Xcircuit) of the Verilog design as
shown in Listing 15.1 is shown in Figure 15.3(b).

324 15 VLSI CAD Tools

(a) Simple boolean circuit

(b) Library elements

Fig. 15.2 Xcircuit : publication quality rendering of circuit schematics

15.4.2 GNU gschem

GNU gschem is part of gEDA suite of CAD tools. It is a full featured schematic
editor. An example of gschem is shown in Figure 15.4. GNU gschem internally
saves the schematic in its own format, but using the gnetlist command, SPICE
netlist can be exported:

$gnetlist -g spice-sdb simple_circuit.sch

More details on SPICE processing is presented in Section 15.9.

15.5 Verilog Processing 325

(a) Simple boolean function (b) Verilog schematic

Fig. 15.3 Xcircuit used for drawing schematic

Fig. 15.4 gEDA schematic editor gschem

15.5 Verilog Processing

Verilog is a high-level hardward description language (HDL). Although it was orig-
inally designed for digital design simulation and verification, it is now also used

326 15 VLSI CAD Tools

for design realization using logic synthesis. Alongwith, VHDL, Verilog is the dom-
inant language for expressing digital logic. Structurally, Verilog is similar to C (by
design), and VHDL has superficial resemblance to ADA. An example of a Verilog
design (for a full adder) is shown in Listing 15.1.

/* \file adder.v
\author Sandeep Koranne (C) 2010
\description Example of Verilog file for adder

*/
5 module adder(A, B, Cin, Cout, Sum, Clk, Reset);

input A,B,Cin,Clk,Reset;
output Cout, Sum;
reg Cout, Sum;
always @(posedge Clk or negedge Reset) begin

10 if(Reset == 1’b0) begin
{Cout,Sum} <= 0;

end
else begin

{Cout,Sum} <= A + B + Cin;
15 end

end
endmodule // adder

Listing 15.1 Verilog design of full adder

Verilog is timed, whereas conventional C language has no notion of synchroniza-
tion. Verilog (and indeed most other hardware description languages) describe data
flow from input to output. The bit-width of expressions, and the operators which pro-
cess these signals have to be carefully defined in Verilog as they have a strong impact
on the area of the circuit produced. In C or other high level computer languages, the
underlying execution machine is the CPU, which already has a predefined bus and
register width (e.g., 32-bit or 64-bit). Thus, the cost of a 16-bit operation can be as-
sumed to be the same as a 24-bit operation. In Verilog (and other HDLs) this is not
the case, as the area of a 24-bit width data-path is significantly larger than a 16-bit
datapath. Hardware designers use design space exploration to choose the smallest
area producing circuit which meets the design goals.

Once a design has been created as a Verilog file, it can be simulated, synthesized
and also tested for resilence against single stuck-at faults and delay faults. The spec-
ification of the design intent and its implementation should be carefully matched. In
C or C++, the design intent is the design documentation, and its implementation if
the executable. These are compared using tests. Since, HDLs undergo various trans-
formations (logic synthesis, boolean optimizations, rewriting, retiming), the process
of logic verification is important. Moreover, unlike C/C++ executables, where the
fix to a detected problem may simply involve a patch, hardware circuits once imple-
mented in chips, require expensive design respins costing millions of dollars. This
provides additional impetus to the design verification step.

Open-source tools for HDL simulation and synthesis include the Verilog simu-
lators Icarus and GPL cver, VHDL synthesis tools from the Alliance CAD suite.
These are discussed below.

/* \file adder_tb.v
\author Sandeep Koranne, (C) 2010

15.5 Verilog Processing 327

\description Test bench for adder

*/

module adder_tb;
reg A,B,Cin,Clk,Reset;
wire temp;
wire Cout,Sum;

initial begin
$dumpfile("adder_tb.vcd");
$dumpvars(0,adder_tb);
$monitor("Time = %d Clk = %b Sum = %d Cout = %d",

$time, Clk, Sum, Cout);
Clk <= 0; A <= 0;
B <= 0; Cin <= 0;
#20 Reset <= 0;
#5 Reset <= 1;
#10 A <= 1;
#30 B <= 1;
end

always #10 Clk = ˜Clk;
always #100 $finish;
adder U1(A,B,Cin,temp,,Clk,Reset);
adder U2(temp, A, 0, Cout,Sum, Clk, Reset);
endmodule // adder_tb

15.5.1 Icarus Verilog Simulator

Icarus Verilog is a Verilog simulation and synthesis tool. It is a native code compiled
Verilog simulator which generates machine code for Verilog models, the intermedi-
ate machine code is generated in a form called vvp assembly. This assembly code is
executed on a virtual machine called vvp. The synthesis engine generates netlists in
diverse formats including XNF (Xilinx Netlist Format). The compiler proper (or the
compiler driver to be exact) is called iverilog. To prepare the above listed design for
simulation we can run iverilog adder.v.

$ iverilog -h
Usage: iverilog [-ESvV] [-B base] [-c cmdfile|-f cmdfile]

[-g1995|-g2001|-g2005] [-g<feature>]
[-D macro[=defn]] [-I includedir]
[-M depfile] [-m module][-N file]
[-o filename] [-p flag=value][-s topmodule]
[-t target] [-T min|typ|max] [-W class]
[-y dir] [-Y suf] source_file(s)

328 15 VLSI CAD Tools

$iverilog adder.v

A part of the generated VVP assembly is shown below for reference:

#! /usr/bin/vvp
:ivl_version "0.9.2 " "(v0_9_2)";
:vpi_time_precision + 0;
:vpi_module "system";
:vpi_module "v2005_math";
:vpi_module "va_math";
S_0x8ac00d8 .scope module, "adder" "adder" 2 5;
.timescale 0 0;
v0x8ac0168_0 .net "A", 0 0, C4<z>; 0 drivers
v0x8ae0140_0 .net "B", 0 0, C4<z>; 0 drivers
v0x8ae01a0_0 .net "Cin", 0 0, C4<z>; 0 drivers
v0x8ae0200_0 .net "Clk", 0 0, C4<z>; 0 drivers
v0x8ae0268_0 .var "Cout", 0 0;
v0x8ae02c8_0 .net "Reset", 0 0, C4<z>; 0 drivers
v0x8ae0348_0 .var "Sum", 0 0;
E_0x8ae3da8/0 .event negedge, v0x8ae02c8_0;
E_0x8ae3da8/1 .event posedge, v0x8ae0200_0;
E_0x8ae3da8 .event/or E_0x8ae3da8/0, E_0x8ae3da8/1;

.scope S_0x8ac00d8;
T_0 ;

%wait E_0x8ae3da8;
%load/v 8, v0x8ae02c8_0, 1;
%cmpi/u 8, 0, 1;
%jmp/0xz T_0.0, 4;
%ix/load 0, 1, 0;
%assign/v0 v0x8ae0348_0, 0, 0;
%ix/load 0, 1, 0;
%assign/v0 v0x8ae0268_0, 0, 0;
%jmp T_0.1;

T_0.0 ;
%load/v 8, v0x8ac0168_0, 1;
%mov 9, 0, 1;
%load/v 10, v0x8ae0140_0, 1;
%mov 11, 0, 1;
%add 8, 10, 2;
%load/v 10, v0x8ae01a0_0, 1;
%mov 11, 0, 1;
%add 8, 10, 2;
%ix/load 0, 1, 0;
%assign/v0 v0x8ae0348_0, 0, 8;
%ix/load 0, 1, 0;
%assign/v0 v0x8ae0268_0, 0, 9;

T_0.1 ;
%jmp T_0;
.thread T_0;

The file index is used to find the file
name in the following table.
:file_names 3;

"N/A";

15.6 VHDL Processing 329

"<interactive>";
"adder.v";

The form of the genrated VVP assembly is instructive to understand the internal
working of Icarus Verilog.

15.5.2 Pragmatic GPL cver

GPLCVER 2.11a is the name of a Verilog simulator written by Pragmatic C Soft-
ware Corp and placed under GNU GPL. Simulating the Verilog design shown in
Listing 15.1 gives us:

Compiling source file "adder.v"
Compiling source file "adder_tb.v"
Time = 0 Clk = 0 Sum = x Cout = x
Time = 10 Clk = 1 Sum = x Cout = x
Time = 20 Clk = 0 Sum = 0 Cout = 0
Time = 30 Clk = 1 Sum = 0 Cout = 0
Time = 40 Clk = 0 Sum = 0 Cout = 0
Time = 50 Clk = 1 Sum = 1 Cout = 0
Time = 60 Clk = 0 Sum = 1 Cout = 0
Time = 70 Clk = 1 Sum = 1 Cout = 0
Time = 80 Clk = 0 Sum = 1 Cout = 0
Time = 90 Clk = 1 Sum = 0 Cout = 1
Halted at location **adder_tb.v(26)

time 100 from call to $finish.
There were 0 error(s),
2 warning(s), and 8 inform(s).

15.5.3 GTKWave: Waveform Viewer

The VCD (value change dump) file generated during the simulation can be viewed
graphically using the GTKWave waveform viewer. Running GTKWave on the VCD
file gtkwave adder tb.vcd and adding the signals from instance U1 is shown
in Figure 15.5.

15.6 VHDL Processing

Very high-speed integrated circuits hardware design language (VHDL) is a stan-
dardized language for describing the behavior and implementation of digital cir-

330 15 VLSI CAD Tools

Fig. 15.5 GTKWave, waveform viewer from VCD files

cuits. It has syntactical resemblance to the ADA computer programming language.
An example of an adder-accumulator is shown in Listing 15.2.

-- Adder-accumulator example in VHDL, from Alliance
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_arith.ALL;

5 use IEEE.STD_LOGIC_unsigned.ALL;

entity AddAccu is

10 port (CLK : in Std_Logic;
CLR : in Std_Logic;
LD : in Std_Logic;
A : in Std_Logic_Vector(15 downto 0) ;
RESULT : out Std_Logic_Vector(15 downto 0));

15
end AddAccu;

architecture DataFlow OF AddAccu is
20 signal resultint : Std_Logic_Vector(15 downto 0) ;

begin
process (CLK)
begin

if CLK’event and CLK=’1’ then
25 if CLR = ’1’ then resultint <= (others => ’0’);

elsif LD = ’1’ then resultint <= resultint + A;
end if;

end if;
end process;

30 RESULT <= resultint;
end DataFlow;

Listing 15.2 VHDL example of adder-accumulator

We shall use the Alliance CAD system’s VHDL simulator asimut to simulate this
design.

15.7 Alliance CAD System 331

15.7 Alliance CAD System

Alliance CAD is a complete VLSI CAD system. It includes tools for VHDL pro-
cessing, schematic capture, logic synthesis, test pattern generation, layout editing,
standard cell placement, routing, design rule checking (DRC), circuit extraction,
layout versus schematic (LVS) comparison, and mask generation. We use the de-
sign shown in Listing 15.2 to examine the above mentioned CAD tools.

15.7.1 Alliance CAD VHDL processing

The input VHDL can include both structural (component interconnection) and be-
havioral statements. The Alliance CAD tool vasy (VHDL Analyzer for Synthesis)
is used to process a given VHDL file. vasy accepts a subset of the complete VHDL
language. VASY has a number of command line arguments which control its behav-
ior. To write a ‘.vbe’ behavioral file we add the ‘-a’ argument, and the ‘-p’ argument
adds the power (VDD and VSS connectors). A complete list of the commandline
arguments can be found by running man vasy.

vasy -a -B -o -p -I vhdl addaccu

The output of this tool is a ‘.vbe’ file which expands any operators which are present
in the VHDL file. This processed ‘.vbe’ file can then be simulated using the VHDL
simulator asimut.

15.7.2 Alliance CAD tool asimut

In Verilog, we had written an explicit test-bench module which contained the stim-
ulus for the CLK, RESET, and the input signals. In Alliance CAD, the simulation
patterns are listed in an external file. An example is shown below:

-- input / output list :
in clk B;;
in clr B;;
in ld B;;
in a (15 downto 0) X;;;
out result (15 downto 0) X;;;

begin

< 0ns> : 0 1 0 0000 ?**** ;
< +5ns> : 0 1 0 0000 ?**** ;
< +5ns> : 0 1 0 0000 ?**** ;

332 15 VLSI CAD Tools

..
< +5ns> : 1 0 1 0004 ?0004 ;
< +5ns> : 0 0 1 0004 ?0004 ;
end;

The format of the pattern file is shown above. The list of input and output signals
is followed by a sequence of time steps at which the input signals change values.
In the above example, the clk, clr, and ld signal are 1 bit wide, whereas the
input A signal is 15-bit. The advantage of using an external pattern file is that it can
be generated from a program and can contain expected values for outputs. When
simulated, any mismatch between the computed value and the value stored in the
pattern file is treated as a simulation mismatch error and printed on the console.

The VHDL simulator in Alliance is asimut. It compiles and loads a complete
hardware description written in VHDL . The hard- ware description may be struc-
tural (a hierarchy of instances) or behavioral. asimut also expects a pattern file
as the input; the format of the pattern file was discussed above. The pattern file is
compiled, loaded and linked with the hardware description, and the simulation is
started.

$asimut -b addaccu addaccu res_vasy_1
..linking ...
executing ...
###----- processing pattern 0 : 0 ps -----###
###----- processing pattern 1 : 5000 ps -----###
###----- processing pattern 2 : 10000 ps -----###
..

The speed of the simulation can be increased by using BDD (binary decision dia-
grams), by specifying the -bdd commandline argument to asimut. Another ad-
vantage of using external pattern files is that post-synthesis gate level netlist can
be simulated with the same pattern file. This provides a check for synthesis mis-
match. The logic synthesis step of converting high-level VHDL circuit description
to elementary gates is described next.

15.7.3 VHDL Logic Synthesis using Alliance CAD tool Boom

The Alliance CAD tool Boom is used for logic synthesis. The commandline for
using boom is shown below:

$boom [options] [Algorithm] Input Output

The options available are:

-V Sets verbose mode on
-T Sets trace and verbose modes on
-O Reverses initial Bdd variables order

15.7 Alliance CAD System 333

-A Keeps all auxiliary variables
-P Uses a parameter file (Input_file_name.boom)
-L Uses literal’s number for surface estimation
-l num Optimization level [0-3] (default 0, low level)
-d num Delay optimization percent (default 0 %)
-i num Iteration count
-a num Amplitude

And the algorithm available to Boom are:

-s Simulated annealing (default)
-j Just do it algorithm
-b Burgun algorithm
-g Gradient algorithm
-p Procrastination algorithm
-w Window bdd reorder
-t Top bdd reorder
-m Simple bdd reorder
-o One pass (faster algorithm)
-r Random bdd reorder
-n No optimization algorithm

We use the addaccu example to show the logic synthesis procedure. Using vasy
we had produced the ‘.vbe’ file which is given as input to boom:

$boom -V -T -j addaccu.vbe
--> Parse BEH file addaccu.vbe

--> Check figure addaccu

--> Optimization parameters
Algorithm : just do it
Keep aux : no
Area : 100 %
Delay : 0 %
Level : 0

--> Initial cost
Surface : 349750
Depth : 49
Literals : 266

--> Translate Abl to Bdd
Keep register signal resultint 14
Keep signal rtlcarry_0 1

--> Optimization % 100

334 15 VLSI CAD Tools

--> Final cost
Surface : 289500
Depth : 37
Literals : 230

--> Post treat figure addaccu

--> Drive BEH file addaccu_o

The resulting ‘.vbe’ file (addaccu .vbe) consists of a gate level netlist. The depth
of the circuit is 7, which means that there is atleast 1 path of 7 components from
the input to output. Using different algorithms, the area cost of the circuit can be
reduced, as well as a tradeoff between area and speed of the circuit performed. While
the produced gate-level file is logically equivalent to the given input, it can be further
optimized using Boolean transformations and mapped to a standard cell library. In
Section 15.3 we had discussed the BLIF format and its specification of standard cell
libraries. The impact of a good standard cell library function in reducing area and
delay was shown in Figure 15.1, where the same logical function was implemented
in smaller area by using a more complex standard cell. In Alliance, standard cell
libraries are defined using Catalog files, and the library mapper tool is called boog.
boog takes as input the gate-level ‘.vbe’ file, and the target library. It produces a
gate-level netlist.

boog <input_file> [-o <output_file>] [-l <lax_file>]
[-x <xsch_mode>] [-m <optim_mode>]

MBK_TARGET_LIB : /usr/lib/alliance/cells/sxlib

We use boog to map the addaccu o.vbe gate-level file to a netlist of cells from the
Alliance sxlib standard cell library:

$boog addaccu_o -o addaccu -x 1 -m 2

We specify the optimization mode (using -m 2) as well as generate a highlighted
schematic file (the critical path is marked) using the -x 1 commandline arguments.
The input and output file names are also given to the tool.

Reading default parameter...
50% area - 50% delay optimization
Reading file ’addaccu_o.vbe’...
Controlling file ’addaccu_o.vbe’...
Reading lib ’/usr/lib/alliance/cells/sxlib’...
Preparing file ’addaccu_o.vbe’...
Capacitances on file ’addaccu_o.vbe’...
Unflattening file ’addaccu_o.vbe’...
Mapping file ’addaccu_o.vbe’...
Saving file ’addaccu.vst’...
Adding signal ’not_a 3’

15.7 Alliance CAD System 335

Adding signal ’not_a 7’
Quick estimated area

(with over-cell routing)...265250 lambda
Details...
inv_x2: 36
xr2_x1: 31
buf_x2: 16
sff1_x4: 16
oa2a22_x2: 16
...
no2_x1: 1
Total: 144
Saving delay gradient in xsch color file
’addaccu.xsc’...
End of boog...

The standard cell mapping produces a ‘.vst’ file (addaccu.vst) as well as a schematic
tile (addaccu.xsc).

15.7.4 Alliance CAD tool xsch schematic viewer

We have seen the XCircuit tool for schematic depiction in Section 15.4. The Al-
liance CAD tool for schematic viewing is called xsch. Using the generated ‘ad-
daccu.xsc’ file from boog we can run the schematic viewer as:

$xsch -l addaccu

The produced schematic plots are shown in Figure 15.6. The critical path is marked.
xsch can also generate Xfig ‘.fig’ format files. Xfig is a vector graphics editor (see
Section 19.7).

In addition to the schematic file, the main output of boog is the gate-level netlist
which represents our adder-accumulator circuit in terms of standard cell library el-
ements. This gate-level netlist is optimized and converted to physical geometry in
the next sections.

15.7.5 Gate level processing in Alliance CAD

The gate-level netlist format used in Alliance is structural VHDL. This is a subset
of VHDL used for component netlisting. An example is shown below:

entity addaccu is
port (

clk : in bit;

336 15 VLSI CAD Tools

(a) Instances

Fig. 15.6 Schematic viewer tool in Alliance CAD xsch

clr : in bit;
ld : in bit;
a : in bit_vector(15 downto 0);
result : out bit_vector(15 downto 0);
vdd : in bit;
vss : in bit

);
end addaccu;

architecture structural of addaccu is
Component no2_x1

port (
i0 : in bit;
i1 : in bit;

15.7 Alliance CAD System 337

nq : out bit;
vdd : in bit;
vss : in bit

);
end component;
....
not_rtlcarry_0_12_ins : inv_x2

port map (
i => rtlcarry_0_12,
nq => not_rtlcarry_0_12,
vdd => vdd,
vss => vss

);

not_resultint_11_ins : inv_x2
port map (

i => resultint(11),
nq => not_resultint(11),
vdd => vdd,
vss => vss

);
end structural;

The gate-level ‘.vst’ file declares an entity which is the top-level design addaccu.
Subsequently, every standard cell which is instanced in this design is declared. Then
a structural architecture of the design is defined as the interconnection of instances.
The interconnections are made using signals which are equivalent to wires connec-
tion outputs of components to inputs of other instances. This gate-level netlist is
actually a collection of directed acyclic graphs from the primary inputs of the de-
sign, to primary outputs of the design. The critical path in this graph is the path from
an input to output which has the maximum cumulative delay on it. To increase the
speed of the circuit, this path delay should be minimized. In VLSI designs, increas-
ing the area of the driver cells can reduce the path delay (but at a cost of increasing
area). This analysis, of which cells to resize is complex, and dependent on the graph
theoretic analysis of the design, as well as transistor level analysis of the standard
cells. The Alliance CAD tool loon (local optimization on nets) performs this op-
timization. loon takes as input the gate-level .vst file and produces an equivalent
(but optimized) gate-level netlist.

$loon addaccu addaccu_o
Reading default parameter...
50% area - 50% delay optimization
Reading file ’addaccu.vst’...
Reading lib ’/usr/lib/alliance/cells/sxlib’...
Capacitances on file ’addaccu.vst’...
Delays on file ’addaccu.vst’...13297 ps
Area on file ’addaccu.vst’...
265250 lamda (with over-cell routing)

338 15 VLSI CAD Tools

Details...
inv_x2: 36 (10%)
xr2_x1: 31 (26%)
buf_x2: 16 (6%)
sff1_x4: 16 (27%)
oa2a22_x2: 16 (13%)
a2_x2: 13 (6%)
nao2o22_x1: 12 (7%)
oa2ao222_x2: 2 (1%)
an12_x1: 1 (0%)
no2_x1: 1 (0%)
Total: 144
Worst RC on file ’addaccu.vst’...438 ps
Inserting buffers on critical path
...15 buffers inserted -> 12698 ps
Improving RC on critical path for file
’addaccu_o.vst’...12558 ps

Improving all RC for file ’addaccu_o.vst’...
Worst RC on file ’addaccu_o.vst’...438 ps
Area on file ’addaccu_o.vst’...
281250 lamda (with over-cell routing)

Details...
inv_x2: 33 (8%)
xr2_x1: 31 (24%)
buf_x2: 30 (10%)
sff1_x4: 16 (25%)
oa2a22_x2: 16 (12%)
a2_x2: 13 (5%)
nao2o22_x1: 12 (7%)
inv_x4: 3 (1%)
oa2ao222_x2: 2 (1%)
buf_x4: 1 (0%)
an12_x1: 1 (0%)
no2_x1: 1 (0%)
Total: 159
Critical path (no warranty)...12558 ps
from ’resultint 0’ to ’resultint_15_ins’

Saving file ’addaccu_o.vst’...

The loon tool has resized some of the cells on the critical path to use larger drive
strength variants. It can also add inverter-pairs as buffers on some paths. This opti-
mized gate-level netlist is the handoff from the front-end design team to the back-
end team which converts this textual information to physical mask geometry which
is then sent off to the VLSI fab house for manufacturing as computer chips.

15.7 Alliance CAD System 339

15.7.6 Physical design with Alliance CAD

The first step in converting a gate-level standard cell netlist to manufacturable ge-
ometry is standard cell placement. To aid in automatic placement, all standard cells
have the same height (thats why they are called standard). A standard cell placer
arranges these cells in rows while minimizing the wire length. Placement is a hard
combinatorial problem, and therefore advanced techniques have been developed to
approximate a good solution. The Alliance CAD tool’s standard cell placer is called
ocp and implements a simulated-annealing based placer. In addition to placing the
cells, ocp can also perform IO ring placement, from a given IO constraint file:

TOP (# IOs are ordered from left to right
(IOPIN clk.0);
(IOPIN clr.0);
(IOPIN ld.0);
(IOPIN a(15).0);

)
BOTTOM (# IOs are ordered from left to right

(IOPIN result(15).0);
)
IGNORE (# IOs are ignored(not placed) by IO Placer
)

The number of rows can be input to the placer program. We run ocp on our design:

$ocp -v -gnuplot -ioc addaccu_o addaccu addaccu_p

o Number total of instances is 144
o Number of instances to place is 144
o Number of instances already placed is 0
o Number of nets is 170
o Sum of instances to place widths is ... 1061
o Computing Initial Placement ...
o User Margin : 20%
o Number of Rows : 11
o Real Margin : 16.8495%
o Width of the abutment box : 116
o Height of the abutment box : 110
o conspace : 6.10526 1st connector : 3.05263
o adding connector : clk x : 3 y : 110
o adding connector : clr x : 9 y : 110
o adding connector : ld x : 15 y : 110
o adding connector : a 15 x : 21 y : 110
o Initial Placement Computing ... done.
o Beginning global placement
Loop = 1, Temperature = 0.245678, Cost = 0.959008

340 15 VLSI CAD Tools

RowCost = 129.455, BinCost = 260.597, NetCost = 15557.5
Success Ratio = 99.5688%, Dist = 1, Delta = 0.5

o Total impossible movements = 650
o 3.84615 % suroccupied target
o Final Optimization succeeded ...
o Final Net Cost 5094.5
o Final Net Cost Optimization 23.7407%
o Total Net Optimization 68.5961%

Ocp : placement finished

The produced placement is a coordinate assignment of (X,Y) for every instance of
the netlist:

V ALLIANCE : 6
H addaccu_p,P,13/ 7/2010,100
A 0,0,58000,55000
I 46000,0,tie_x0,tiex0_93,SYM_Y
I 44000,45000,tie_x0,tiex0_92,NOSYM
I 43000,0,tie_x0,tiex0_91,SYM_Y
I 42000,50000,tie_x0,tiex0_90,SYM_Y
...

The placement can be viewed using the graphical symbolic viewer tool in Alliance
CAD graal as shown in Figure 15.7.

(a) Cell placement in graal (b) Cell placement in zoomed in

Fig. 15.7 Alliance CAD tool graal showing OCP placement

15.7 Alliance CAD System 341

A more detailed view of the placement coordinates is shown in Figure 15.8(a),
and the metal interconnect layer which lines up in the standard cell rows is shown
in Figure 15.8(b).

(a) Cell coordinates (b) Metal interconnect for rows

Fig. 15.8 Standard cell placement showing cell blocks and metal interconnect

15.7.7 Alliance CAD tool for standard-cell routing: nero

The standard-cell router in Alliance CAD tools is called nero, for Negotiating
Router. It takes as input the number of metal tracks to use for routing, the design file
containing cell coordinates (placement output) and the gate level netlist. It produces
a symbolic placement file containing valid track assignments for metal wires which
connect the various components of the netlist together. VLSI routing is another hard
combinatoric problem, and the router implemented in Alliance CAD uses negotia-
tion, and priority ordering to converge to a valid routing solution. The output of the
router is shown in Figure 15.9(a) and Figure 15.9(b).

Till this point, the physical geometries are maintained in symbolic, or lambda
form. The advantage of symbolic geometry representation is the ease of technology
migration, scaling, design rule verification and circuit extraction. The tool for cir-
cuit extraction is cougar which takes as input the post routed layout, and extracts
the netlist of interconnections (including parasitic resistance and capacitance). The
extracted netlist can be in hierarchical SPICE format:

* Spice description of addaccu_e

* Spice driver version 11952808

* Date (dd/mm/yyyy hh:mm:ss): 13/07/2010 at 16:12:02

342 15 VLSI CAD Tools

(a) Routing output in graal

(b) Metal track for routing

Fig. 15.9 Output from nero negotiating router

* INTERF a[0] a[1] a[2] .. a[11] a[15]

* INTERF clk clr ld

* INTERF result[0] ... result[15]

* INTERF vdd vss

15.7 Alliance CAD System 343

.INCLUDE rowend_x0.spi

.INCLUDE tie_x0.spi

...
C102 rtlcarry_0_3 vss 8.90499e-15
C101 a[3] vss 2.31066e-14
C100 xr2_x1_7_sig vss 6.83829e-15
C99 mbk_buf_rtlcarry_0_3 vss 6.7001e-15
C1 result[15] vss 3.77352e-15
.ends addaccu_e

The extracted SPICE netlist can be analyzed using ngspice SPICE simulator.
See Section 15.9 for more details on using SPICE simulators.

Using the Alliance CAD tool s2r (symbolic to real), symbolic geometries are
converted to actual mask data. The tool can moreover perform post translation treat-
ment of the layout.

15.7.8 QUCS : Universal Circuit Simulator

QUCS is an integrated electronic circuit simulator. An example of a simple digital
circuit designed in QUCS is shown in Figure 15.10.

Fig. 15.10 Example of digital circuit designed in QUCS

The circuit can be simulated within QUCS, and even DC, AC and S-parameter
analysis can be performed. The schematic design format of QUCS is XML:

<Qucs Schematic 0.0.15>

344 15 VLSI CAD Tools

<Properties>
<View=13,12,396,265,1.5,0,0>
<Grid=10,10,1>

..
</Properties>
<Components>

<Port P3 1 300 100 4 12 1 2 "3" 1 "out" 0>
<Port P1 1 80 60 -23 12 0 0 "1" 1 "in" 0>
<Port P2 1 90 170 -23 12 0 0 "2" 1 "in" 0>
<AND Y1 1 210 100 -26 27 0 0 "2" 0 "1 V" 0 "0" 0 "10" 0 "old" 0>

</Components>

15.8 Magic VLSI Editor

Magic is a full custom VLSI layout editor.
It can represent Manhattan mask geometry for a wide variety of process nodes,

and uses a clever corner stitched data representation alongwith layer tiling which
allows Magic to perform design-rule checking (DRC) and layout extraction very
efficiently. Another advantage of Magic is that it represents the design geometry as
simple TEXT files. Consider a small layout example shown in Figure 15.11.

(a) Partial layout in Magic (b) Example of Standard cell

Fig. 15.11 Magic VLSI layout editor

The same layout in Magic’s layout file is shown below:

magic
tech scmos
timestamp 1279089463
<< error_s >>

15.9 NGSpice SPICE Engine 345

rect 2 7 3 8
rect 5 7 7 8
rect 1 5 2 7
rect 1 4 3 5
rect 7 4 8 7
rect 2 3 3 4
rect 5 3 7 4
<< polysilicon >>
rect 3 7 5 9
rect 3 3 5 4
rect 2 1 5 3
rect 3 -6 5 1
<< metal1 >>
rect 0 5 11 8
rect 0 -5 11 -2
<< ntransistor >>
rect 2 4 7 7
<< end >>

15.9 NGSpice SPICE Engine

SPICE is an acronym for simulation program with integraged circuit emphasis.
ngspice is a general purpose circuit simulator for linear and non-linear circuit
analysis. It is an update of the Berkeley Spice 3f5 program. ngspice can perform:
(i) analog simulation, (ii) mixed-mode simulation as well as (iii) digital circuit sim-
ulation. The digital simulation model takes advantage of event propagation to opti-
mize the computation. ngspice supports the following types of analysis:

1. DC analysis: operating point and DC sweep, with inductors shorted and capaci-
tors opened. A DC analysis is automatically performed before transient analysis,

2. AC small signal analysis:limited to analog nodes, and represents the steady-state
behavior at a particular set of stimulus frequencies,

3. Transient analysis: extension of DC analysis to the time domain,
4. Pole-zero analysis: computes poles and zeros in the small-signal AC transfer

function,
5. Small-signal distortion analysis: computes steady-state harmonics,
6. Sensitivity analysis: calculates either the DC operating-point sensitivity, or AC

small-signal sensitivity,
7. Noise analysis: analyzes device generated noise.

Circuits in SPICE are described using topological conventions: (i) circuit cannot
contain a loop of voltage sources, (ii) each node in the circuit must have a dc path
to ground, and (iii) every node must have at least two connections. A simple SPICE
circuit is shown in Figure 15.12.

The circuit shown in Figure 15.12 can be defined in SPICE as:

* Example of a simple circuit in Spice
VS 1 0 DC 10V

346 15 VLSI CAD Tools

Fig. 15.12 Example circuit
for SPICE analysis

IS 5 0 DC 50MA
R1 1 3 500
R2 3 5 300
.END

The circuit has a voltage source between nodes 1 and 0 of 10 volts, and a current
source of 50 mA between nodes 5 and 0. The two resistors are placed in series. The
SPICe file contains a title, and the last line contains .end to depict end of circuit.
Hierarchical SPICE netlists can be generated:

.subckt VMODULE 1 2 3 ; defines a subcircuit
r1 1 2 500
r2 2 3 100
.ends

U1 5 6 9 VMODULE ; refers to an instance of VMODULE

15.9.1 Elementary devices in SPICE

SPICE already knows about elementary devices such as resistors, capacitors, voltage
sources, current sources and MOSFETS. Resistors are introduced using the R<n>
notation, capacitors with the C<n> notation, inductors with L<n>, coupled induc-
tors with K<n>, switches with S<n>, voltage sources with VS<n>, current sources
with IS<n> and MOSFETS with M<n>. Diodes are represented with D<n> and
BJT models with Q<n>.

A MOSFET model is defined as:

M<n> nd ng ns nb mname <m=val> <l=val> <w=val>

where nd denotes the connection to drain, ng connection to gate, ns connection
to source. The model name is given in mname, and device parameters m denotes
multiplicity, while l and w denote the length and width of the MOSFET channel,
respectively. ngspice supports advanced device models in MOSFETS, including
the BSIM1, and BSIM3 models.

15.9 NGSpice SPICE Engine 347

15.9.2 Performing TRANSIENT analysis

An example of performing transient analysis on the above circuit is shown below.

ngspice 1 -> source ex1.cir
Circuit: * example of a simple circuit in spice
ngspice 2 -> tran 1ns 10ns
Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
Initial Transient Solution

Node Voltage
---- -------
1 10
5 -30
3 -15
vs#branch -0.05
%100.00
No. of Data Rows : 60

ngspice also has the ability to plot signal waveforms directly from the interac-
tive command terminal.

15.9.3 Conclusion

In this section we have discussed the many open-source tools we have for do-
ing VLSI CAD. Verilog, VHDL simulation, logic synthesis, placement, routing,
schematic generation, physical layout editing and SPICE simulation were discussed
in this section. In addition to VLSI CAD, some of the software libraries developed
for VLSI have also found use in othe domains. For example, Tcl/Tk were initially
developed for glue logic between CAD tools, binary-decision diagram libraries for
logic synthesis and verification are also used in combinatoric search, and satisfiabil-
ity testing is also used as a search space exploration tool in integer linear program-
ming.

Chapter 16
Math libraries

Abstract Most of the open-source mathematics software is built upon libraries
which implement mathematical functions and computations. Since mathematics is
an integral part of most scientific computing and research, it is to be expected that
these libraries can also often be used in application software written by the reader.
In this chapter we discuss some of the most popular mathematical libraries which
are used in open-source applications. The libraries cover almost all aspects of math-
ematics including linear algebra, number theory, graph theory, FFT, multi-precision
computation and linear programming.

Contents
16.1 BLAS . 350
16.2 ATLAS . 351
16.3 LAPACK . 351
16.4 NTL . 352
16.5 GSL . 352
16.6 GMP . 353
16.7 MPFR . 353
16.8 FFTW . 353
16.9 GLPK . 354
16.10 COIN-OR: Comp. Infrastructure for OR 355
16.11 Conclusion . 356

In this chapter we discuss several interesting and useful tools available for perform-
ing mathematics using computers. They include symbolic algebra, matrices, linear
algebra, group theory, polynomials, statistics. Specifically we shall cover LAPACK,
BLAS and ATLAS foundation libraries. NTL, number theory library, GNU Scien-
tific library, GNU Multiprecision bignum library. For sparse solvers, TAUCS, FFT
using FFTW library. Linear programming with glpk. Complete open sourced math-
ematical systems can be found in GNU Octave, Maxima, R, and Sage. Group the-
oretic software pari and its front-end ‘gp’. A formalized mathematical system AX-
IOM and the REDUCE computer algebra software package. A front end to many of
these software alongwith publication quality typesetting is ‘TeXMacs’. We round-
off this section with the discussion of the Computer Geometry Algorithms Library
(CGAL).

S. Koranne, Handbook of Open Source Tools, 349
DOI 10.1007/978-1-4419-7719-9_16, © Springer Science+Business Media, LLC 2011

350 16 Math libraries

Linear algebra is significant component of almost all engineering and scientific
work loads. In this section we discuss some of the software libraries which are
available for linear algebra computation.

16.1 BLAS

Basic Linear Algebra Subprograms (BLAS) is an application programming inter-
face (API) standard for publishing libraries to perform basic linear algebra opera-
tions such as vector and matrix multiplication. They are most commonly used in
high-performance computing and are used to develop larger packages such as LA-
PACK. Optimized implementations of the BLAS interface have been developed by
hardware vendors such as Intel and AMD as part of their MKL and ACML libraries
respectively. BLAS is divided into 3 levels:

1. Level-1: vector only operations of the type y← αx+ y,
2. Level-2: matrix-vector operations, y← αAx+βy,
3. Level-3: matrix-matrix operations, such as: C← αAB+βC. This level contains

the GMM (or general matrix multiply) operation.

The type of the vector or matrix is defined as part of the name of the operation;
the type is one of single-float, double-float, or complex. As mentioned above many
optimized implementation of BLAS are available, and since it is the building block
of more complex libraries, performance improvement in BLAS are often critical
to improving system performance. An example of a BLAS function to compute
matrix-vector product is shown in Listing 16.1.

// \file blas_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Example of using BLAS in C++
#include <iostream> // Program IO

5 extern "C" {
#include <cblas.h> // BLAS header
}
#if 0
cblas_dgemv(const enum CBLAS_ORDER Order,

10 const enum CBLAS_TRANSPOSE TransA,
const int M, const int N,
const double alpha,
const double *A, const int lda,
const double *X, const int incX,

15 const double beta,
double *Y, const int incY);

#endif
static double X[] = { 1.0, 2.0, -2.0, -1.0 };
static double A[] = {

20 4.0, 3.0, 1.0, 2.0,
2.0, 1.0, 5.0, 3.0,
6.0, 3.0, 1.0, 2.0,
1.0, 4.0, 6.0, 2.0

};
25

int main(int argc, char* argv[]) {
std::cout << "A = ";
for(int i=0; i < 4; ++i) {

16.3 LAPACK 351

for(int j=0; j < 4; ++j) {
30 std::cout << A[i*4+j] << " ";

}
std::cout << "\n";

}
double *y = new double[4];

35 // compute Ax
cblas_dgemv(CblasRowMajor, CblasNoTrans, 4, 4, 1.0,

A, 4, X, 1, 0.0, y, 1);
for(int i=0; i < 4; ++i) std::cout << y[i] << " ";
std::cout << std::endl;

40 return(0);
}

Listing 16.1 Example of using BLAS library

The use of the cblas_dgemv function demonstrates the flexibility of the underlying
API.

16.2 ATLAS

ATLAS is an acronym for Automatically Tuned Linear Algebra Software. It pro-
vides an implementation of BLAS, but it is unique in the sense that it provides
a completely automatic method of generating optimized BLAS libraries from the
same code on any machine or architecture. Even though the performance of ATLAS
cannot compare to hand-optimized machine specific software, ATLAS is often used
to build a quick and optimized version of BLAS while the customized functions are
implemented.

ATLAS uses automatic tuning of code parameters based on experimental runs
of standardized software on the target machine as part of the compilation. Thus
it is critical to use a representative machine (under nominal workload) to compile
ATLAS. Given the speculative nature of modern architecture’s instruction pipeline,
and large dependency of data movement on cache, ATLAS uses data layout and
cache line optimization to derive its performance.

When compiling code which uses the ATLAS libraries, the linking step should
be performed in the following order:

-llapack -lcblas -lf77blas -latlas

This ordering is important for the linker to find the ATLAS library functions.

16.3 LAPACK

LAPACK (Linear Algebra PACKage) is a software library for numerical linear
algebra. It provides routines for solving systems of linear equations and linear
least squares, eigenvalue problems, and singular value decomposition. It also in-

352 16 Math libraries

cludes routines to implement the associated matrix factorizations such as LU, QR,
Cholesky and Schur decomposition.

16.4 NTL

Number Theory Library (NTL) is a C++ library for performing experiments and
computations in number theory. NTL supports arbitrary length integer computation,
computation over finite fields, vectors, matrices, polynomials and lattices.

#include <NTL/ZZ.h>
NTL_CLIENT
int main() {

ZZ a, b, c;
5 cin >> a;

cin >> b;
c = (a+1)*(b+1);
cout << c << "\n";

}

Listing 16.2 Example of using NTL

Running this example produces:

123456789
123456789
15241578997104100

16.5 GSL

GNU Scientific Library (GSL) is a software library for numerical computations in
science and mathematics. The library implements the calculation of numerically
evaluated functions such as Bessel functions. Consider the program shown in List-
ing 16.3.

#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>
int main(void) {
double x = 5.0;

5 double y = gsl_sf_bessel_J0(x);
printf("J0(%g) = %.18e\n", x, y);
return 0;

}

Listing 16.3 Example of using GNU Scientific Library (GSL)

Running this program requires:

gcc $(gsl-config --cflags) gsl_example.c
$(gsl-config --libs)

J0(5) = -1.775967713143382920e-01

16.8 FFTW 353

The GSL library includes functions for:

• Physical constants and Basic mathematical functions
• Complex numbers, Polynomials, Vectors and matrices
• Special functions
• Permutations, Combinations and Multisets
• Linear algebra, Eigensystems
• FFT, Discrete Hankel transform and Discrete wavelet transform
• Numerical differentiation and integration
• Random number generation and Quasi-random sequences
• Statistics, Histograms, N-tuples
• Simulated annealing
• Ordinary differential equations
• Interpolation, Chebyshev approximations
• Root-finding in one and multiple dimensions
• Minimization in one and multiple dimensions
• Least-squares fitting, Nonlinear least-squares fitting
• IEEE floating-point arithmetic

16.6 GMP

GNU multi-precision library (GMP) is a library for arbitrary precision arithmetic on
signed integers, rational numbers and floating point numbers. The only limit to the
precision is imposed by the available memory of the machine. The applications of
GMP include cryptography, computational geometry and computer algebra.

16.7 MPFR

GNU multi-precision float rounding (MPFR) is a library for arbitrary precision float-
ing point computation with correct rounding. The computation is efficient and has
correct mathematical semantics. It is used for computational geometry applications,
and like GNU GMP, is now required to build GCC.

16.8 FFTW

FFTW is an acronym for “fastest Fourier transform in the west”. It is a software
library for computing discrete FFT and was developed at MIT. Using FFTW, trans-
forms of real and complex values vectors can be carried out. It is one of the fastest
FFT libraries. Like ATLAS, FFTW is based on a plan based computation, except
in this case the user can define a plan at run time depending upon the type and size

354 16 Math libraries

of the vector. For a sufficiently large number of repeated transforms it is advanta-
geous to use FFTW’s ability to choose the fastest algorithm by actually measuring
the performance of (some or all of) the supported algorithms on the given array size
and platform. These measurements, which the authors call wisdom can be stored in
a file or string for later use. A good example of the FFT can be shown using the
GIMP fft filter:

(a) A collection of polygons transformed with FFT

Fig. 16.1 FFT transformations

The particular call to FFTW in this filter is shown below:

fftw_plan p;
p = fftw_plan_dft_r2c_2d(w, h, fft_real,

(fftw_complex *) fft_real, FFTW_ESTIMATE);
fftw_execute(p);

This performs a real-to-complex in-place FFT on the data (assuming that the vector
has memory for complex sized data).

16.9 GLPK

The GNU Linear Programming Kit (GLPK) is a software system designed to solve
large-scale linear programming (LP), mixed integer programming (MIP) problems.
The software comprises of a C language library which implements a revised simplex
method, primal-dual method and Gomory’s mixed integer cuts alongwith branch-
and-bound algorithms. GLPK also supports the GNU MathProg modeling language
which is a subset of AMPL. Consider the following GLPK sample code (which is
available from the examples directory):

..
s1: lp = glp_create_prob();
s2: glp_set_prob_name(lp, "sample");
s3: glp_set_obj_dir(lp, GLP_MAX);

16.10 COIN-OR: Comp. Infrastructure for OR 355

5 s4: glp_add_rows(lp, 3);
..
s11: glp_add_cols(lp, 3);
s12: glp_set_col_name(lp, 1, "x1");
s13: glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);

10 s14: glp_set_obj_coef(lp, 1, 10.0);
..
s29: ia[9] = 3, ja[9] = 3, ar[9] = 6.0; /* a[3,3] = 6 */
s30: glp_load_matrix(lp, 9, ia, ja, ar);
s31: glp_simplex(lp, NULL);

15 s32: z = glp_get_obj_val(lp);
s33: x1 = glp_get_col_prim(lp, 1);

The GLPK library has functions for defining the problem, specifying whether the
objective function should be maximized or minimized, adding constraints and the
objective function. We compile this program and run it as:

gcc sample.c -o sample -lglpk

* 0: obj = 0.000e+00 infeas = 0.0e+0 (0)

* 2: obj = 7.333e+02 infeas = 0.0e+0 (0)
OPTIMAL SOLUTION FOUND

z = 733.33; x1 = 33.33; x2 = 66.667; x3 = 0

16.10 COIN-OR: Comp. Infrastructure for OR

Another software system for linear programming, and much more, is the Computa-
tional Infrastructure for Operations Research (COIN-OR). It contains the following
tools:

1. Developer tools: UNIX development tools, mainly developed for COIN-OR in-
ternal development,

• BuildTools: CoinBazaar, CoinBinary, CoinWeb, and Coopr,

2. PFunc: Parallel Functions, API for task parallelism,
3. Graphs: tools and libraries for operating on graphs:

• CGC: COIN-OR Graph Classes:
• LEMON: Library of Efficient Models and Optimization in Networks, a C++

template library for combinatorial optimization,

4. Interfaces

• CoinMP: API and library for CLP, CBC and CGL,
• OSI: Open Solver Interface (see also Section 16.10.1,
• PuLP: Python library for modeling LPs, and IPs.

5. Modeling Systems: Coopr, FlopC++, PuLP,
6. Optimizers

• CLP: COIN-OR LP, a simplex solver,

356 16 Math libraries

• CoinMP: API and library for CLP, CBC and CGL,
• BCP: Branch-Cut-price framework,
• CBC: COIN-OR branch-and-cut, LP based branch-and-cut,
• CGL: Cut Generator Library,
• CHiPPS: COIN-OR High Performance Parallel Search framework,
• DIP: Decomposition in IP,
• SYMPHONY: callable library for MIPs,

16.10.1 Open Solver Interface

The COIN-OR Open Solver Interface is a standardized application programming
interface (API) for calling solver libraries and external functions. It supports open-
source as well as commercial solvers, such as COIN-OR LP, BCP, and GLPK.

16.11 Conclusion

A large fraction of engineering tools are based on a fixed set of mathematical li-
braries. The most important libraries which implement mathematical features are
described in this chapter. In particular the mathematical libraries of BLAS, ATLAS,
LAPACK, NTL, GSL, GMP and MPFR were discussed. The FFTW system for
computing FFTs was also described with the help of an image-processing example.
Linear programming has become an important solution method for engineering dis-
ciplines (especially financial applications). The GNU GLPK and COIN-OR systems
for linear programming was discussed in Section 16.10.

Chapter 17
Mathematics Software

Abstract In this chapter we describe open-source software for mathematics. We
discuss Maxima, a general purpose symbolic math software system. GNU Octave
which operates on matrices and can be used for signal processing functions. Sta-
tistical computing with R and PSPP is described, as well as number theory, group
theory and graph isomorphism checking using PARI, and Nauty. The open-source
math software Axiom, REDUCE, Singular, CoCoA, and Macaulay are discussed in
their context of algebraic geometry and commutative algebra. The Polytope analysis
software ’polymake’ is shown, and with the help of examples, its use in calculating
polytope properties is discussed. The TeXmacs front-end and editing platform is
described as well. To end the chapter we present, Sage, which is a Python interface
to many of the other software mentioned in this chapter. The Computational Geom-
etry Algorithms Library (CGAL) is described for its use in solving computational
geometry and discrete geometry problems.

Contents
17.1 Maxima . 358
17.2 GNU Octave . 358
17.3 R : Data analysis and Graphics . 361
17.4 PSPP . 365
17.5 Pari . 370
17.6 Nauty . 370
17.7 Axiom . 371
17.8 Reduce . 373
17.9 Singular Computer Algebra System. 375
17.10 polymake: software to analyze Polytopes 379
17.11 Other Math Systems . 381
17.12 CGAL (Computer Geometry Algorithms and Library) 385
17.13 TeXMacs . 387
17.14 Sage . 388
17.15 Conclusion . 390

S. Koranne, Handbook of Open Source Tools, 357
DOI 10.1007/978-1-4419-7719-9_17, © Springer Science+Business Media, LLC 2011

358 17 Mathematics Software

17.1 Maxima

Maxima is an open-source symbolic math software written in Common Lisp. It is
based upon Macsyma (developed in 1982 at MIT). It supports symbolic differentia-
tion, integration and operations on polynomials.

Fig. 17.1 Maxima text console

(%i1) u : expand((a+b)ˆ4);
4 3 2 2 3 4

(%o1) b + 4 a b + 6 a b + 4 a b + a
(%i3) factor(10!);

8 4 2
(%o3) 2 3 5 7

(%i5) integrate((1/(1-xˆ2)),x);
log(x + 1) log(x - 1)

(%o5) ---------- - ----------
2 2

17.2 GNU Octave

GNU Octave is a high-level language for manipulating matrices and performing
numerical computations. The command-line interpreter is called octave and the
software provides an interface for solving linear and non-linear problems. GNU
Octave in turn is built upon many of the mathematical libraries described above (in-
cluding FFTW, LAPACK and BLAS), and as such provides an uniform syntax and
mechanism to use these libraries. The Octave language is mostly compatible with
Matlab and indeed matrix manipulation and computation is one of the mainstays of
GNU Octave’s usage.

GNU Octave also has interfaces to plot graphs, load audio sample files, perform
image processing (using the ImageMagick library to perform image IO). A graphical
front end for Octave using Qt (called qtoctave) is also available (see Figure 19.6

17.2 GNU Octave 359

Fig. 17.2 Maxima software running in wxMaxima

for a screen-shot). In this section we describe some useful functions available in
GNU Octave. To launch GNU Octave on the command-line we run octave:

octave:1> a=rand(3,3)
a =

0.108517 0.813629 0.677108
0.464601 0.260034 0.506348
0.077527 0.382319 0.129084

octave:2> b=rand(3,3)
b =

0.441143 0.096095 0.551832
0.907029 0.146410 0.290589
0.264928 0.842573 0.647098

octave:3> a+b
ans =

0.54966 0.90972 1.22894
1.37163 0.40644 0.79694
0.34245 1.22489 0.77618

octave:4>

360 17 Mathematics Software

The GNU Octave command to make a matrix is shown above. A random matrix
can be generated using the rand function. Octave supports built-in datatypes as
well as user-defined data types. The built-in datatypes supported by Octave are:

1. int8,
2. uint8,
3. int16,
4. uint16,
5. int32,
6. uint32,
7. int64,
8. uint64,
9. double.

In addition, GNU Octave also supports complex and integer scalars (and matrices
of the above types). String objects consist of sequence of characters. The type of the
variable can be inspected by using the typeinfo function.

User-defined data structures can be defined as:

octave:1> p = struct();
octave:2> p.x = 10;
octave:3> p.y = 20;
octave:4> p
p =
{
x = 10
y = 20

}

17.2.0.1 Index expressions

A scalar, row-vector and column-vector can be defined as:

• a(2): defines a scalar,
• a(1:2): defines a row-vector,
• a([1;2]): defines a column vector

To create a row vector using an index expression:

for i = 1:4
mat(i) = i * i

endfor
mat = 1 4 9 16

GNU Octave can return multiple values from functions. Octave supports arith-
metic operators, comparison operators, and Boolean operators. In addition to using
the interpreter, Octave programs can be stored in a file. Consider a program as shown
in Listing 17.1 which defines a function hello_world.

17.3 R : Data analysis and Graphics 361

GNU Octave file

function hello_world(name)
printf (mfilename("fullpath"));

5 printf ("\nHello from %s\n", name);
endfunction

Listing 17.1 GNU Octave program script

When the path in which this file is placed located in the Octave search path (a
path can be added to the Octave search path using the addpath function), the function
hello_world is available to use in the interpreter. One thing to keep in mind is that the
function should not be called inside the file (otherwise it results in infinite recursion).
To prevent this, place an expression which not a function as the first non-comment
token in the file. Using the mfilename we can print the name of the current file (using
the “fullpath”) argument to mfilename, we can print the full path to the file. Any
function which is not named the same as the file is a function which is only visible
inside the file and cannot be called from outside. Other important functionality of
Octave are listed below:

1. Input/output functions,
2. Plotting,
3. Matrices:

• Diagonal matrix
• Sparse matrix

4. Linear algebra,
5. Non-linear equation,
6. Numerical integration,
7. Differential equations,
8. Optimization,
9. Statistics,

10. Polynomial manipulations,
11. Signal processing:

• Audio processing,
• Image processing.

17.3 R : A Programming Environment for Data Analysis and
Graphics

R is a programming language and software environment for statistical computing
and graphics. It is an implementation of the S programming language with lexical
scoping semantics inspired by Scheme (see Section 1.6.9). The R language has be-
come standard among statisticians for the development of statistical software, and

362 17 Mathematics Software

is widely used for statistical software development and data analysis. Amongst its
many features are:

1. Operators for calculation on arrays,
2. Simple but effective programming language ’S’,
3. Tools for data analysis,
4. Effective data I/O and storage,
5. Integrated graphical display and plotting.

R provides a wide variety of statistical (including linear and nonlinear modeling,
classical statistical tests, time-series analysis, classification, and clustering, etc.) and
graphical techniques. Consider a small transcript of an R session below:

> x <- c(1,3,5,7,11,13)
> y <- xˆ2
> mean(y)
[1] 62.33333
> var(y)
[1] 4599.467
> summary(lm(y ˜ x))

Call:
lm(formula = y ˜ x)

Residuals:
1 2 3 4 5 6

19.478 -1.043 -13.565 -18.087 -3.130 16.348

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -32.74 13.03 -2.513 0.065821 .
x 14.26 1.65 8.644 0.000985 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 17.09 on 4 degrees of freedom
Multiple R-squared: 0.9492,Adjusted R-squared: 0.9365
F-statistic: 74.71 on 1 and 4 DF, p-value: 0.0009853

In the next section we shall describe another software system for statistical analy-
sis, PSPP see Section 17.4. R, although used for statistical analysis is designed to be
a flexible environment which supports statistical analysis. Moreover, in R the com-
puted results of operations are stored in objects on which subsequent analysis can
be performed. PSPP is designed to produce output immediately upon computation.
Some of the useful command in R are given below:

> q() # quit R
> ?solve # give help on solve function
> example(solve) # show an example of the solve function
> plot(x <- rnorm(64), type="s", main="Title")
> log10(2)
[1] 0.30103
> sqrt(100)

17.3 R : Data analysis and Graphics 363

[1] 10
> exp(1.01)
[1] 2.745601
> source("file.R") # read command from file
> sink("file.log") # write output to file
> objects() # data persistence
> ls()
"A" h8" "hilbert"
> ls
<environment: namespace:base>
> c(1,1,2,3) # construct a vector of 1,1,2,3
[1] 1 1 2 3
> x <- c(1,1,2,3) # assign this vector to var. x
> x
[1] 1 1 2 3
> c(x,0,x) -> y # assignment in the other direction
> x[1] = 8 # vectors in x start at 1
> x # x is now modified
[1] 8 1 2 3
> y # but y is not, vectors are copied in assignment
[1] 1 1 2 3 0 1 1 2 3
> sum(x)
[1] 14
> mean(x)
[1] 3.5
> x <- c(1:10)
[1] 1 2 3 4 5 6 7 8 9 10
> x <- c(1,2,...,8)
seq(from=1,to=10, length=3) # functions in R can have named params
[1] 1.0 5.5 10.0
> logical_vector <- x > 2 # vector of booleans if x > 2
m <- array(23:43, dim=c(4,4))
> m

[,1] [,2] [,3] [,4]
[1,] 23 27 31 35
[2,] 24 28 32 36
[3,] 25 29 33 37
[4,] 26 30 34 38
> eigen(m)
$values
[1] 1.226523e+02+0.000000e+00i -6.522506e-01+0.000000e+00i
[3] 2.949706e-15+1.401517e-15i 2.949706e-15-1.401517e-15i

$vectors
[,1] [,2] ...

[1,] -0.4752248+0i 0.7359579+0i ...
[2,] -0.4915202+0i 0.2934262+0i ...
[3,] -0.5078157+0i -0.1491055+0i ...
[4,] -0.5241111+0i -0.5916372+0i ...

m_transpose = aperm(m, c(2,1)) # transpose is a permutation
> m_transpose

[,1] [,2] [,3] [,4]
[1,] 23 24 25 26

364 17 Mathematics Software

[2,] 27 28 29 30
[3,] 31 32 33 34
[4,] 35 36 37 38
>

As can be seen above, there is a difference between calling a function ls() versus
the object representing the function ls. The former calls the ls function, while the
latter returns the definition of the function. Vectors can be assigned to other vectors
using the c() function. Vectors are copied by value and not by reference. Matrix
examples are shown as well; also see Section 17.2 for GNU Octave for matrix com-
putations.

Fig. 17.3 Data summary plot using R

Data present in external file can be read using the read.table function. The data
file should have a header line defining the name of the variable present in each
subsequent row. The data is read into a data-frame.

17.4 PSPP 365

roll_table <- read.table("rollcall.data", header=TRUE)
> roll_table

Name Age Weight Marks
1 Jack 8 143 65
2 Jill 8 143 65
...
> sum(roll_table["Age"])
[1] 43
mean(roll_table["Age"])

Age
7.166667
> mean(roll_table["Marks"])
Marks

72
>summary(roll_table["Marks"])

Marks
Min. :64.0
1st Qu.:65.0
Median :69.5
Mean :72.0
3rd Qu.:75.5
Max. :88.0
> plot(roll_table)

A complete summary of this data can be generated using the plot function as
shown in Figure 17.3. In addition to the built-in functions, R also has a complete
programming language in which users can define their own functions. The program-
ming language supports the usual paradigms of looping constructs, if-then-else and
object-oriented programming.

> my_sum <- function(a,b) { a+b }
> my_sum(10,20)
[1] 30

17.4 PSPP

PSPP is a program for statistical analysis of sampled data. It is designed to be an
open-source alternative of other proprietary statistical analysis programs. PSPP can
be used to perform descriptive statistics, T-tests, non-parametric tests, linear regres-
sions alongwith the basic analysis of frequency, mean, median mode on variable
data. Some of the distinctive features of PSPP are:

• Portability: available as open-source software on many operating systems includ-
ing GNU/Linux,

• Has both command-line and GUI interface,
• High performance: can support billion cases and variables,
• Compatibility: data and syntax are compatible with other statistical analysis pro-

grams,

366 17 Mathematics Software

• Plotting: can produce output directly in Postscript,
• Easy import of data: from comma-separated files, spreadsheets, and databases.

A sample dataset can be managed by creating a data view containing columns of
data types as shown in Figure 17.4.

Fig. 17.4 Variable view in PSPP

PSPP (in batch mode) reads a syntax file, and a given data file, performs the
analysis and writes the output to a listing file (or standard output). The output tables
and charts can be in ASCII or Postscript and HTML. In batch mode pspp accepts
various command-line arguments specifying the input file, output file, and other op-
tions. For graphical user interface the command psppire. An example session with
PSPP to analyze data is shown in Figure 17.5. PSPP is designed for statistical anal-

Fig. 17.5 PSPP software to analyze data

17.4 PSPP 367

ysis of data, thus data input/output is central to the program. Each datum represents
(or belongs to) a case, also called an observation. In Figure 17.5 12 observations
are listed. The data can also be read from TEXT files, PostgreSQL databases, and
GNUmeric spreadsheets. Consider an example to read the UNIX /etc/passwd
file:

GET DATA /TYPE=TXT /FILE=’/etc/passwd’ /DELIMITERS=’:’
/VARIABLES=username A20

password A40
uid F10
gid F10
...
shell A40

Additionally the data can be included as part of the program for simple analysis.
Consider the example given below:

DATA LIST /X 1-3
BEGIN DATA.
109
2
65
4
432
10
15
20
198
24
12
END DATA.
COMPUTE X=X/2.
DESCRIPTIVES X.

This PSPP program performs a division of 2 on the sample data before computing
the statistical properties. Running pspp <file> gives the analyzed listing as:

1.1 DATA LIST. Reading 1 record from INLINE.
+--------+------+-------+------+
|Variable|Record|Columns|Format|
#========#======#=======#======#
|X | 1| 1- 3|F3.0 |
+--------+------+-------+------+

2.1 DESCRIPTIVES. Valid cases = 11;
cases with missing value(s) = 0.

+--------#--+-----+-------+-------+-------+
|Variable# N| Mean|Std Dev|Minimum|Maximum|
#========#==#=====#=======#=======#=======#
|X #11|40.50| 65.43| 1.00| 216.00|
+--------#--+-----+-------+-------+-------+

Another example using statistical regression with formatted input is shown below:

368 17 Mathematics Software

echo "Rollcall in PSPP"
DATA LIST /Name 1-10 (A) Age 11-12 (0) Weight 13-15 (0)

Marks 16-17 (0)
BEGIN DATA.
Jack 814365
Jill 814365
John 713276
Mark 615674
Daniel M 715464
Zack, Paul 717688
END DATA.
LIST.
REGRESSION /VARIABLES=Age Marks /STATISTICS DEFAULTS

/DEPENDENT=Marks.
REGRESSION /VARIABLES=Age Weight /STATISTICS DEFAULTS

/DEPENDENT=Weight.
REGRESSION /VARIABLES=Weight Marks /STATISTICS DEFAULTS

/DEPENDENT=Marks.

The output of this program is:
Rollcall in PSPP

1.1 DATA LIST. Reading 1 record from INLINE.
+--------+------+-------+------+
|Variable|Record|Columns|Format|
#========#======#=======#======#
Name	1	1- 10	A10
Age	1	11- 12	F2.0
Weight	1	13- 15	F3.0
Marks	1	16- 17	F2.0
+--------+------+-------+------+

Name Age Weight Marks
---------- --- ------ -----
Jack 8 143 65
Jill 8 143 65
John 7 132 76
Mark 6 156 74
Daniel N 7 154 64
Zack, Paul 7 176 88

2.1 REGRESSION. Model Summary
#============#========#=================#==========================#
R #R Square|Adjusted R Square|Std. Error of the Estimate#
#========#===#========#=================#==========================#
|.45# .21| .21| 9.32#
#========#===#========#=================#==========================#

2.2 REGRESSION. ANOVA
#===================#==============#==#===========#====#============#
#Sum of Squares|df|Mean Square| F |Significance#
#========#==========#==============#==#===========#====#============#
|Regression# 90.35| 1| 90.35|1.04| .37#
|Residual # 347.65| 4| 86.91| |
|Total # 438.00| 5| | |
#========#==========#==============#==#===========#====#============#

2.3 REGRESSION. Coefficients
#===================#======#==========#====#=====#============#
B |Std. Error|Beta| t |Significance#
#========#==========#======#==========#====#=====#============#
|(Constant)#112.47| 39.87| .00| 2.82| .22#
| Age # -5.65| 5.54|-.45|-1.02| .35#
| # | | | |
#========#==========#======#==========#====#=====#============#

3.1 REGRESSION. Model Summary
#============#========#=================#==========================#
R #R Square|Adjusted R Square|Std. Error of the Estimate#
#========#===#========#=================#==========================#
|.36# .13| .13| 15.78#
#========#===#========#=================#==========================#

17.4 PSPP 369

Using PSPP we can easily compute the dependence of variables on others and
compute their statistical relationships. PSPP includes several statistical analysis
functions, as shown in Figure 17.6.

Fig. 17.6 Statistical analysis function in PSPP

When the data is analyzed PSPP produces a detailed report as given below:

3.1 FREQUENCIES. Weight
+-----+--------+---------+--------+--------+--------+
| | | | | Valid | Cum |
|Label| Value |Frequency| Percent| Percent| Percent|
#=====#========#=========#========#========#========#
	132	1	8.33	8.33	8.33
	143	1	8.33	8.33	16.67
	144	1	8.33	8.33	25.00
	150	1	8.33	8.33	33.33
	155	3	25.00	25.00	58.33
	156	1	8.33	8.33	66.67
	158	1	8.33	8.33	75.00
	165	1	8.33	8.33	83.33
	176	1	8.33	8.33	91.67
	187	1	8.33	8.33	100.00
#=====#========#=========#========#========#========#					
Total	12	100.0	100.0		
+--------------+---------+--------+--------+--------+

+---------------------+------+ +------------+------+
N Valid	12		Range	55.00
Missing	0		Minimum	132.00
Mean	156.33		Maximum	187.00
Mode	155.00		50 (Median)	156
Std Dev	14.69	+------------+------+		
S.E. Kurt	1.23			
S.E. Skew	.64			
+---------------------+------+

370 17 Mathematics Software

17.5 Pari

PARI/GP is a mathematical software system for performing research in number the-
ory and group theory. Running gp on GNU/Linux gives:

[skoranne@celex tmp]$ gp
GP/PARI CALCULATOR Version 2.3.4 (released)

i686 running linux (ix86/GMP-4.3.1 kernel) 32-bit version
compiled: Oct 20 2009, gcc-4.4.2 20091018 (Red Hat 4.4.2-4) (GCC)

(readline v6.0 enabled, extended help available)

Copyright (C) 2000-2006 The PARI Group

PARI/GP is free software, covered by the GNU General
Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER.

Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.

parisize = 4000000, primelimit = 500000
?

The software comprises of two components:

1. PARI: is the underlying C library which implements the required functions for
operating on groups,

2. gp: is a command line interface to the above library. It is structured as a calculator
which interfaces to the user.

PARI/GP supports arbitrary precision computation on integers and thus can easily
perform factorial and prime number computations.

17.6 Nauty

Nauty is a computer program and library for computing automorphism group of
graphs and digraphs. It can also be used to produce a canonical labeling of the
vertices of the graph. Nauty is written in C language and is thus easily portable.
For graphs which can fit in the wordsize of the machine (32-bit or 64-bit) it has
excellent performance. Nauty can be used as a library, or it can be used as a graph
isomorphism checker. The command-line program dreadnaut which ships with
Nauty provides orbit (automorphism group of the vertices of the graph) calculation.
Consider the 3-dimensioned simplex with 4 vertices. This is a complete graph (every
vertex is connected to every other vertex). See Figure 17.7.

Dreadnaut version 2.4 (32 bits).
> n=4
> g
0 : 1 2 3;

17.7 Axiom 371

Fig. 17.7 Graph of 3-simplex

1 : 2 3;
2 : 3;
3 : .
> x
(2 3)
level 3: 3 orbits; 2 fixed; index 2
(1 2)
level 2: 2 orbits; 1 fixed; index 3
(0 1)
level 1: 1 orbit; 0 fixed; index 4
1 orbit; grpsize=24; 3 gens; 10 nodes; maxlev=4
tctotal=16; cpu time = 0.00 seconds

Using dreadnaut we first specify that the graph has 4 vertices, then we input the
adjacency of the graph. The ‘x’ command runs the canonical labeling computation
which prints the automorphism groups (orbits). The graph is completely symmetri-
cal and thus there is only 1 orbit.

17.7 Axiom

OpenAxiom is an open-source symbolic math software. However, unlike Maxima
and other symbolic math software Axiom has been designed for conducting research
in mathematics. It has an integrated environment, compiler, large set of mathemati-
cal libraries. In text mode Axiom returns:

AXIOM Computer Algebra System
Version: Axiom (March 2008)

Timestamp: Friday April 25, 2008 at 17:38:07

Issue)copyright to view copyright notices.
Issue)summary for a summary of useful system commands.
Issue)quit to leave AXIOM and return to shell.

Re-reading compress.daase Re-reading interp.daase

372 17 Mathematics Software

Fig. 17.8 AXIOM software

Re-reading operation.daase
Re-reading category.daase
Re-reading browse.daase

(1) -> integrate(1/(x**3 * (a+b*x)),x)
2 2 2 2 2

- 2b x log(b x + a) + 2b x log(x) + 2a b x - a
(1) ---

3 2
2a x

The above example shows the symbolic math capabilities of Axiom. However, the
most powerful feature of Axiom lies in its design and programming languages
(SPAD and Aldor). Axiom is type aware, not only in the programming language
sense, but also mathematically. Using Categories which define algebraic properties
mathematical correctness is ensured. Categories allow the algorithms implemented
in Axiom’s programming language to be defined in their natural settings; Axiom’s
interpreter constructs the domain based on user input as shown below:

(5) 5
Type: PositiveInteger

(6) -> (x+y)**2
(6) ->

2 2
(6) y + 2x y + x

Type: Polynomial Integer

-> M = [[x**2+1, 0], [0, x]]::Matrix(POLY(FRAC(INT)))
+1 0+ 2 +0 0+ +1 0+

M= | |x + | |x + | |
+0 0+ +0 1+ +0 0+

Type: Equation Polynomial SquareMatrix(2,Fraction Integer)

17.8 Reduce 373

Axiom is aware of the type (mathematical type) of the input entered into the inter-
preter. We can ask Axiom for type conversion:

(10) -> (22/7)::Float
(10) ->

(10) 3.1428571428 571428571
Type: Float

(11) -> %::Fraction Integer

(11) ->
22

(11) --
7

Type: Fraction Integer

Axiom also supports complex numbers as well as arbitrary long integers. To quit the
interpreter, enter:

->)quit

17.8 Reduce

Reduce is an open-source interactive math software for general algebraic computa-
tions. It is written in Lisp (can be compiled using Codemist Standard Lisp (csl) or
SLisp). It supports the following functionality:

1. Expansion and ordering of polynomials,
2. Automatic simplification,
3. Calculation on symbolic matrices,
4. Ability to add new functions using Lisp,
5. Polynomial factorization,
6. Analytic differentiation and integration.

Reduce is available as open-source and is portable, being able to run on many com-
puter systems from GNU/Linux personal computers to supercomputers. Moreover,
Reduce has built up a number of useful packages. Many of these add significant
functionality such as: (i) tensor manipulation, (ii) Boolean algebra, (iii) Groebner
basis and commutative algebra, (iv) overdetermined systems of partial differential
equations, and (v) polynomial ideals. Invoking Reduce we get:

REDUCE, 15-Sep-08 ...

1: (a+b)ˆ3;

374 17 Mathematics Software

3 2 2 3
a + 3*a *b + 3*a*b + b
2: m := mat((a,b),(c,d));

[a b]
m := []

[c d]

3: m*m;

[2]
[a + b*c b*(a + d)]
[]
[2]
[c*(a + d) b*c + d]

Interaction with Reduce can be done completely through the interpreter, or programs
can be written in Reduce which can use the underlying Lisp system for efficiency,
eg:

7: first {a,b,c};
a
8: rest {a,b,c};
{b,c}
9: reverse {a,b,c};
{c,b,a}

In this sense, Reduce can be used as a special purpose Lisp system which has sig-
nificant mathematical library support built into it. Reduce has a number of mathe-
matical functions already built into the system and new ones defined by the user can
be compiled and brought into the running image.

11: solve(xˆ2-8*x+1, x);
{x=sqrt(15) + 4,
x= - sqrt(15) + 4}

Reduce can also generate FORTRAN statements which implement and evaluate the
computation:

COMMENT Switch on Fortran mode
on fort;
x := (a+b+c)ˆ2;

x=a**2+2.0*a*b+2.0*a*c+b**2+2.0*b*c+c**2
off fort;

17.9 Singular Computer Algebra System 375

In this example, Reduce has printed the FORTRAN statement to calculate value of x
from a,b,c using the formula we entered in the interpreter. This facility can be used
to generate FORTRAN code for simulations, and can be compiled and run on HPC
machines.

17.9 Singular Computer Algebra System

Singular is an open-source computer algebra system for polynomial computation.
It was designed to solve problems in commutative algebra, algebraic geometry and
singularity theory. Singular algebra system features one of the fastest and most gen-
eral polynomial implementation and has been used to implement Buchberger’s al-
gorithm for Groebner basis. Its main computational objects are ideals and modules
over baserings (which are polynomial rings or localization of polynomial rings over
fields including finite fields, rationals, floats, and algebraic extensions).

Functions included in Singular include polynomial operations, factorization, re-
sultant, characteristic set and GCD computation. Singular has an interactive shell
and a C-like programming language. Using the programming language, users have
contributed extensions and application software which is now available with the Sin-
gular distribution. This is also an intended consequence of the open-source method-
ology.

Singular is invoked on GNU/Linux system as:

$./Singular/3-1-1/ix86-Linux/Singular
> 12 + 32;
44
> int x = _;
> x;
44
> int y = 12; // this is a comment
> help factorial; // launches the help in browser

In the above example, we can see the Singular facilities for arithmetic, variable
assignment, and text comments. The last displayed result (non-assigned) is stored in
an internal variable _, and variable assignment is done using the = operator. All vari-
ables in Singular must be typed, in the above assignment we have used the integer
type. To use a function which is defined in a library we have to use:

LIB "general.lib";
// Singular proceeds to load general.lib and dependencies
> factorial(10);
3628800
> binomial(5,3);
10> kmemory;
// libname : general.lib
// procname : kmemory
// type : singular

376 17 Mathematics Software

> kmemory();
206

The “general.lib” library has many useful functions including binomial, fibonacci,
exponential, prime number, sorting, factorization and more. As is shown in the
above example, typing the name of the function kmemory returns information about
the type of the variable, and we can indeed call the function using kmemory() which
returns the number of bytes used by Singular thus far (in KB).

To perform polynomial operations in Singular we first have to define a Ring, then
create a polynomial in that ring:

> ring R = 0, (x,y),dp;
> poly Q = (2x+y);
> Q;
2x+y
> Q*Q;
4x2+4xy+y2
> poly P = ((x+y)ˆ2)*(x2+y5);
> P
. ;
y7+24y6+144y5+x2y2+24x2y+144x2
> factorize(P);
[1]:

_[1]=1
_[2]=y5+x2
_[3]=y+12

[2]:
1,1,2

The definition of a ring in Singular involves setting the ground field (0 in the above
example), the names of the ring variables (x,y), and the monomial ordering to be
used (dp stands for degree reverse lexicographical ordering). The notation for poly-
nomials in Singular is coefficient, variable, power. Factorization of polynomials can
also be computed with a time constraint using timeFactorize which accepts a second
argument (number of seconds); if the factorization does not complete in the stipu-
lated time the polynomial is considered irreducible. A field on a characteristic can
be defined as:

> ring PZ7 = 7,(x(1..10)),ds;
> poly ZQ = (x(1)+x(2))ˆ5 + (x(6)+x(4))ˆ3;
> ZQ;
x(4)ˆ3+3*x(4)ˆ2*x(6)+3*x(4)*x(6)ˆ2+x(6)ˆ3+
x(1)ˆ5-2*x(1)ˆ4*x(2)+
3*x(1)ˆ3*x(2)ˆ2+3*x(1)ˆ2*x(2)ˆ3-2*x(1)*x(2)ˆ4+x(2)ˆ5
> factorize(ZQ);
[1]:

_[1]=1

17.9 Singular Computer Algebra System 377

_[2]=x(4)ˆ3+3*x(4)ˆ2*x(6)+3*x(4)*x(6)ˆ2+
x(6)ˆ3+x(1)ˆ5-2*x(1)ˆ4*x(2)+
3*x(1)ˆ3*x(2)ˆ2+3*x(1)ˆ2*x(2)ˆ3-2*x(1)*x(2)ˆ4+
x(2)ˆ5

[2]:
1,1

> poly ZQ = (x(1)+x(2))ˆ5;
// ** redefining ZQ **
> factorize(ZQ);
[1]:

_[1]=1
_[2]=x(1)+x(2)

[2]:
1,5

Rings can also be defined on complex numbers:

> ring cpz = (complex,2,i),(a,b),lp;
> cpz;
// characteristic : 0 (complex:6 digits, additional 6 digits)
// 1 parameter : i
// minpoly : (iˆ2+1)
// number of vars : 2
// block 1 : ordering lp
// : names a b
// block 2 : ordering C
> poly CQ = a2 + 3*i;
> CQ;
a2+(i*3)
> CQ*CQ;
a4+(i*6)*a2-9
// going back to a previous ring
> setring PZ7;
> PZ7;
// characteristic : 7
// number of vars : 10
// block 1 : ordering ds
// : names x(1).. x(10)
// block 2 : ordering C
>

Matrices can be constructed in row-major order:

> intmat M0[3][3] = 1,2,3,4,5,6,7,8,9;
> M0;
1,2,3,
4,5,6,
7,8,9
> int j;
> int M0_trace;
> for(j=1; j <= 3; j++)

378 17 Mathematics Software

{ M0_trace = M0_trace + M0[j,j]; }
> M0_trace;
15

One of the most common use of Singular is performing computations on ideals
and varieties generated by a system of polynomial equations. Consider the following
example:

> ring r = 0,(x,y,z),dp;
> poly f = x3+y3+(x-y)*x2y2+z2;
> poly g = fˆ2 * (2x-y);
> ideal I = f,g;
> ideal J = subst(I, var(1),1);
> J;
J[1]=y2+z2+1
J[2]=-y5-2y3z2-yz4+2y4+4y2z2+2z4-2y3-2yz2+4y2+4z2-y+2
> J = subst(J,var(2),2);
> J;
J[1]=z2+5
J[2]=0
// Compyute ideal using Groebner basis
> ideal sI = groebner(f);
> sI;
sI[1]=x3y2-x2y3+x3+y3+z2
> reduce(g,sI);
0
// Compute the Jacobian ideal
> ideal J = jacob(f);
// ** redefining J **
> J;
J[1]=3x2y2-2xy3+3x2
J[2]=2x3y-3x2y2+3y2
J[3]=2z

Groëbner basis computations are very useful in many scientific disciplines are the
subject of active research (many using Singular). New functions (procedures) can
be defined in Singular as:

> proc mysize (poly Q) { return (size(Q)); }
> mysize(f);
5
>

Singular’s procedure syntax is similar to other programming languages such as C.

17.10 polymake: software to analyze Polytopes 379

17.10 polymake: software to analyze Polytopes

Polymake is an open-source math software to study, generate and operate on the
combinatorics and geometry of convex polytopes and polyhedra. Polymake includes
a number of tools and methods which can be used to perform experiments on poly-
topes. Consider the following example:

$ cube
usage: cube <file> <dimension> [<scale>]
$ simplex
usage: simplex <file> <dimension> [<scale>]
$ simplex 3simplex.poly 3

The file ‘3simplex.poly’ is shown below:

_application polytope
_version 2.3
_type RationalPolytope

AMBIENT_DIM
3

DIM
3

VERTICES
1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

N_VERTICES
4

SIMPLICIALITY
3

BOUNDED
1

CENTERED
0

The above example has generated the 3-simplex as shown in Figure 17.7. At this
point the polytope is represented by its coordinates as shown in the Polymake sec-
tion titled VERTICES. Polymake (upto version 2.3) operates on polytopes which

380 17 Mathematics Software

are present in files. Polymake version 2.9.7 has moved to a Perl based frontend.
Polytope properties can be queried using Polymake as shown below:

$ polymake 3simplex.poly DIM
DIM
3
$ polymake 3simplex.poly DIAMETER
DIAMETER
1
$ polymake 3simplex.poly F_VECTOR
F_VECTOR
4 6 4
$ polymake 3simplex.poly G_VECTOR
G_VECTOR
1 0
$ polymake 3simplex.poly H_VECTOR
H_VECTOR
1 1 1 1
$ polymake 3simplex.poly CD_INDEX
CD_INDEX
cˆ3 + 2cd + 2dc
$ truncation -h
usage: truncation <out_file> <in_file>

{ <vertex> [<vertex> ...] | all }
[-cutoff <cf> | -noc] [-relabel]

$ truncation 3simplex_0.poly 3simplex.poly 0
$ polymake 3simplex_0.poly GRAPH
GRAPH
{1 2 3}
{0 2 4}
{0 1 5}
{0 4 5}
{1 3 5}
{2 3 4}

The examples shown above compute certain properties of the 3-simplex. The
F VECTOR, G VECTOR and H VECTOR are combinatorial flag vectors com-
puted from the face-lattice of the polytope. The CD-index encodes the face inclusion
of the lattice. The last operation truncation produces a new polytope from the old
one by truncating (removing) the specified vertex. Polymake can also be used for
interactive viewing of polytopes. Version 2.9.7 and onwards have an integrated Perl
frontend which can be used to perform computations on the polytope. Consider the
following example:

$polymake
polytope > $cube = load("3cube.poly");

polytope>print"cube has dimension=",$cube->DIM,"\n";
cube has dimension = 3
polytope > print "cube graph = ", $cube->GRAPH,"\n";
cube graph = Polymake::graph::

Graph__Undirected::__as__Polytope__GRAPH=

17.11 Other Math Systems 381

ARRAY(0xacdb34c
polytope >

The Perl language’s feature can be used alongwith Polymake’s polytope data struc-
tures and functions.

17.11 Other Math Systems

In addition to the math software we have described above, there are a number of
other specialized mathematics software which we briefly mention below:

17.11.1 Macaulay 2

Macaulay 2 is an open-source mathematics computer system for computation on
commutative algebra and algebraic geometry. On GNU/Linux, Macaulay2 can be
started using the command-line M2:

$M2
Macaulay2, version 1.3.1
with packages: ConwayPolynomials, Elimination,

IntegralClosure, LLLBases,
PrimaryDecomposition, ReesAlgebra,
SchurRings, TangentCone

i1 : 2+3;
i2 : o1
o2 = 5
i3 : 10!
o3 = 3628800
i4 : 22/7 + 3/11

263
o4 = ---

77
o4 : QQ

The last example shows that rational (QQ) numbers are supported in Macaulay2. A
ring can be created in Macaulay2 as follows:

i1 : R = QQ[x,y,z]
o1 = R
o1 : PolynomialRing
i2 : (x+y+z)ˆ3

382 17 Mathematics Software

3 2 2 3 2
o2 = x + 3x y + 3x*y + y + 3x z +

2 2 2 3
6x*y*z + 3y z + 3x*z + 3y*z + z

o2 : R
i6 : c = matrix { { xˆ2 + 1, yˆ2, zˆ2+1}}
o6 = | x2+1 y2 z2+1 |

1 3
o6 : Matrix R <--- R
i7 : M = coker b
o7 = cokernel | x y z |

1
o7 : R-module, quotient of R

17.11.1.1 Algebraic Geometry with Macaulay2

The most common use of Macaulay2 is studying geometric objects in (complex)
affine spaces. We can define a Ring as above and construct ideals from polynomial
equations as:

i3 : curve = ideal(xˆ2+yˆ2, x-2*y)

2 2
o3 = ideal (x + y , x - 2y)

o3 : Ideal of R

i4 : gb curve

o4 = GroebnerBasis[status: done;
S-pairs encountered up to degree 1]

o4 : GroebnerBasis

i5 : o4

i6 : dim curve

o6 = 1

i7 : codim curve

o7 = 2

i8 : degree curve

o8 = 2

17.11 Other Math Systems 383

Above we construct the ideal of the curve defined by the polynomials x2 + y2 and
x−2y, the dimension of this curve is 1, while the co-dim and degree are 2. Recall,
that the degree of a curve is the number of intersections of the curve with a general
plane. We can calculate the intersection of this curve with a surface as:

i9 : surface = ideal(x+y-2)

o9 = ideal(x + y - 2)

o9 : Ideal of R

i12 : find_point = intersect(curve,surface)

2 2
o12 = ideal (3x - 3x*y - 6y - 6x + 12y,

2 2 3 2

- 18x y - 27x*y - 9y + 12x + 24x*y

2 3 2
- 6y - 24x + 48y, - 18x - 27x y -

2 2 2
9x*y + 30x + 24x*y + 12y + 12x - 24y)

o12 : Ideal of R

The ring defined can have variable ordering based on degree, lexicographical order-
ing, or reverse lexicographical or a combination of the above.

17.11.2 CoCoA

The CoCoA System (Computations on Commutative Algebra) is an open-source
mathematical system for performing research and computation in commutative al-
gebra. CoCoA is written around a C++ library CoCoALib. The text console for
CoCoA is shown below, and the Qt GUI frontend is shown in Figure 17.9.

--- ___/ ___/ \ ---
-- / _ \ / _ \ , \ --
-- \ | | \ | | ___ \ --
--- ____, __/ ____, __/ _/ _\ ---

-- Version : 4.7.4 --
-- Online Help : type ? or ?keyword --
-- Web site : http://cocoa.dima.unige.it --

-- The current ring is R ::= QQ[x,y,z];

384 17 Mathematics Software

Fig. 17.9 xcocoa : GUI frontend for CoCoA

Interacting with CoCoA using the text console is similar to the other math soft-
ware described earlier in this chapter. Variables in CoCoA have to be defined starting
with uppercase letters as:

A := 5;
5A;
25

Use S ::= Z/(5)[a,b,c];
F := a-b;
I := Ideal(Fˆ2, c);
I;
Ideal(aˆ2 - 2ab + bˆ2, c)

Like Singular, CoCoA also needs a ring to operate in. In the above example we
have a created a ring S which is defined as modulo 5 with variables a,b,c. In another
example with modulo-5 ring:

Use S ::= Z/(5)[a,b,c];

17.12 CGAL (Computer Geometry Algorithms and Library) 385

F := (3*a + 2*b);
F;
-2a + 2b

F*F
;
-aˆ2 + 2ab - bˆ2

Fˆ5;
-2aˆ5 + 2bˆ5

We define a polynomial, and then compute the ideal of another polynomial.
Groebner basis computations can also be carried out in such rings. Consider the
following example of elimination:

Use R ::= Q[t,x,y];
GBasis(Ideal(tˆ3+3*t-x, 2*tˆ2+y));
[
2tˆ2 + y,
1/2ty - 3t + x,
-2tx + 1/2yˆ2 - 3y,
1/4yˆ3 + 2xˆ2 - 3yˆ2 + 9y]

Elim(t, Ideal(tˆ3+3*t-x, 2*tˆ2+y));
Ideal(1/4yˆ3 + 2xˆ2 - 3yˆ2 + 9y)

Variable substitution can be performed as:

Use R ::= Q[x,y,z];
F := (x+y+z)*(x+1);
Eval(F,[1]);
2y + 2z + 2

Subst(F,z,0);
xˆ2 + xy + x + y

17.12 CGAL (Computer Geometry Algorithms and Library)

CGAL is an open-source C++ library which aims to provide data structures and
algorithms to solve computational geometry problem such as like triangulations,
Voronoi diagrams, Boolean operations on polygons and on polyhedra, arrangements
of curves, mesh generation, geometry processing, and convex hull algorithms.

Consider the following example using CGAL as shown in Listing 17.2.

386 17 Mathematics Software

// \file chull_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Example use of CGAL library
#include <iostream> // for Program IO

5 #include <cassert> // assertion checking
#include <vector> // std::vector of points
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull_2.h>

10 typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;
typedef std::vector<Point_2> Point_Vector;

int main() {
15 Point_Vector inputP, outputP;

inputP.push_back(Point_2(0,0));
inputP.push_back(Point_2(0,5));
inputP.push_back(Point_2(2,5));
inputP.push_back(Point_2(2,7));

20 inputP.push_back(Point_2(7,7));
inputP.push_back(Point_2(7,0));
inputP.push_back(Point_2(3,0));

CGAL::convex_hull_2(inputP.begin(), inputP.end(),
25 std::back_inserter(outputP));

std::cout << "Convex hull has " << outputP.size() << " points.\n";
std::copy(outputP.begin(), outputP.end(),

std::ostream_iterator<Point_2>(std::cout, " "));
std::cout << std::endl;

30 return(0);
}

Listing 17.2 Example of using CGAl to compute convex hull

We can compile and run this program as follows:

$g++ -I$CGAL/include chull_example.cpp
-l CGAL_Core -l CGAL

$./a.out
Convex hull has 4 points.
0 0 7 0 7 7 2 7

CGAL Library has the following functionality:

1. Geometry Kernels: as we saw in the above example, CGAL has inexact and exact
computation kernels. Many algorithms need exact computation to arrive at the
correct answer in the presence of degenerate input. CGAL’s design allows the
use of inexact kernels where the algorithm can work around the loss of precision,

2. Combinatoric algorithms: CGAL supports monotone and sorted matrix search,
linear and quadratic programming; these operations are available as standalone,
but usually they are used in a geometric setting to implement a higher level algo-
rithm,

3. Convex hull: above we have seen an example of 2d convex hull. CGAL has
convex hull algorithms for 2d, 3d and dD, including Delaunay Triangulations.
Voronoi Diagrams are also included.

4. Polygons and Nef Polygons: CGAL supports operations, including generalized
Booleans on polygons, collections of polygons and Nef polygons. Moreover,
CGAL also supportes operations on Nef polygons embedded on the sphere. It

17.13 TeXMacs 387

also has functions for polygon partitioning, straight skeleton and polygon offset-
ting. Minkowski sums of polygons can also be computed,

5. Operations on Polyhedra: CGAL includes the half-edge data structure for poly-
hedra representation and supports 3d boolean operations on Nef polyhedra,

6. 2d Arrangements: arrangements are combinatoric structures representing a col-
lection of intersecting lines in the plane (for 2d, generalized to any dimension).
2d intersection and arrangement of curves is also supported. CGAL also includes
an implementation of snap rounding to represent arrangements in finite precision,

7. Mesh Generation: CGAL includes mesh generation tools and algorithms to gen-
erate conforming triangulations, and surface reconstruction from points,

8. Spatial Searching and Sorting: CGAL includes the interval skip list data struc-
ture, and implements a 2d range search and neighbor search algorithm. It also
includes an implementation of dD range trees, segment trees, and AABB trees.
Rectangle intersection (and its generalization to dD iso-oriented box intersec-
tion) is also implemented.

17.13 TeXMacs

(a) Example of TeXMacs

Fig. 17.10 TeXMacs software

GNU TeXmacs is an open-source WYSIWYG (what you see is what you get)
style editing platform with special features for scientists. It can render equations
and mathematics formulas, an example is shown in Figure 17.10(a) and (b).

388 17 Mathematics Software

(a) More example of TeXMacs

Fig. 17.11 TeXMacs software calling external math programs

Texmacs is also integrated with mathematics software such as GNU Octave and
Maxima. Example is shown in Figure 17.11 (a) and (b).

17.14 Sage

In this chapter we have seen many mathematics software, each having its own syn-
tax for defining variables, polynomials, matrices and solving equations. Sage is an
open-source mathematics software system which combines many of the above soft-
ware system using a common Python based interface. Sage includes a GUI which
executes in a browser, as well as a text interface. These are shown in Figure 17.12
and Figure 17.13.

(a) SAGE software TEXT and notebook

Fig. 17.12 SAGE mathematical software

It is also possible to try out Sage online before installing it, however, we greatly
recommend the software if you need access to multiple math software systems using
a common interface. Consider the simple example of solving a quadratic equation
in x:

$/opt/SAGE/sage

17.14 Sage 389

| Sage Version 4.3.3, Release Date: 2010-02-21
Type notebook() for GUI, and license() for information.
sage: x = var(’x’)
sage: solve(xˆ2-6*x+8,x)
[x == 4, x == 2]
sage: diff(cos(xˆ2),x,4)
16*xˆ4*cos(xˆ2) + 48*xˆ2*sin(xˆ2) - 12*cos(xˆ2)

The second example computes the 4th differential of the expression cosx2. Sage can
also perform integration, and solving partial differential equations. Internally, Sage
is connected to many of the mathematical software we have discussed in this chapter.
For example, Sage can connect to PARI to compute the ‘chebyshev U’ function:

sage: y = polygen(QQ,’y’)
sage: che
chebyshev_T chebyshev_U checkbox
sage: cheby
chebyshev_T chebyshev_U
sage: chebyshev_U(2,y)
4*yˆ2 - 1
sage: bessel_I(1,1, "pari", 100)
0.56515910399248502720769602761

Sage supports TAB-completion, to complete names of functions as shown in the
above example.

(a) SAGE notebook and help screen

Fig. 17.13 SAGE mathematical software

As shown in Figure 17.13, Sage can be executed on a more powerful computer
and then multiple remote users can connect to the Sage software using a browser.
The notebooks which represent the computation in Sage are persisted on the Sage

390 17 Mathematics Software

server and can be used to perform computation. This greatly reduces the administra-
tive overhead with maintaining Sage for a group of scientists. To invoke a specific
math software that is integrated with Sage, we can use the following form:

sage: maxima.eval("diff(sin(x),x)")
’cos(x)’

Thus, Sage can be used a single, homogeneous software system which can be used
to perform computations in any one of the software, and also to use a combination
to solve a problem.

17.15 Conclusion

In addition to mathematical libraries, there exists a number of open-source math-
ematical software systems which implement complete mathematical framework.
These are described in this chapter, and include Maxima, GNU Octave, R, PSPP,
Pari/GP, Nauty, OpenAxiom, Reduce, Singular, and polymake. Other specialized
math software for algebraic geometry include Macaulay2 and CoCoA. The CGAL
(computer geometry algorithms library) implements many computational geome-
try algorithms and data-structures. Mathematical front-ends to the above mentioned
software include TeXMacs and SAGE. SAGE, in particular combines many of the
features of the previously described software with uniform notation and the ability
to pass data from one tool to another.

Chapter 18
Artificial Intelligence and Optimization

Abstract Artificial Intelligence (AI), and automated problem solving have been
the epitome of computer science for many decades. While some of the lofty goals
of completely automated reasoning have not come to pass, AI has nevertheless ce-
mented its place as one of a number of useful techniques to bear on a hard problem.
In this chapter we discuss tried and proven open-source tools and libraries which
implement AI concepts. The tools include CLIPS (expert system) and ACL2 (theo-
rem prover). The libraries include simulated annealing, genetic algorithm, machine
learning using SVM and general backtracking.

Contents
18.1 Introduction to AI Problems . 391
18.2 CLIPS: C Language Integrated Production System 392
18.3 ACL2: automatic theorem proving . 394
18.4 GAUL : Genetic Algorithms Utility Library 397
18.5 Representing floor-plans by k− tuples . 398
18.6 ASA : Adaptive Simulated Annealing Library 400
18.7 Artificial Neural Networks : FANN . 402
18.8 LIBSVM : Support Vector Machines . 405
18.9 Conclusion . 408

In this chapter we discuss open-source tools and libraries for performing artificial
intelligence tasks, and problem solving.

18.1 Introduction to AI Problems

Artificial Intelligence is defined as the ability of computer systems to solve ill-
defined problems using methods which are inspired by the human brain. Many tech-
niques in AI, nevertheless, are derived from algorithms in graph theory and discrete
mathematics (search, backtracking), thermodynamics (simulated annealing), biol-
ogy (genetic algorithms and ant-colony optimization, neural networks). During the
1950s to 1980s, AI was thought to be a panacea, with which to solve all the complex

S. Koranne, Handbook of Open Source Tools, 391
DOI 10.1007/978-1-4419-7719-9_18, © Springer Science+Business Media, LLC 2011

392 18 Artificial Intelligence and Optimization

problems of the day. But due to a confluence of factors, including lack of compute
power and memory, over promised visions and other non-computer related factors,
use of AI declined (this was termed the AI winter).

In the recent decade, AI has made a resurgence; even though researchers are still
loath to actively claim a method as being AI. They refer to the method as machine
learning, or guided optimization (to name some examples). Artificial Intelligence
based computer programs are also find use in robotics where the persona of a hu-
man has to be adopted by the robot. In this chapter, however, we stick to traditional
AI problems and present some of the advances which have been made. We present
open-source solutions to many of the problems including developing an expert sys-
tem, machine learning, general unconstrained optimization and the use of neural
networks. Complete applications which solve an AI problem such as automatic the-
orem proving are also described.

18.2 CLIPS: C Language Integrated Production System

CLIPS is an expert system software, its name is an acronym for C Language In-
tegrated Production System. On GNU/Linux system CLIPS can be started on the
command line as:

$./source/clips/clips
CLIPS (V6.0 05/12/93)

CLIPS>

Some useful functions with CLIPS are:

1. (exit): quits CLIPS and returns back to the operating-system,
2. (clear): removes all rules and facts from memory; equivalent to shutting down

CLIPS and restarting,
3. (reset): removes only facts (not rules) from memory,
4. (run): starts executing the expert system.

Expert systems are comprised of facts about the universe in which they are expected
to be experts, and rules which govern the relationships between the facts. CLIPS
internally maintains a list of facts and rules. A fact can be asserted to CLIPS using
the (assert) function. A fact is simply a piece of information deemed to be true:

CLIPS> (assert (direction east))
<Fact-0>
CLIPS> (assert (direction west))
<Fact-1>
CLIPS> (assert (direction north))
<Fact-2>
CLIPS> (assert (direction south))
<Fact-3>

18.2 CLIPS: C Language Integrated Production System 393

Like facts in real life, sometimes they turn out to be false, in CLIPS a fact can be
retracted as:

CLIPS> (assert (direction market))
<Fact-4>
CLIPS> (retract 4)
CLIPS> (facts)
f-0 (direction east)
f-1 (direction west)
f-2 (direction north)
f-3 (direction south)
For a total of 4 facts.

In the above example, we had added “market” as a direction (in some applications,
a direction such as “head to the market” may make sense), but later we wished to
remove this fact from CLIPS memory, and we used the retract function with the
fact index to remove this fact. The function (facts) lists all facts known to CLIPS
at this point of time. In addition to facts, an expert system also needs rules which
combine facts. Consider the following example:

(defrule print-directions
(direction ?dir)

=>
(printout t ?dir " is a known direction" crlf))

(defrule street-name
(direction street-name)
=>
(assert (stname-direction name))
(printout t "Street name has direction in it" crlf))

(run)
south is a known direction
north is a known direction
west is a known direction
east is a known direction
CLIPS>

CLIPS can also prompt the user for information, which is useful when writing an
expert system to diagnose problems. The user can respond to the questions:

$ ˜/EXPERT/source/clips/clips
CLIPS (V6.0 05/12/93)

CLIPS> (defrule are-you-awake
(sleep ?)
=>
(printout t "Are you awake (yes or no)?")
(assert (awake (read))))
CLIPS> (assert (sleep sandeep))
<Fact-0>

394 18 Artificial Intelligence and Optimization

CLIPS> (facts)
f-0 (sleep sandeep)
For a total of 1 fact.
CLIPS> (rules)
are-you-awake
For a total of 1 defrule.
CLIPS> (run)
Are you awake (yes or no)?Jack
CLIPS> (facts)
f-0 (sleep sandeep)
f-1 (awake Jack)
For a total of 2 facts.

Using CLIPS, it is simple to build up a chain of facts and rules and then the expert
system can perform pattern matching and rule-chaining to arrive at the goal. Facts
relevant to the domain can be stored in a database (or external file) and then loaded
into CLIPS at run-time. Similarly, rules can be stored in a file and loaded into the
memory. Expert systems in general, and CLIPS in particular, are examples of data-
driven programming. It is instructive to see the program use data (facts) as the axis
on which to guide the computation, as opposed to procedural programming where
the functions manipulate the data.

18.3 ACL2: automatic theorem proving

ACL2 is an acronym for “A Computational Logic for Applicative Common Lisp.”
ACL2 is an interactive mechanical automated theorem prover which was designed
for proving theorems modeling the behavior of hardware and software systems. In
particular, ACL2 has been used to model and verify properties about the design
of floating-point units of processors. ACL2 was written by Kaufmann and Moore
as a successor to the Boyer-Moore theorem prover. ACL2 can be launched using
a Common Lisp system which is loaded with the ACL2 generated core memory
image as shown below:

$./saved_acl2
CMU Common Lisp 19f Fedora

release 2.fc12 (19F), running on celex
With core: acl2-sources/saved_acl2.core
Dumped on: on celex
Loaded subsystems:

Python 1.1, target Intel x86
CLOS based on Gerd’s PCL 2008-11-12 16:36:41

Sat, 2010-06-12 03:10:36-07:00
ACL2 Version 3.6. Level 1.
Cbd "/home/skoranne/acl2-sources/".
Distributed books directory "acl2-sources/books/".
Type :help for help.

18.3 ACL2: automatic theorem proving 395

Type (good-bye) to quit completely out of ACL2.

ACL2 !>

ACL2 is built on top of Common Lisp (see Section 1.6.8), thus all the features of
Common Lisp are directly available inside ACL2. The “books” ACL2 is refering to
in the above transcript refer to the collected knowledge that has been communicated
to ACL2.

ACL2 !>(thm (equal (car (cons x y)) x))

But we reduce the conjecture to T, by the
simple :rewrite rule CAR-CONS.

Q.E.D.

Summary
Form: (THM ...)
Rules: ((:REWRITE CAR-CONS))
Warnings: None
Time: 0.00 seconds (prove: 0.00,

print: 0.00, other: 0.00)

Proof succeeded.

In the above example we ask ACL2 to prove the identity which is latent in the defini-
tion of the Lisp function car. ACL2 uses the rewrite rule from its internal definitions
to arrive at a proof. We can ask it to prove de’Morgan’s law about Boolean algebra.

ACL2 !>(thm (implies (and a b) (not (or (not a) (not b)))))

But we reduce the conjecture to T, by case analysis.

Q.E.D.

Summary
Form: (THM ...)
Rules: NIL
Warnings: None
Time: 0.01 seconds (prove: 0.00,

print: 0.00, other: 0.01)

Proof succeeded.

The advantage of using Common Lisp as the underlying language to describe the
theorem constituent is shown in the next example, where we define a new predicate
is-perm:

(defun is-perm (x y)
"Is X a permutation of Y"
(if (consp x)

(and (member (car x) y)
5 (is-perm (cdr x) (remove (car x) y)))

(not (consp y))))

396 18 Artificial Intelligence and Optimization

This is a simple recursive function which checks where (car x) is a member of Y
and if so, deletes that element and checks the remainder of the list. We can use the
above defined predicate to check whether a sorting function is producing a permu-
tation of the input. Consider the following definition of a insert function:

(defun insert (e x)
(cond ((endp x) (cons e x))

((< e (car x)) (cons e x))
(t (cons (car x) (insert e (cdr x))))))

We can test this function as:

ACL2 !>(defun insert (e x)
(cond ((endp x) (cons e x))

((< e (car x)) (cons e x))
(t (cons (car x)

(insert e (cdr x))))))

The admission of INSERT is trivial, using the
relation O< (which is known to be well-founded on
the domain recognized by O-P) and the measure
(ACL2-COUNT X). We observe that the type of
INSERT is described by the theorem
(CONSP (INSERT E X)).
We used primitive type reasoning.

Summary
Form: (DEFUN INSERT ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
Warnings: None
Time: 0.00 seconds (prove: 0.00,

print: 0.00, other: 0.00)
INSERT
ACL2 !>(insert 3 ’(1 2 5 6 7 8))
(1 2 3 5 6 7 8)
ACL2 !>

Using the insert function we can write a simple sorting function as:

(defun isort (x)
(if (endp x) nil

(insert (car x)
(isort (cdr x)))))

And test it as:

Form: (DEFUN ISORT ...)
Rules: ((:TYPE-PRESCRIPTION INSERT))
Warnings: None
Time: 0.00 seconds (prove: 0.00,

18.4 GAUL : Genetic Algorithms Utility Library 397

print: 0.00, other: 0.00)
ISORT
ACL2 !>(isort ’(2 3 4 1))
(1 2 3 4)

To prove that indeed this sorting is producing an ordered output, as well as a permu-
tation of the input we ask ACL2 to prove the latter automatically.

CL2 !>(defthm perm-isort
(is-perm (isort x) x))

We try to assert the fact that a sorted output is basically a permutation of the in-
put. This theorem is automatically proven by ACL2 (the output of the rules used
is too large to include here). Above we have seen a simple example of using the
Common Lisp sub-language within ACL2 to define functions and predicates over
which ACL2 can perform automated reasoning. ACL2 can also be used deduce new
theorems over knowledge fields, by systematic generation and refutation of new
theorems. The theorems ACL2 can prove can then be added to its repertoire of
knowledge for further sessions.

18.4 GAUL : Genetic Algorithms Utility Library

Genetic algorithms are an optimization method which use an iterative search tech-
nique based on evolution. Problem variables are modeled as individuals, and by
combining traits of parents, the offsprings are expected to have a better objective
function. The GAUL library implements several variations of genetic algorithms.
The entity data-structure stores individuals, while population data-structure stores
multiple entities. The population genesis per iteration is provided by the following
function:

*ga_genesis_integer(const int population_size,
const int num_chromo,
const int len_chromo,
GAgeneration_hook generation_hook,

5 GAiteration_hook iteration_hook,
GAdata_destructor data_destructor,
GAdata_ref_incrementor data_ref_incrementor,
GAevaluate evaluate,
GAseed seed,

10 GAadapt adapt,
GAselect_one select_one,
GAselect_two select_two,
GAmutate mutate,
GAcrossover crossover,

15 GAreplace replace,
vpointer userdata);

We model a floor-planning problem using genetic-algorithms.

398 18 Artificial Intelligence and Optimization

(a) Floor-plan (b) 45 degree oblique grid (c) Cone for block 9

Fig. 18.1 Sequence-pair representation

18.5 Representing floor-plans by k− tuples

We introduce the concept of k− tuples, which is an efficient and compact repre-
sentation of floor-plans. The idea of k− tuples is based upon the seminal work
of Murata et al. in solving the rectangle placement problem using a notation
called sequence-pair. Since k− tuples are based on sequence-pair we give a brief
introduction of sequence-pair notation below.

18.5.1 Sequence-pair Notation

A sequence-pair is a pair of sequences of n elements representing a list of n blocks.
Given a block placement (like the one given in Figure 18.1(a)) Murata et al. describe
a procedure for creating a linear order amongst the blocks using a 45-degree oblique
grid notation as shown in Fig. 18.1(b). For every block, the plane is divided by
the two crossing slope lines into four cones as shown in Figure 18.1 (c). Given a
sequence-pair representation for a block placement (test schedule, equivalently), the
horizontal topological relationship (the linear order amongst the block on the x axis)
amongst the blocks can be represented as a horizontal constraint graph Gh(V,E),
which can be constructed as follows:

1. V = {sh} ∪ {th} ∪ {vi|i = 1, . . . ,n}, where vi corresponds to a block, sh is the
source node representing the left boundary and th is the sink node, representing
the right boundary;

2. E = {(sh,vi)|i = 1, . . . ,n}∪{(vi, th)|i = 1, . . . ,n}∪{(vi,v j)| block vi is to the left
of block v j }.

The vertical constraint graph Gv(V,E) can be similarly constructed. The correspond-
ing constraint graphs Gh(V,E) and Gv(V,E) for the example schedule shown in
Figure 18.1(a) are shown in Figure 18.2(a) and (b), respectively.

A small example of using GAUL to optimize a floor-planning problem is shown
in Listing 18.1. We model each sequence-pair by a chromosome of 16-bit, and we
define a cost function which returns true when the sequence-pair (as represented by

18.5 Representing floor-plans by k− tuples 399

(a) Horizontal Constraint Graph (Gh) (b) Vertical Constraint Graph (Gv)

Fig. 18.2 Graph representation of floor-plans (transitive edges have been omitted.)

the chromosome) is a feasible solution. GAUL library then implements the actual
genetic algorithm iteration.

// \file gaul_example.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of genetic algorithm optimization
#include <iostream> // Program IO

5 #include <cassert> // assertion
#include <cstdlib> // exit
extern "C" {
#include <gaul.h> // GAUL library
}

10 int main(int argc, char* argv[]) {
random_init(); // RNG init for good mix
unsigned int num_blocks = 10; // there are 10 blocks in floorplan
const unsigned int NUM_GEN = 100; // number of generations
population *pop = NULL; // collection of solutions

15 for(unsigned int i=0; i < NUM_GEN; ++i) {
if(pop) ga_extinction(pop);
random_seed(i);
pop = ga_genesis_integer(num_blocks, // population size

1, // number chromosomes
20 16, // length chromosome

NULL, NULL, NULL, NULL,
cost_function,
ga_seed_integer_random,
NULL,

25 ga_select_one_bestof2,
ga_select_two_random,
ga_mutate_integer_singlepoint_drift,
ga_crossover_integer_singlepoints,
NULL,

30 NULL);

ga_population_set_parameters(pop,
GA_SCHEME_DARWIN,

35 GA_ELITISM_PARENTS_SURVIVE,
0.5,0.05,0.0);

ga_evolution(pop, NUM_GEN);
}
ga_extinction(pop);

400 18 Artificial Intelligence and Optimization

40 std::cout << std::endl;
return(0);

}

Listing 18.1 Example of using GAUL for floorplanning

This use of genetic algorithm to solve floor-planning is one of the classic exam-
ples of genetic algorithm (since this was one of the early problems for which GA
was used). It can be seen that genetic algorithms can offer an innovative solution,
and with the advent of parallel processing, their use is expected to rise.

18.6 ASA : Adaptive Simulated Annealing Library

Simulated annealing (SA) is a stochastic optimization technique, which although
slower than other analytical techniques, often provides better quality of solution.
It can be used in general unconstrained combinatorial search applications where
the objective function is not amenable to analytic implementation. However, there
exist functions (in particular linear and quadratic forms) which can be optimized
more efficiently using linear programming, or quadratic programming. Thus, the
reader should always consider an analytic approach before deciding to use simulated
annealing (as it can be many times slower).

To use SA with constrained problem, a technique called SUMS (scalable uncon-
strained minimization solver) can be used which converts the non-feasible region
(lying outside the constraints to a very large cost region), thus allowing the annealer
to avoid it. Simulated Annealing itself is inspired by thermodynamics, where crys-
talline forms were heated and allowed to cool slowly, thus forming perfectly aligned
shapes. Similarly, SA is organized and implemented so that the search space is ex-
plored iteratively; in the starting the temperature is set to a high value. The objective
function is evaluated at configurations, if the configuration has a lower cost of the
objective function (for minimization) it is accepted, else, a random number gen-
erator is consulted, and a probability function is used to accept the configuration
(even when the cost is more than the current configuration). This feature of accept-
ing increasing cost configuration (albeit with a decreasing probability) allows SA to
escape local minima and differentiates it from greedy descent.

The probability function is architected so that it depends on the temperature.
When the temperature is high, more configurations are accepted. Iteratively, the
temperature is reduced (cooling), and finally only configurations which reduce the
cost are accepted. Choosing the initial starting temperature, number of trial config-
urations per temperature, iteration count, acceptance criteria, temperature schedule,
random number generation and roll-back (reverting back to a known good config-
uration, if the cost becomes too high) are all known SA implementation criteria.
There is significant theory involved in choosing the above correctly, but mostly they
are experimentally chosen.

Adaptive Simulated Annealing (ASA) is a variation of SA where the cooling
schedule and other factors listed above are automatically controlled by the anneal-

18.6 ASA : Adaptive Simulated Annealing Library 401

ing software. Once such library is the ASA library. To use the ASA library, the
user has to define a cost function, acceptance criteria and configuration space explo-
ration function. ASA library then automatically configures (adaptively), the cooling
schedule and other metrics for efficient simulated annealing. The cost function is the
called in the inner-loop of the SA algorithm, so care must be taken that implemen-
tation of the cost function is efficient. The user cost function and acceptance criteria
can be defined as:

/* user-defined */
double USER_COST_FUNCTION (double *cost_parameters,

double *parameter_lower_bound,
double *parameter_upper_bound,

5 double *cost_tangents,
double *cost_curvature,
ALLOC_INT * parameter_dimension,
int *parameter_int_real,
int *cost_flag,

10 int *exit_code, USER_DEFINES * USER_OPTIONS);

// Acceptance criteria test function
void user_acceptance_test (double current_cost,

double *parameter_lower_bound,
15 double *parameter_upper_bound,

ALLOC_INT * parameter_dimension,
const void *OPTIONS_TMP);

// Search space exploration, called generating function
20 double user_generating_distrib (LONG_INT * seed,

ALLOC_INT * parameter_dimension,
ALLOC_INT index_v,
double temperature_v,
double init_param_temp_v,

25 double temp_scale_params_v,
double parameter_v,
double parameter_range_v,
double *last_saved_parameter,
const void *OPTIONS_TMP);

To optimize the performance, the user can also specify a re-anneal cost, which is
used by ASA to decide when to call annealing on a configuration space.

int user_reanneal_cost (double *cost_best,
double *cost_last,
double *initial_cost_temperature,
double *current_cost_temperature,

5 const void *OPTIONS_TMP);

For self-optimization, the cost function maybe called recursively, the declaration of
the recursive cost function is:

double RECUR_USER_COST_FUNCTION (double *recur_cost_parameters,
double *recur_parameter_lower_bound,
double *recur_parameter_upper_bound,
double *recur_cost_tangents,

5 double *recur_cost_curvature,
ALLOC_INT * recur_parameter_dimension,
int *recur_parameter_int_real,
int *recur_cost_flag,
int *recur_exit_code,

10 USER_DEFINES * RECUR_USER_OPTIONS);

402 18 Artificial Intelligence and Optimization

ASA library has been used in many application where multi-dimensional search
space optimization using simulated annealing was required, and is stated to be much
faster than standard Boltzman annealing. Since a lot of the asa usr code is used in
the final application (only the cost function, and generating function templates in the
code have to be modified), this library is not used as a conventional API library. In
fact the code is modified and compiled to create the user application. We compiled
and ran the code as:

gcc -O3 -o asa_test asa_usr.c asa_usr_cst.c asa.c -lm

where we had modified the templates in asa usr.c and asa usr cst.c to reflect our
application.

18.7 Artificial Neural Networks : FANN

Artificial Neural Networks (ANN) are biologically inspired graphs which exhibit
solution learning behavior. By training an ANN on a set of problem-solution pairs,
the network adapts its internal weights to seemingly become intelligent at solving
new problem of the same nature. This description also contains the inherent limita-
tion of ANNs, that the problem class has to be sufficiently narrow, or the learning
time sufficiently large (alongwith memory to store the network) to solve a wider
variety of problems. Even with this caveat, ANNs prove to be an useful tool in ap-
plications such as speech and hand writing recognition, where classical methods
perform poorly.

ANNs have inputs, a computation network and a set of outputs. The computation
network is defined using activation functions which define when a particular neuron
should fire based on the strength of its inputs (and a function on them).

Implementing ANNs requires a good deal of good deal of knowledge on the
workings of neural networks, however, the Fast ANN library already implements
most of the commonly used networks. Using FANN in an application is straightfor-
ward as shown in Listing 18.2.

// \file fann_example.cpp
// \author Sandeep Koranne (C) 2010
// \description Example of using FANN
// Fast Artificial Neural Network library

5 #include <iostream> // program IO
#include <cassert> // assertion checking
#include <fann.h> // FANN library

int main(int argc, char* argv []) {
10 float connection_rate = 1.0;

float learning_rate = 0.85;
unsigned int number_layers = 3;
unsigned int number_inputs = 16;
unsigned int number_outputs = 4;

15 unsigned int number_internals = 10;
struct fann *nw =

fann_create_standard(number_layers, number_inputs,
number_internals, number_outputs);

18.7 Artificial Neural Networks : FANN 403

20 assert(nw && "Unable to construct ANN");
fann_train_on_file(nw, "classify.dat", 1000,50,0.001);
fann_save(nw, "bucket_classify.net");
fann_destroy(nw);
std::cout << std::endl;

25 return (0);
}

Listing 18.2 Example of using FANN neural network library

In Listing 18.2 we show the creation and training of an artificial neural net-
work (ANN) using the FANN library. In the code we create a network using the
fann_create_standard which takes as input the number of layers of the network,
number of inputs, internal layers and number of outputs. Consider a data group-
ing or classification application which classifies a given input set of 16 data values
into one of four categories; thus number of inputs is 16 and number of outputs is 4
(binary). The network has to be trained on a sample set. In this example we generate
a sample data file. The header of this file states that there are 5 patterns of 16 inputs
and 4 outputs. Compiling the program in Listing 18.2 and running it we get:

$ cat classify.dat
2 16 4
0.1 0.4 0.6 0.3 0.8 0.1 0.1 0.0 0.2 0.1 0.4 0.6 0.3 0.8 0.1 0.1
1 0 0 0
0.7 0.64 0.66 0.3 0.58 0.2 0.1 0.0 0.2 0.2 0.4 0.6 0.3 0.8 0.1 0.1
0 0 0 1
0.1 0.4 0.6 0.3 0.8 0.1 0.1 0.0 0.2 0.1 0.4 0.6 0.3 0.8 0.1 0.1
0 1 0 0
0.1 0.14 0.6 0.3 0.8 0.1 0.1 1.0 1.0 0.1 0.4 0.6 0.3 0.8 0.1 0.1
0 0 1 0

$./fann_example
Max epochs 1000. Desired error: 0.0010000000.
Epochs 1. Current error: 0.9598405957. Bit fail 8.
Epochs 50. Current error: 0.2475839257. Bit fail 1.
Epochs 88. Current error: 0.0007690609. Bit fail 0.

The result of this training session is the file ‘bucket classify.net’ which contains
a representation of the ANN:

FANN_FLO_2.1
num_layers=3
learning_rate=0.700000
connection_rate=1.000000
network_type=0
learning_momentum=0.000000
training_algorithm=2
train_error_function=1
train_stop_function=0
cascade_output_change_fraction=0.010000
quickprop_decay=-0.000100
quickprop_mu=1.750000
rprop_increase_factor=1.200000
rprop_decrease_factor=0.500000

404 18 Artificial Intelligence and Optimization

rprop_delta_min=0.000000
rprop_delta_max=50.000000
rprop_delta_zero=0.500000
cascade_output_stagnation_epochs=12
... // more properties
neurons (num_inputs, activation_function,

activation_steepness)=(0, 0,
0.00000000000000000000e+00)

The network file contains the network property and the activation function for
the neurons. Once the network has been created and stored in a file it can be used
for future classification as shown in Listing 18.3.

// \file fann_use.cpp
// \author Sandeep Koranne (C) 2010
// \description Use of FANN produced network for classification
#include <iostream> // program IO

5 #include <cassert> // assertion checking
#include <fstream> // for file IO
#include <fann.h> // FANN library

int main(int argc, char *argv []) {
10 if(argc != 3) {

std::cerr << "Usage : ./fann_use <nw> <data>...\n";
exit(1);

}
struct fann *nw = fann_create_from_file(argv[1]);

15 assert(nw && "Unable to create network from file");
float data[16]; // remember 16 inputs
std::ifstream ifs(argv[2]);
unsigned int count = 0;
while(ifs) {

20 ifs >> data[count++];
}
float *classification; // remember 4 outputs
classification = fann_run(nw, data);
std::cout << "Classified data set = "

25 << "\nData[0] probability = " << classification[0]
<< "\nData[1] probability = " << classification[1]
<< "\nData[2] probability = " << classification[2]
<< "\nData[3] probability = " << classification[3];

30 std::cout << std::endl;
return (0);

}

Listing 18.3 Using FANN produced ANN for classification

Compiling and running the program on a new sample data (of 16 inputs) we get:

$./fann_use bucket_classify.net sample.dat
Classified data set =
Data[0] probability = -0.001551
Data[1] probability = 1.85513
Data[2] probability = 3.20333e-32
Data[3] probability = 0.23337

Thus, we conclude the sample data can be classified in the second category. The
above examples are deliberately simple, but FANN is used in this manner for com-
plex classification tasks where network training is comprised of many millions of

18.8 LIBSVM : Support Vector Machines 405

trials on valid data. The simplicity of the API is well demonstrated using these small
examples. Some of the other useful functions from FANN are given below in Ta-
ble 18.1.

Table 18.1 FANN API Functions

Name
fann * fann_create_standard(unsigned int num_layers, ...);

fann * fann_create_sparse(float connection_rate)

fann * fann_create_sparse_array(float connection_rate)

fann * fann_create_shortcut(unsigned int num_layers, ...);

fann * fann_create_shortcut_array(unsigned int num_layers)

void fann_destroy(fann *ann);

fann_type * fann_run(fann *ann, fann_type * input);

void fann_randomize_weights(fann *ann, fann_type min_weight)

void fann_init_weights(fann *ann, fann_train_data *train_data);

void fann_print_connections(fann *ann);

void fann_print_parameters(fann *ann);

unsigned int fann_get_num_input(fann *ann);

unsigned int fann_get_num_output(fann *ann);

unsigned int fann_get_total_neurons(fann *ann);

unsigned int fann_get_total_connections(fann *ann);

enum fann_nettype_enum fann_get_network_type(fann *ann);

float fann_get_connection_rate(fann *ann);

unsigned int fann_get_num_layers(fann *ann);

void fann_get_layer_array(fann *ann, unsigned int *layers);

void fann_get_bias_array(fann *ann, unsigned int *bias);

void fann_get_connection_array(fann *ann)

void fann_set_weight_array(fann *ann

void fann_set_weight(fann *ann

void fann_set_user_data(fann *ann, void *user_data);

void * fann_get_user_data(fann *ann);

unsigned int fann_get_decimal_point(fann *ann);

unsigned int fann_get_multiplier(fann *ann);

18.8 LIBSVM : Support Vector Machines

Support Vector Machines are a class of AI tools and techniques used for automatic
data classification. LIBSVM is an integrated software for support vector classifica-
tion (C-SVC), regression estimation, and distribution estimation. It implements an
SMO-type algorithm and is available as an open-source library.

406 18 Artificial Intelligence and Optimization

Like Artificial Neural Networks (ANN) (see Section 18.7) tasks involved in SVM
classification can be divided into (i) training, and (ii) actual classification. The goal
of the training data sets is to construct a model (based on the training data) which
predicts the target value of the test data (given only the test data attributes). The
mathematical principles behind SVM are based on the mapping of the training vec-
tors into a higher (maybe infinite) dimensional space. SVM then calculates a linear
separating hyperplane with the maximal margin in this higher dimensional space.

Due to the principle of dimensional mapping, SVM requires that each data in-
stance be represented as a vector of real numbers. Hence, if the data consists of cat-
egorical attributes, these have to be converted into numeric data. A simple one-hot
encoding can be used to encode attribute data, using Boolean 0 and 1 to represent
exclusion and inclusion in the category set. For example, the pieces of a chess game
can be represented by the tuple:

CP = rook,bishop,knight rook = 1,0,0 bishop = 0,1,0 knight = 0,0,1

18.8.1 SVM Tools

LIBSVM consists of a number of tools which are described below:

1. svm-train: The command-line usage of this tool is shown below:

$./svm-train
Usage: svm-train [options]

training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)
-t kernel_type : type kernel function
-d egree : degree in kernel function (default 3)
-g gamma : gamma in kernel function
-r coef0 : coef0 in kernel function (default 0)
-c cost : C of C-SVC, epsilon-SVR (default 1)
-n nu : nu of nu-SVC, (default 0.5)
-p epsilon : epsilon-SVR (default 0.1)
-m cachesize : cache size in MB (default 100)
-e epsilon : tolerance of termination
-h shrinking : use shrinking heuristics
-b probability_estimates :

whether to train a SVC or SVR model
for probability estimates, 0 or 1

-wi weight : C of class i to weight*C
-v n: n-fold cross validation mode
-q : quiet mode (no outputs)

2. svm-predict: The command-line usage for this tool is shown below:

$./svm-predict
Usage: svm-predict [options] test_file

model_file output_file

18.8 LIBSVM : Support Vector Machines 407

options:
-b probability_estimates:
whether to predict probability estimates,
0 or 1 (default 0);
for one-class SVM only 0 is supported

3. svm-scale: performs scaling of the data prior to classification. Scaling is an im-
portant pre-processing check which can improve the quality of the classification.
The example usage of this program is shown below:

$./svm-scale
Usage: svm-scale [options] data_filename
options:
-l lower : x scaling lower limit (default -1)
-u upper : x scaling upper limit (default +1)
-y y_lower y_upper :
y scaling limits (default: no y scaling)

-s save_filename :
save scaling parameters to save_filename

-r restore_filename :
restore scaling parameters from restore_filename

4. checkdata: a simple Python program which checks the training data for syntax
correctness,

The usual method of classifying data with LIBSVM is to train the SVM model
on pre-defined training data (using svm_train), and then perform actual classification
using svm_predict. The format of the data (both training and classification) is shown
below:

<label> <index1>:<value1> <index2>:<value2> ..

where each line denotes an instance and is ended by the newline character. For
classification, <label> is an integer indicating the class label. The <index>:<value>

are index, value where indices start from 1 and value is a real number. Consider the
same classification data which we used for the artificial neural network (except the
attributes have been reduced to 4):

+1 1:0.1 2:0.4 3:0.6 4:0.3
-1 1:0.7 2:0.64 3:0.66 4:0.3
+1 1:0.1 2:0.4 3:0.6 4:0.3
+1 1:0.1 2:0.14 3:0.6 4:0.3

The data file should not have blank trailing lines. The Python program checkdata

can be used to check the data for syntax. We now train our SVM model on this data
using:

$ ˜/libsvm-2.91/svm-train data.dat

*
optimization finished, #iter = 2
nu = 0.500000
obj = -1.900054, rho = -0.900054

408 18 Artificial Intelligence and Optimization

nSV = 2, nBSV = 2
Total nSV = 2

The produced SVM model is shown below:

svm_type c_svc
kernel_type rbf
gamma 0.25
nr_class 2
total_sv 2
rho -0.900054
label 1 -1
nr_sv 1 1
SV
1 1:0.1 2:0.4 3:0.6 4:0.3
-1 1:0.7 2:0.64 3:0.66 4:0.3
data.dat.model (END)

We can now use this model to perform data classification on real data as shown
below:

$./cat test.dat
+1 1:0.3 2:0.4 3:0.6 4:0.31
-1 1:0.67 2:0.64 3:0.46 4:0.23
+1 1:0.1 2:0.4 3:0.61 4:0.33
+1 1:0.1 2:0.14 3:0.16 4:0.28
$./svm-predict -b 0 test.dat data.dat.model output
Accuracy = 75% (3/4) (classification)

It is also possible to use LIBSVM within an application by using the classification
facility as an API. The model creation and training can be carried out, and the model
loaded into another application which performs the classification.

18.9 Conclusion

Artificial Intelligence (AI) has been a promised goal of computer science research
for more than half a century. Nevertheless, recent years has seen many of the tools
and techniques which were invented during AI’s inception, find use in diverse appli-
cation domains. In this chapter we have presented the CLIPS expert system, ACL2
theorem prover and a number of API libraries which implement search and opti-
mization techniques such as simulated annealing, genetic algorithms, support vector
machines and artificial neural networks. Since AI is often used to solve optimiza-
tion problems with poorly defined, or ill-conditioned constraints, it is important to
know of current state-of-art in AI tools and techniques when faced with difficult
optimization problems which may be amenable to AI techniques.

Part V
Scientific Visualization

Chapter 19
Information Visualization

Abstract In this chapter we describe the many GUI libraries on GNU/Linux sys-
tems. These include, GTK, Qt, as well as wxWidget and Fox Toolkit. We present
OpenGL through many examples, which also present GLUT, GLUI and show ex-
ample of using OpenGL from within Python. Graphics rendering engines (OGRE)
and OpenGL helper libraries are also discussed. In addition to 3d graphics, graphics
layout are also available using the Graphviz dot tool. Plotting software Gnuplot,
and vector drawing tools Xfig and Inkscape are also discussed. Raytracing with
PovRay is shown with the help of examples in Section 19.9. Programmatic cre-
ation of graphics is shown with the help of gd library, and the Asymptote library.
Graphics visualization with GeomView, HippoDraw is described in Section 19.15.
Multi-dimensional data visualization with GGobi is discussed. High-performance
scientific data visualization with ParaView and OpenDX are discussed.

Contents
19.1 Graphical User Interfaces . 412
19.2 OpenGL . 427
19.3 OGRE : OO Graphics Rendering Engine 434
19.4 Graphviz: dot . 435
19.5 gnuplot . 436
19.6 Grace/Xmgr. 437
19.7 Xfig . 438
19.8 Inkscape . 439
19.9 PovRay : Ray Tracing . 440
19.10 gd (graphics drawing) . 442
19.11 asymptote . 443
19.12 FreeType : Font Rendering . 445
19.13 Anti-grain geometry : AGG . 446
19.14 Geomview . 446
19.15 HippoDraw . 448
19.16 GGobi : multi-dimensional visualization . 448
19.17 ParaView and VTK . 449
19.18 OpenDX . 452
19.19 Conclusion . 454

S. Koranne, Handbook of Open Source Tools, 411
DOI 10.1007/978-1-4419-7719-9_19, © Springer Science+Business Media, LLC 2011

412 19 Information Visualization

In Chapter 19 we discuss the various software tools and libraries available for infor-
mation visualization. We discuss both creation of images and pictures for presen-
tation as well rendering infrastructure and graphical user interfaces (GUI). Specifi-
cally we discuss, Qt, OpenGL, ‘dot’, gnuplot, xfig, gd, asymptote. Complete
applications for graphics creation include Inkscape, ParaView, Geomview, Hippo-
Draw and OpenDX for information presentation.

19.1 Graphical User Interfaces

We discuss graphical user interface systems that are available. In Section 19.1.2 we
present the Gimp Tool Kit (gtk), Nokia/Trolltech’s Qt is discussed in Chapter 19.1.3.
WxWidgets is briefly discussed in Chapter 19.1.5.1 and the Fox toolkit is presented
in Chapter 19.1.5. OpenGL front-end GUIs are presented for completeness towards
the end of this part in Chapter 19.2.

19.1.1 X Window System

The X Window System is a graphical computer system and network protocol which
is pervasive on GNU/Linux systems. X Window System provides the lowest level
of hardware abstraction layer, and provides infrastructure for graphical user inter-
faces across networked computers. It allows for device independence, as well as
remote display of screen contents over networks. Since it was designed for thin-
clients the client side processing for X is very efficient, and places little demands
on the computer (both CPU as well as memory). As a hardware abstraction layer,
it provides windowing (including primitives to draw points, lines, polygons, and
rasterization) as well as abstraction for user input (including keyboard and mouse).
A singular feature of X is its operating system independence across the network.
Since X only provides the lowest level primitives, other software such as window
managers, or desktop environments such as GNOME and KDE usually is used on
top of X11. GUI toolkits, when running on the X Window System make heavy use
of the Xlib API. We present a number of such GUI libraries below, and although
low level programming in Xlib is not only possible, but also considered to be more
efficient, the convenience offered by using a GUI more than offsets the small gain
in performance.

It should also be noted, that there also exist a number of problems with X11,
which can be solved using external applications. For example, currently it is not
possible to detach a client from one server to another, although by using VNC (see
Section 1.7.1) stateful sessions on X11 are possible. Moreover, X protocol traffic is
sent unencrypted over the network. This can be solved by using OpenSSH tunneling
(see Section 1.5), which encrypts all traffic over a designated port.

19.1 Graphical User Interfaces 413

19.1.2 GIMP Toolkit: GTK

In Section 14.5 we have presented the GIMP (GNU Image Manipulation Program).
GIMP Toolkit (GTK) is a cross-platform widget toolkit for designing and imple-
menting graphical user interfaces (GUI) for the UNIX X-Window system. It was
initially created for GIMP, but now has expanded significantly in its usage, most
importantly, it is the widget toolkit used for GNOME.

GTK is an object oriented (OO) widget toolkit written in the C programming
language. The OO is implemented using the GLib object system (GObject). The un-
derlying drawing primitives used by GTK depend on the platform, on UNIX it uses
the X-windows xlib system to draw contents on the screen. Like the other toolkits
we discuss in this part of the book, GTK admits many language bindings, including
but not limited to C, C++, Python, and Java. Consider the example program shown
in Listing 19.1.

19.1.2.1 Hello, World in GTK

Consider the following program in C language.

/* GTK Hello, World! program.(C) Sandeep Koranne, 2010 */
#include <gtk/gtk.h>
int main (int argc, char *argv[]) {
GtkWidget *window;

5 GtkWidget *label;
char *markup, *str = "Hello, World!";
gtk_init (&argc, &argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), str);

10 g_signal_connect (window, "destroy",
G_CALLBACK (gtk_main_quit), NULL);

markup = g_markup_printf_escaped("<span size=\"x-large\""
"style=\"italic\">%s", str);
label = gtk_label_new (str);

15 gtk_label_set_angle(GTK_LABEL(label), 45.0);
gtk_label_set_markup(GTK_LABEL(label), markup);
gtk_container_add (GTK_CONTAINER (window), label);
gtk_widget_show_all (window);
gtk_main (); return 0;

20 }

Listing 19.1 Using GTK GUI Libraries

We compile this program using the pkg-config tool as:

gcc gtk_hw.c -o gtk_hw ‘pkg-config --cflags gtk+-2.0‘ \
‘pkg-config --libs gtk+-2.0‘

Running this program gives us the picture as shown in Figure 19.1.
The example above shows the use of Pango Text Attribute Markup Language.

Using this mechanism the attributes of the text elements can be changed.

414 19 Information Visualization

Fig. 19.1 Hello, World with
GTK showing Pango

Fig. 19.2 Glade: user interface designer for GTK

19.1.2.2 Using Glade: User Interface Designer

Designing user interfaces by compositing widgets by hand gets tedious very quickly,
thus most widget systems have developed GUI tools to design GUIs. For GTK, the
user interface designer is called Glade. An example is shown in Figure 19.2. Using
Glade a GUI application using GTK can be built very quickly.

19.1.3 Qt: Application development framework

Nokia/Trolltech’s Qt application framework library started out as a graphical user
interface widget library, but over the years has grown to include many features which
are not traditionally associated with GUIs. These include threading, international-
ization, XML processing and much more. In this chapter we discuss the Qt frame-
work. In the example we have used Qt version 4.6.2. A picture of Qt Creator is
shown in Figure 19.3.

Qt is written in C++, but program bindings exist for many other programming
languages such as Python. Qt is also cross-platform, meaning the same source code

19.1 Graphical User Interfaces 415

Fig. 19.3 Qt Creator

can be compiled on UNIX, GNU/Linux, Microsoft Windows, Apple Mac OS X,
even embedded Linux. In addition to GUI widgets Qt also includes functionality re-
quired by application developers to create rich and functional products. Qt is written
in an Object Oriented manner (as most GUI toolkits are), and has a unique signal
and slot mechanism which connects user actions to program behavior, see 19.1.3.2.

Starting with Qt 4, the organization of Qt has been changed to consist of several
modules, each of which can be used independently (except the Core module). The
following modules are most useful to application developers:

19.1.3.1 Qt 4 Module Architecture

• QtCore : Core non-GUI classes,
• QtGUI : GUI interface and widgets,
• QtNetwork : network programming,
• QtOpenGL : OpenGL programming,
• QtSql : database integration using SQL,
• QtSVG : displaying contents of scalable vector graphics (SVG) files,
• QtXML : XML parser and support.

There are other modules which deal with web presentation, multimedia frame-
work, UI testing, multi-threading, Qt 3 support, and dynamic UI creation.

Consider the program presented below:

// Hello World from Qt
// (C) Sandeep Koranne, 2010

416 19 Information Visualization

#include <QApplication>
#include <QLabel>

5
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QLabel *label = new QLabel("Hello, World from Qt!", 0);

10 label->show();
return app.exec();

}

Listing 19.2 Example of using Qt GUI Libraries

To compile this program using Qt 4, we do:

$qmake -project
$qmake
$make

The constructed project file from Qt is instructive:

TEMPLATE = app
TARGET =
SOURCES += qhw.cpp

Fig. 19.4 Hello World in Qt

19.1.3.2 Qt Signals and Slots

Before Qt, existing GUI libraries used the concept of callback functions (c.f. Motif)
or event listeners (main loop) to connect user interaction with program computation.
Qt uses an unique C++ pre-processor based solution called signal and slots. Using
the QObject::connect function, an user can connect a signal such as button click,
menu shortcut to a slot such as button-pressed. The Qt framework manages the
internal connections between the defined signal and slot connections.

// Qt signal and slot example
#include <QApplication>
#include <QLabel>
#include <QSpinBox>

5 #include <QHBoxLayout>

int main(int argc, char *argv []) {
QApplication app(argc, argv);
QWidget window;

10 QHBoxLayout *hbox = new QHBoxLayout(&window);
QLabel *label = new QLabel("0");
QSpinBox *spbox = new QSpinBox;
hbox->addWidget(spbox);

19.1 Graphical User Interfaces 417

hbox->addWidget(label);
15 QObject::connect(spbox, SIGNAL(valueChanged(int)),

label, SLOT(setNum(int)));
window.show();
return app.exec();

}

Listing 19.3 Signal/slot mechanism in Qt

The output of the program is shown in Figure 19.5.

Fig. 19.5 Signals and slots
example with spinbox

The signal and slots definition in derived classes is not C++ per se, but has to be
pre-processed by the moc meta object compiler from Qt. This compiler generates
appropriate code for the class to enable signal and slot connections.

Qt comes complete with instructive examples, and using the Qt Creator and the
examples, many complex products have been developed, as an example consider the
Qt frontend to Octave as shown in Figure 19.6.

Fig. 19.6 QtOctave frontend to Octave

418 19 Information Visualization

19.1.4 Qt’s application programming API

In addition to providing graphical user interface widgets, Qt API also provides gen-
eral purpose application development APIs such as database access, inter-process
communication, shared memory, multi-threading, Webkits (for rendering multime-
dia), and much more. We present an example of some of the application develop-
ment APIs below.

19.1.4.1 Shared Memory

Consider the procedure for shared memory transactions between related processes
(which know the key to the shared memory):

#include <qsharedmemory.h>
{
QSharedMemory sharedMemory;
sharedMemory.create(size);

5 sharedMemory.lock();
char *to = (char*)sharedMemory.data();
const char *from = buffer.data().data();
memcpy(to, from, qMin(sharedMemory.size(), size));
sharedMemory.unlock();

10 sharedMemory.detach();
}

Another API for shared memory processing is given in Section 5.8, which uses the
Apache Portable Runtime (apr) functions.

19.1.4.2 Network programming using Qt API

To use the TCP networking APIs in Qt, the TCP header files:

#include <QTcpServer>
#include <QTcpSocket>

should be included in the application, and the network library should be added to
the QT section of the ’qmake’ file. To create a TCL server, the QTcpServer object and
an associated QTcpSocket should be created. To start listening to a connection the
server socket’s isListening() member function should be invoked. Thereafter, the
client can be connected to the server using the connectToHost member function of
the client socket.

19.1.5 Other GUI Toolkits

In addition to GTK and Qt, several other GUI toolkits find niche use in particular
domains. These may exist for a number of reasons, including licensing restriction
and developer familiarity.

19.1 Graphical User Interfaces 419

19.1.5.1 WxWidgets

An introductory program in WxWidgets is shown below.

#include "wx/wx.h"
class MyApp: public wxApp {virtual bool OnInit();};
class MyFrame: public wxFrame {
public:

5 MyFrame(const wxString& title, const wxPoint& pos, const wxSize& size);
void OnQuit(wxCommandEvent& event);
void OnAbout(wxCommandEvent& event);
DECLARE_EVENT_TABLE()

};
10

enum { ID_Quit = 1, ID_About, };

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_MENU(ID_Quit, MyFrame::OnQuit)

15 EVT_MENU(ID_About, MyFrame::OnAbout)
END_EVENT_TABLE()

IMPLEMENT_APP(MyApp)

20 bool MyApp::OnInit() {
MyFrame *frame = new MyFrame(_("Hello World"), wxPoint(50, 50),

wxSize(450,340));
frame->Show(true);
SetTopWindow(frame);

25 return true;
}

MyFrame::MyFrame(const wxString&title,const wxPoint&pos,const wxSize&size)
: wxFrame(NULL, -1, title, pos, size) {

30 wxMenu *menuFile = new wxMenu;
menuFile->Append(ID_About, _("&About..."));
menuFile->AppendSeparator();
menuFile->Append(ID_Quit, _("E&xit"));
wxMenuBar *menuBar = new wxMenuBar;

35 menuBar->Append(menuFile, _("&File"));
SetMenuBar(menuBar);
CreateStatusBar();
SetStatusText(_("Welcome to wxWidgets!"));

}
40

void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event)){Close(TRUE);}

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(event)) {
wxMessageBox(_("This is a wxWidgets Hello world sample"),

45 _("About Hello World"),
wxOK | wxICON_INFORMATION, this);

}

Listing 19.4 Using wxWidgets GUI library

The resulting GUI is shown in Figure 19.7. A more complex example of GUI devel-
opment with WxWidgets is the wxmaxima program as shown in Figure 17.2.

19.1.5.2 Java SWT

In addition to C/C++ based GUI construction, Java also has extensive graphical
facilities as embodied in the Java SWT toolkit.

420 19 Information Visualization

Fig. 19.7 Hello World with
WxWidgets

19.1.5.3 FOX Toolkit

FOX stands for Free Objects for X. It is a C++ based class library for GUI. Example
of a FOX developed UI application can be seen in Figure 19.8.

Fig. 19.8 glview example for
FOX

19.1.5.4 GUI Development using Tcl/Tk

An example of using Tcl/Tk for GUI development is shown in Figure 3.1, which
implements a complete CVS/SVN front-end using Tk. A simpler example of using
Tcl/Tk is shown in Section 1.6.6 which shows a push-button implemented using
Tcl/Tk.

19.1.5.5 GUI Development using PyQt

Using Qt from Python is straightforward using the Python bindings. Consider the
example shown in Listing 19.5.

#!/usr/bin/python
\file pyqt.py
\author Sandeep Koranne

19.1 Graphical User Interfaces 421

import sys
5 from PyQt4 import QtGui

app = QtGui.QApplication(sys.argv)

widget = QtGui.QWidget()
widget.resize(400, 200)

10 widget.setWindowTitle(’Main Window in PyQT’)
widget.show()
sys.exit(app.exec_())

Listing 19.5 Example of PyQt

A larger example of PyQt using several Qt functions as well as the Networkx
graph toolkit is shown in Listing 19.6.

(a) Polytope browser (b) File Menu

(c) File open dialog (d) Diagram of polytope

Fig. 19.9 A polytope browser written in PyQt

#!/usr/bin/python
\file main.pyw
\author Sandeep Koranne

5 try:
import matplotlib.pyplot as plt
import sys
import subprocess

422 19 Information Visualization

10 except:
raise

import networkx as nx

15 import sys
import gzip
import bz2

import sys
20 from qt import *

dimension = sys.argv[1]

25 class Polytope:
"""Facets, Fvector, signature and parent information"""
def __init__(self):

self.facets = []
self.fvec = []

30 self.signature = ""
self.parent = 0
self.parendId = -1
self.cut_set = []

def dump(self):
35 print self.signature

print " "
print self.facets
print " "
print self.parent

40 print " "
print self.parentId

def recreate_format(self, fileName):
fs = open(fileName, ’wt’)
fs.write(’VERTICES_IN_FACETS\n’)

45 fs.write(’\n’)
for i in self.facets:

fs.write(’{ ’)
for j in i:

fs.write(str(j))
50 fs.write(’ ’)

fs.write(’ }\n’)
fs.write(’\n’)
fs.write(’F_VECTOR (’)
for i in self.fvec:

55 fs.write(str(i))
fs.write(’ ’)

fs.write(’)\n\n ’)
fs.write(self.signature)
fs.write(’ Parent HC = [’)

60 fs.write(self.parent)
fs.write(’] ’)
fs.write(’ [’)
for i in self.cut_set:

fs.write(str(i))
65 fs.write(’ ’)

fs.write(’]\n’)
fs.close()

def IndexPolytopes(polytopes):
70 """Given a list of polytopes make a dictionary with the index"""

poly_dict = {}
i = 0;
for p in polytopes:

poly_dict[p.signature] = i
75 i=i+1

19.1 Graphical User Interfaces 423

for p in poly_dict:
me = poly_dict[p] # index of myself
my_parent_signature = polytopes[me].parent

80 my_parent_id = poly_dict[my_parent_signature]
polytopes[me].parentId = my_parent_id

def ParseFile(fileName):
print "Reading file %s" %fileName

85 if fileName.find(’.gz’) != -1:
file = gzip.open(fileName, ’rb’)
lines = file.readlines()
file.close()

elif fileName.find(’.bz2’) != -1:
90 file = bz2.BZ2File(fileName, ’rb’)

lines = file.readlines()
file.close()

else:
f = open(fileName, ’r’)

95 lines = f.readlines()
f.close()

expectFacets = False
expectFVec = False

100 expectSignature = False
i = 0
allPolytopes = []
for l in lines:

if l == ’VERTICES_IN_FACETS\n’:
105 if i > 0:

allPolytopes.append(next)
next = Polytope()
i=i+1
expectFacets = True

110 elif l == ’\n’:
if expectFacets:

expectFacets = False
expectFVec = True

elif expectFVec:
115 expectFVec = False

expectSignature = True
elif expectSignature:

expectSignature = False
expectFacets = True

120
else: #Data to be processed

if expectFacets:
data is in { 1 2 3 4 }
face_str = l.strip()[1:-1]

125 face = []
for vid in face_str.split(’ ’):

try:
face.append(int(vid))

except:
130 pass

next.facets.append(face)
elif expectFVec:

head_string = l[0:8]
assert head_string == ’F_VECTOR’

135 for num in l[8:].split(’ ’):
try:

next.fvec.append(int(num))
except:

pass
140 elif expectSignature:

break up the line into components
parent_hc = l.find(’Parent HC =’)

424 19 Information Visualization

assert parent_hc > 0
next.signature = l[0:parent_hc].strip()

145 parent_hc_end = l[parent_hc+14:].find(’]’)
offset = parent_hc+14+parent_hc_end
try:

next.parent = l[parent_hc+14:offset].strip()
except:

150 print "Error in parsing parent id"

we have read the parent, now read the cut set
for cut_set in l[offset+1:].split(’ ’):

try:
155 next.cut_set.append(int(cut_set))

except:
pass

allPolytopes.append(next)
160 print "Collected %d polytopes"%len(allPolytopes)

IndexPolytopes(allPolytopes)
return allPolytopes

165 def CalculateHeritage(P, i):
"""Given the polytope table and the polytope index find its heritage"""
answer = []
P[i].dump()
parentId = P[i].parentId

170 while i != parentId:
answer.append((parentId, P[i].cut_set))
i = parentId
parentId = P[i].parentId

175
return answer

class MainWindow(QMainWindow):

180 def __init__(self, *args):
apply(QMainWindow.__init__, (self,) + args)
self.setCaption("Polytope Browser")

#load icons from PNG files 60x60 size
185 self.fileOpenIcon = QPixmap("db_icon.png")

self.graphIcon = QPixmap("graph_icon.png")
self.polytopeIcon = QPixmap("poly_icon.png")

190 self.actionLoadPolytope = QAction(self, "Polytope")
self.actionLoadPolytope.setText("Load polytope db")
self.actionLoadPolytope.setMenuText("&File")
self.actionLoadPolytope.setStatusTip("Load a polytope db file")
self.actionLoadPolytope.setIconSet(QIconSet(self.fileOpenIcon))

195 self.connect(self.actionLoadPolytope,SIGNAL("activated()"),
self.loadPolytopeDB)

self.actionGraph = QAction(self, "Graph")
self.actionGraph.setText("Calculate graph")

200 self.actionGraph.setMenuText("&Graph")
self.actionGraph.setStatusTip("Compute 1-skeleta (graph)")
self.actionGraph.setIconSet(QIconSet(self.graphIcon))
self.connect(self.actionGraph,SIGNAL("activated()"),

self.computeGraph)
205

self.actionPoly = QAction(self, "Poly")
self.actionPoly.setText("Analyze polytope")
self.actionPoly.setMenuText("&Polytope")

19.1 Graphical User Interfaces 425

210 self.actionPoly.setStatusTip("Analyze polytope")
self.actionPoly.setIconSet(QIconSet(self.polytopeIcon))

self.statusBar = QStatusBar(self)

215 self.fileMenu = QPopupMenu()
self.actionLoadPolytope.addTo(self.fileMenu)
self.actionGraph.addTo(self.fileMenu)
self.actionPoly.addTo(self.fileMenu)

220 self.quitAction = QAction(self, "Quit")
self.quitAction.setText("Quit")
self.quitAction.setMenuText("&Quit")
self.fileMenu.insertSeparator()
self.quitAction.addTo(self.fileMenu)

225 self.connect(self.quitAction, SIGNAL("activated()"), self.quitApp)

self.helpMenu = QPopupMenu()
self.actionAboutQt = QAction(self, "AboutQt")
self.actionAboutQt.addTo(self.helpMenu)

230 self.connect(self.actionAboutQt,
SIGNAL("activated()"),
self.slotAboutQt)

self.menuBar().insertItem("&File", self.fileMenu)
235 self.menuBar().insertItem("&Help", self.helpMenu)

self.toolBar = QToolBar(self, "Compute")
self.actionLoadPolytope.addTo(self.toolBar)
self.actionGraph.addTo(self.toolBar)

240 self.actionPoly.addTo(self.toolBar)

def slotAboutQt(self):
QMessageBox.aboutQt(self)

245 def loadPolytopeDB(self):
self.polytope_db_filename = QFileDialog().getOpenFileName(

".",
"Cano (cano.txt *cano*.gz *cano*.bz2)",
self,

250 "open file dialog",
"choose a file")

if self.polytope_db_filename:
print "Loading polytope file"
print self.polytope_db_filename

255 self.parsed_db = ParseFile(self.polytope_db_filename)
self.number_of_polytopes = len(self.parsed_db)

def gotPolytopeId(self):
self.current_polytope_id = int(self.spinBox.value())

260 self.number_input.hide()
self.constructGraph()

def constructGraph(self):
print "Calcuating graph of polytope id %d"

265 %(self.current_polytope_id)
heritage = CalculateHeritage(self.parsed_db,

self.current_polytope_id)
for h in heritage:

print h
270 P = self.parsed_db[self.current_polytope_id]

out_file_name = ’g.cano’
P.recreate_format(out_file_name)
p0 = subprocess.Popen([’˜/cano_proc’,’-f’,out_file_name,

’-d’,dimension,’-G’,’-m 1’],shell=False,
275 stdin=subprocess.PIPE,

stdout=subprocess.PIPE)

426 19 Information Visualization

rc = p0.wait()
if rc != 0:

print "Graph construction from %s failed." %out_file_name
280 GORIG=nx.read_adjlist("graph.txt", nodetype=int)

G=GORIG.copy()
mylabels={}
for v in G.nodes():

mylabels[v]=int(v)
285 diam = nx.diameter(G)

print "Diameter of G = %d"%diam
b=nx.betweenness_centrality(G)
for v in G.nodes():
print "%0.2d %5.3f"%(v,b[v])

290 #p1 = plt.subplot(221)
nx.draw(GORIG, labels=mylabels,pos=nx.spring_layout(GORIG))
plt.savefig("san.png") # save as png
plt.show() # display

295 def computeGraph(self):
self.number_input = QDialog(self)
layout = QHBoxLayout(self.number_input)
self.number_input.setCaption("Enter polytope number: ")
self.spinBox = QSpinBox(self.number_input)

300 layout.addWidget(self.spinBox)
self.spinBox.setRange(0, self.number_of_polytopes-1)
self.pnum_button = QPushButton(self.number_input, "Accept")
layout.addWidget(self.pnum_button)
self.pnum_button.setText("Accept")

305 self.connect(self.pnum_button, SIGNAL("clicked()"),
self.gotPolytopeId)

self.number_input.show()

def quitApp(self):
310 # close all files and processes

exit(0)
number_of_polytopes = 0
current_polytope_id = 0
polytope_db_filename = ""

315 parsed_db = None

def main(args):
app=QApplication(args)
win=MainWindow()

320 win.show()
app.connect(app, SIGNAL("lastWindowClosed()"), app,

SLOT("quit()"))
app.exec_loop()

325 if __name__=="__main__":
main(sys.argv)

Listing 19.6 Qt integration with Python, polytope browser

The program in Listing 19.6 when run, produces the GUI as shown in Fig-
ure 19.9(a). The File menu as well as the file dialog are shown in Figure 19.9(b)
and (c), respectively. The Python program uses the matplot module which is used
to draw the diagram as shown in Figure 19.9(d).

19.2 OpenGL 427

19.2 OpenGL

OpenGL is an industry standard for implementing high-performance graphics ren-
dering programs. It is a high-level API which provides window system and oper-
ating system independent software interface to the graphics hardware. An OpenGL
compliant program can execute on any platform to produce identical graphics out-
put. Moreover, each graphics hardware provider can implement optimized OpenGL
implementations which aid in high-performance.

(a) OpenGL UTah Teapot (b) OpenGL gears example

Fig. 19.10 Classic example of OpenGL

OpenGL provides a number of facilities which can be used by the application
program. These include:

1. Graphics primitives: primitives include:

a. points (GL POINTS),
b. lines (GL LINES),
c. line-loop (GL LINE LOOP),
d. line-strip (GL LINE STRIP),
e. convex polygon (GL POLYGON),
f. quadrilaterals (GL QUADS),
g. quad-strip (GL QUAD STRIP),
h. triangles (GL TRIANGLES),
i. triangle strip (GL TRIANGLE STRIP),
j. triangle fan (GL TRIANGLE FAN).

2. Indexed and RGBA color mode: indexed color mode is generally not used as
operations such as fogging are complicated, but it is nevertheless used in appli-
cations where object picking is required,

428 19 Information Visualization

3. OpenGL pipeline and contexts: OpenGL is a state-machine based drawing sys-
tem. The OpenGL state-machine state can be inspected and changed by the ap-
plication. Most of the state pertaining to drawing such as line-width, shading,
color is changed by using the API functions,

4. Images and textures: to provide realistic three-dimensional portrayal OpenGL
supports application of textures to objects. Images can be transmitted to and from
the hardware memory buffer,

5. Extensions provide NURBS and curves support:

Consider the program in Listing 19.7.

// \file hwgl.cpp
// \author Sandeep Koranne, (C) 2010
// \description Example of OpenGL primitives
#include <GL/glx.h>

5 #include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

GLfloat light_diffuse[] = {1.0, 0.0, 0.0, 1.0};
10 GLfloat light_position[]= {1.0, 1.0, 1.0, 0.0};

static int main_window = 0;
static GLuint renderModelList = 1;

15 static float x,y,z;
static float localScale = 1.0;
static const float MOTION = 1.0;

void processSpecialKeys(int key, int x, int y) {
20 switch(key) {

case GLUT_KEY_LEFT: { x += MOTION; break; }
case GLUT_KEY_RIGHT:{ x -= MOTION; break; }
case GLUT_KEY_UP: { y -= MOTION; break; }
case GLUT_KEY_DOWN: { y += MOTION; break; }

25 }
glutPostRedisplay();
glFlush();

}

30
void processNormalKeys(unsigned char key, int x, int y) {
if(key == 27) { exit(0); }
if(key == ’b’) { localScale /= 1.05f; }
if(key == ’f’) { localScale *= 1.05f; }

35 glutPostRedisplay();
glFlush();

}

void renderScene(void) {
40 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();
glRotatef(45.0, 4.0, 2.0, 4.0);
glScalef(localScale, localScale, localScale);
glCallList(renderModelList);

45 glPopMatrix();
glFlush();

}

static void CreateModel(void) {
50 GLUquadricObj *obj = gluNewQuadric();

gluQuadricDrawStyle(obj, GLU_FILL);
renderModelList = glGenLists(1); // get new display list
glNewList(renderModelList, GL_COMPILE);

19.2 OpenGL 429

glColor3f(0.4, 0.4,0.6);
55 glutWireTeapot(4.0);

glEndList();
}

void InitGL(void) {
60 x=y=z=0;

CreateModel();
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glEnable(GL_LIGHTING);

65 glEnable(GL_LIGHT0);
glClearColor(1.0, 1.0, 1.0, 0.5f);
glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION); // setup viewing system
gluPerspective(40.0, // field-of-view

70 1.0, // aspect ratio
1.0, 10.0); // Z-near and far

glMatrixMode(GL_MODELVIEW); // scene coordinates
gluLookAt(0.0, 0.0, 9, // eye is at (0,0,9)

0.0, 0.0, 0.0, // world center at origin
75 0.0, 1.0, 0.0); // Y is up

}

int main(int argc, char *argv []) {
glutInit(&argc, argv); // initialize GLUT sub-system

80 glutInitDisplayMode(GLUT_DEPTH | GLUT_RGBA); // use RGBA color
main_window = glutCreateWindow("hwgl OpenGL example");
InitGL();
glutKeyboardFunc(processNormalKeys);
glutSpecialFunc(processSpecialKeys);

85
glutDisplayFunc(renderScene);
glutMainLoop();
return (0);

}

Listing 19.7 Drawing graphics with OpenGL

19.2.1 GLUT : OpenGL Utility Toolkit

GLUT is an utility toolkit for OpenGL which make the interaction between OpenGL
and the underlying window system easier to manage as it provides the graphics
context (GLX for X-Windows), as well as the initial drawing window where the
context is attached. GLUT also supports a wide variety of input interfaces including
keyboard, mouse and trackwheel. It also provides high-level graphics primitives
such as the Utah teapot (as shown in Figure 19.10(a)) and the OpenGL glxgears
program in Figure 19.10(b).

In addition to GLUT, also consider using GLFW (OpenGL contexts and input
manager) which aims to provide operating-system independent access to OpenGL,
similar to GLUT, but has been developed more recently.

430 19 Information Visualization

19.2.2 GLUI : GUI for OpenGL

As stated above in Section 19.2, OpenGL by itself is window-system independent,
and thus does not provide any graphical user interface as part of the standard. How-
ever, all major GUI toolkits have included support for OpenGL. There is also an
independent completely OpenGL based user interface library, GLUI, which is de-
scribed below.

(a) Applications, Internet and Office

Fig. 19.11 OpenGL GLUI examples

Consider the short program in the listing below. It shows a simple example of
using OpenGL, GLUT and GLUI within the X-Window system. The libraries are
available and ready to be used to create immersive graphics with the high perfor-
mance coming from OpenGL.

///////////////////////////////////
// glexample.cpp
// (C) Sandeep Koranne, 2010
// Example of OpenGL with GLUT and GLUI

5 ///////////////////////////////////
#include <GL/glx.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

10 #include <GL/glui.h>

void InitGL(void);
void renderScene(void);
void processSpecialKeys(int key, int x, int y);

15 void processNormalKeys(unsigned char key, int x, int y);
void changeSize(int w, int h);
const int WIDTH = 600, HEIGHT = 600;
GLUI_StaticText *pStaticText = NULL;
int main_window = 0;

20 int xdim=0, ydim=0;
void myGlutMouse(int button, int button_state, int x, int y) {
//

}

25 void myGlutMotion(int x, int y) {
GLdouble mat[16];

19.2 OpenGL 431

GLdouble proj[16];
GLint viewport[4];
glGetDoublev(GL_MODELVIEW_MATRIX,mat);

30 glGetDoublev(GL_PROJECTION_MATRIX,proj);
glGetIntegerv(GL_VIEWPORT,viewport);
// our viewport is static

GLdouble dx, dy, dz;
gluUnProject(x,HEIGHT-y,0,mat,proj,viewport,&dx,&dy,&dz);

35 char ncs[100];
sprintf(ncs," X=%d,Y=%d",(int)dx,(int)dy);
pStaticText->set_text((char*)ncs);
glutPostRedisplay();

}
40

void myGlutIdle(void) {
if (glutGetWindow() != main_window) {

glutSetWindow(main_window);
}

45 glutPostRedisplay();
}

int Initialize(int argc, char *argv[]) {
glutInit(&argc, argv);

50 glutInitDisplayMode(GLUT_DEPTH | GLUT_SINGLE | GLUT_RGBA);
glutInitWindowPosition(100,100);
glutInitWindowSize(WIDTH, HEIGHT);
main_window = glutCreateWindow("GlExample");
InitGL();

55 glutDisplayFunc(renderScene);
glutMotionFunc(myGlutMotion);

GLUI *gluiTop = GLUI_Master.create_glui_subwindow(
main_window, GLUI_SUBWINDOW_TOP);

60 GLUI *glui2 = GLUI_Master.create_glui_subwindow(
main_window, GLUI_SUBWINDOW_LEFT);

glui2->add_checkbox("Display WireFrame");
glui2->add_checkbox("Black/White");

65 glui2->set_main_gfx_window(main_window);
pStaticText = glui2->add_statictext("X=0,Y=0");

glutKeyboardFunc(processNormalKeys);
glutSpecialFunc(processSpecialKeys);

70 glutReshapeFunc(changeSize);
glutMainLoop();
return 0;

}

75 int main(int argc, char *argv[]) {
return Initialize(argc, argv);

}

double localScale = 1.0f;
80 void renderScene(void) {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslatef(xdim, ydim, 0);
glScalef(localScale, localScale, localScale);

85 glColor3f(0,0,0);
glRecti(0, 0 ,5,1);
glColor3f(1.0, 0.0, 0.0);
glRecti(0, 1, 1,2);
glFlush();

90 }

void processSpecialKeys(int key, int x, int y) {
switch(key) {

432 19 Information Visualization

case GLUT_KEY_LEFT: { xdim += 1; break; }
95 case GLUT_KEY_RIGHT:{ xdim -= 1; break; }

case GLUT_KEY_UP: { ydim -= 1; break; }
case GLUT_KEY_DOWN: { ydim += 1; break; }
}
glutPostRedisplay();

100 glFlush();
}

void processNormalKeys(unsigned char key, int x, int y) {
if(key == 27) { exit(0); }

105 if(key == ’b’) { localScale /= 2.0f; }
if(key == ’f’) { localScale *= 2.0f; }
glutPostRedisplay();
glFlush();

}
110

void InitGL(void) {
glClearColor(1.0, 1.0, 1.0, 0.5f);
glClearDepth(1.0);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

115 glEnable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glLineWidth(1.0);

}
120

void changeSize(int w, int h) {
int m = (w < h ? w : h);
glViewport(0, 0, m, m);
glMatrixMode(GL_PROJECTION);

125 glLoadIdentity();
glOrtho(0, 0, 50, 50, -1e12, 1e12);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}

Listing 19.8 Example of using OpenGL for graphics

Fig. 19.12 Example of
OpenGL, GLUT and GLUI

)

19.2 OpenGL 433

19.2.3 Using OpenGL from Python

In addition to calling OpenGL API functions from compiled C and C++ programs
a number of language bindings for OpenGL exist. Python bindings for OpenGL are
available using the PyOpenGL bindings. A short example is shown in Listing 19.9.

\file cube.py
\author Sandeep Koranne, (C) 2010
\description OpenGL in Python to draw a cube

5 from OpenGL.GL import *
from OpenGL.GLU import *

import pygame
from pygame.locals import *

10
WINDOW_SIZE = (400,400)

def resize(w, h):
print "Resize called"

15 glViewport(0, 0, w, h)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective(60.0, float(w)/h, .1, 1.)
glMatrixMode(GL_MODELVIEW)

20 glLoadIdentity()

def OpenGL_Init():
glEnable(GL_DEPTH_TEST)
glShadeModel(GL_FLAT)

25 glClearColor(1.0, 1.0, 1.0, 0.0)
glEnable(GL_COLOR_MATERIAL)

glEnable(GL_LIGHTING)
glEnable(GL_LIGHT0)

30 glLight(GL_LIGHT0, GL_POSITION, (0, 1, 1, 0))

class DOBJ(object):

def __init__(self, position, color):
35

self.position = position
self.color = color

40 def render(self):
glColor(self.color)
glBegin(GL_QUADS)
glVertex3f(0.0, 0.0, 1.0)
glVertex3f(1.0, 0.0, 1.0)

45 glVertex3f(1.0, 1.0, 1.0)
glVertex3f(0.0, 1.0, 1.0)
glEnd()

class Model(object):
50 def __init__(self):

self.dobj = DOBJ((0.0,0.0,0.0), (0.5,0.2,0.3))

def render(self):
self.dobj.render()

55
def run():

pygame.init()
screen = pygame.display.set_mode(WINDOW_SIZE, OPENGL)

434 19 Information Visualization

60 resize(*WINDOW_SIZE)

OpenGL_Init()
model = Model()

65 while True:
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
model.render()
pygame.display.flip()

70 run()

Listing 19.9 OpenGL bindings for Python

19.3 OGRE : OO Graphics Rendering Engine

Ogre is an open-source graphics rendering and scenegraph manager system. Its
name is an acronym for Object Oriented Graphics Rendering Engine, and it aims
to provide a 3D API which includes a scene graph manager, and can call an user
specified 3d rendering library for the actual drawing functions (in our example we
have used OpenGL). The key facilities provided by OGRE can be classified as:

1. Scene management: a scene which is to be rendered (per frame, when using con-
tinuous rendering) is described to OGRE as placement of geometric shapes, cam-
era locations and viewing angles. Scenes are thus described at a higher level than
say point-lists in OpenGL. This also allows application level culling in OGRE.
Custom scene manager actions can be taken during rendering by installing a
frame listener class,

2. Resource management: OGRE manages the memory for textures, fonts and other
resources automatically,

3. Rendering: OGRE implements rudimentary application level culling before call-
ing the low level graphics rendering API to push triangles (or other primitives)
onto the screen.

OGRE scene graphs are usually constructed from data stored in files. The data
can be directly read in, in a mesh form, or it can be a solid model which is converted
to a mesh form during readin. The typical sequence for OGRE scene graph addition
is:

void ReadData(const char* fileName) {
Ogre::Entity *crane = mSceneMgr->createEntity(‘‘Crane’’, fileName);
Ogre::SceneNode* head =

mSceneMgr->getRootSceneNode()->createChildSceneMode();
5 head->attachObject(crane);

}

In the above listing, the mesh data for the ‘crane’ object is read from the file. We in-
quire the rootNode from the scene graph manager, and add the newly created crane
object as a child to the root node. The bounding box calculation for the crane and the
root node establishes a parent-child relationship, wherein, application level culling

19.4 Graphviz: dot 435

(ALC), will use the bounding box (perhaps using a spatial data structure) to reject
the display of scene components which are either not visible to the user (shielded) or
have low resolution detail (then faster approximate rendering can be performed for
those portions). This facility (of performing automatic ALC and resolution drops)
, alongwith scene graph maintenance, are some of the most important features of
OGRE, and which require significant code and development time, if done without
using an API like OGRE. A related software is Coin3d, which is also used for scene-
graph representation and developing 3d applications.

19.4 Graphviz: dot

Graphviz (“graph visualization software”) is an open-source software written orig-
inally by AT&T Research Labs for drawing graphs. Graph drawing is a major area
of research in computer science. The input to the graph drawing is specified in the
DOT language script. Consider the following description of a polytope graph.

graph POLYTOPE {
0 [shape=box,color=red];
0 -- 1 [color=blue];
0 -- 2 [color=blue];
0 -- 3 [color=blue];
0 -- 4 [color=blue];
1 -- 2 ; 1 -- 3 ; 1 -- 4 ;
2 -- 3 ; 2 -- 4 ; 3 -- 4 ;
}

By running the dot program on this graph, we can generate the figure as shown
in Figure 19.13. The command we used was dot -Tpng a.dot > a.png.
dot supports In addition to drawing pictures of graphs, the algorithms in dot have

Fig. 19.13 Graph of a poly-
tope generated using dot

also been used in diverse other projects such as Scribus (see Section 2.3) to layout
the page. Doxygen uses the dot binary to draw pictures of class diagrams.

436 19 Information Visualization

19.4.1 DOT Language

DOT is the input language for graph drawing software. It is a plain text graph de-
scription language. DOT language can be used to specify both directed as well as
undirected graphs. An example for DOT to draw an undirected graph of a polytope
was shown above. Directed graphs can also be drawn using:

digraph Shape {
Point -> Line -> Box;
Line -> Polygon;
}

Nodes in the graph can also have attributes, including the node label, node color.
Edges can also be annotated with attributes.

19.5 gnuplot

GNUplot is an open-source tool which can generate two and three dimensional plots
of data and mathematical functions. Although the name has GNU in it, the software
is not related to the GNU project, although it has its own open-source license.
gnuplot can produce display directly on X-window terminal, but it can also

generate hardcopy image files in many formats such as PNG, JPEG, SVG and EPS.
Many mathematical software (such as Octave, Maxima, and SAGE) use gnuplot
for its plotting needs. Examples of plots rendered using gnuplot are shown in Fig-
ure 19.14.

Gnuplot has an extensive help system built into it which can be accessed by
typing

gnuplot> help

The plot command of gnuplot is its most powerful, and can be used to plot the
contents of data files and mathematical functions. The output format can be changed
by using the set term command. One such terminal is an ASCII terminal as
shown below. Gnuplot can also draw figures in xfig (see Section 19.7 and LATEX(see
Section 2.2) formats.
gnuplot> plot sin(x)

1 ++---------------***--------------+---***----------+--------**-----++
+ *+ * + * * + sin(x) ****** +

0.8 ++ * * * * * * ++
| * * * * * * |

0.6 ++ * * * * * * ++

* * * * * * * |
0.4 +* * * * * * * ++

|* * * * * * * |
0.2 +* * * * * * * ++

| * * * * * * * |
0 ++* * * * * * *++

| * * * * * * *|
-0.2 ++ * * * * * * *+

| * * * * * * *|
-0.4 ++ * * * * * * *+

| * * * * * * *
-0.6 ++ * * * * * * ++

| * * * * * * |

19.6 Grace/Xmgr 437

(a) GNUPLOT examples

Fig. 19.14 GNUPLOT: scientific plotting software

-0.8 ++ * * * * * * ++
+ ** * + * * + * +* +

-1 ++-----**--------+----------***---+--------------***---------------++
-10 -5 0 5 10

gnuplot>

19.6 Grace/Xmgr

Grace is a graphical WYSIWYG 2D plotting tool for the X-Window system and
implemented using Motif. Amongst its many features it includes:

1. Many formats for exporting: includes export to EPS, PDF and SVG format,
2. Graphing flexibility: unlimited number of graphs, unlimited number of curves on

graphs, color-fill markers and text annotations,

438 19 Information Visualization

3. Curve fitting: linear and non-linear least-squares fit, calculation of residuals, and
region restrictions,

4. Analysis: including FFT, integration and differentiation, histograms, splines and
convolution,

5. Data formats: reads netCDF files,
6. Programmability: built-in programmable library, math functions, and user-defined

functions via loadable modules.

An example of XMGR/Grace is shown in Figure 19.15.

Fig. 19.15 Grace/XMGR plotting software

19.7 Xfig

Xfig is an open-source vector graphics editor running under the X-window system.
Xfig is used to draw camera ready pictures. Using xfig it is simple to draw schemat-
ics and other technical illustrations containing boxes, lines, circles, ellipses, spline
curves and text. Once drawings have been completed an external tool fig2dev
can be used (or called from within the xfig GUI) to export the image into diverse
file formats such as JPEG, EPS and LATEX.

Like most other UNIX tools, xfig, saves its drawing content as a text-only file
(called a ‘.fig’ file). Xfig can also import figures. An example of Xfig generated
schematics is shown in Figure 19.16. The text data from Xfig can also be used for
non-traditional drawing applications (such as VLSI art work development).

19.8 Inkscape 439

(a)

Fig. 19.16 xfig: vector drawing tool

19.8 Inkscape

Like XFig, Inkscape is also a vector drawing application, but unlike XFig, Inkscape
stores its data in XML files, and is fully compliant with XML, SVG and CSS stan-
dards. It is designed for artists creating images for the web, and graphic design-
ers, rather than technical illustrators. An example of Inkscape being used to create
shapes is shown in Figure 19.17.

(a)

Fig. 19.17 Inkscape: vector drawing tool

Inkscape supports objects such as (i) boxes, (ii) lines, (iii) Bezier curves, (iv)
circles and ellipses, and (v) text. Text can be curved around path, and attributes such
as font and size can be changed easily. Inkscape also supports rounded rectangles,
with customization for fill, stroke, and opaqueness. It also supports the concepts of
layers (similar to a raster editor). Unlike other illustration software, Inkscape has

440 19 Information Visualization

the ability to merge paths together (to perform Boolean AND,OR operations on
shapes). Inkscape also has a builtin XML editor to directly edit SVG files document
structure, support for LATEX, and connector tool to create diagrams and flowcharts.

19.9 PovRay : Ray Tracing

POVRAY (Persistence of Vision Ray Tracer) is a ray tracing program which can
generate photo-realistic renderings of scenes. The input to the POVRAY consists of
the scene description in its SDL (scene description language). Consider an example
as shown below (placed in a file called ’sphere.pov’):

/* Example file sphere.pov */
#include "colors.inc"
background { color White }

camera {
location <0, 2, -3>
look_at <0, 0, 1>

}

sphere {
<0, 1, 2>, 1
texture {
pigment {
marble
turbulence 1
color_map {
[0.0 color Gray90]
[0.8 color Gray60]
[1.0 color Green]

}
}
}

}
box {

<-1,0,1.2>, 0.5
texture {
pigment {
marble
turbulence 1
color_map {
[0.0 color Gray90]
[0.8 color Red]
[1.0 color Gray20]

}
}
}
}
light_source { <2, 4, -3> color White}

19.9 PovRay : Ray Tracing 441

This file describes the scene shown in Figure 19.18. The syntax of the POVRAY

Fig. 19.18 Example of scene
rendered using POVRAY

SDL is based on the concept of lights, camera, and objects. Objects can be built up
from primitives including, spheres, boxes, torus. Transformations such as transla-
tion, scaling and rotation can be applied to objects. Object attributes such as texture,
color and size can be specified. The scene also requires the location of a camera and
a look at direction vector. Moreover, the scene can be illuminated by a light (a light
source has a position coordinate, and a color attribute). Figure 19.18 was rendered
using POVRAY as:

Parsing Options
Input file: sphere.pov (compatible to version 3.61)
Remove bounds........On
Split unions.........Off
Library paths:

/usr/local/share/povray-3.6
/usr/local/share/povray-3.6/ini
/usr/local/share/povray-3.6/include

Output Options
Image resolution 320 by 240 (rows 1 to 240, columns 1 to 320).
Output file: /home/skoranne/POVRAY/sphere.png, 24 bpp PNG
Graphic display......On (gamma: 2.2)
Mosaic preview.......Off
CPU usage histogram..Off
Continued trace......Off

Tracing Options
Quality: 9
Bounding boxes.......On Bounding threshold: 3
Light Buffer.........On
Vista Buffer.........On Draw Vista Buffer....Off
Antialiasing.........Off
Clock value: 0.000 (Animation off)

442 19 Information Visualization

0:00:00 Parsing
0:00:00 Creating bounding slabs 0:00:00

Creating bounding slabs 2K tokens
Scene Statistics
Finite objects: 2
Infinite objects: 0
Light sources: 1
Total: 3

POVRAY can be used as a photo-realistic scene renderer, and is indeed used as
the rendering engine for many 3d modeling tools.

19.10 gd (graphics drawing)

GD graphics library is a software library for dynamic generation of graphics. It is
used to generate charts and graphics, and is often used as part of report generation
system (whether running on a web server, or for document generation). Consider
the program listing shown below.

// file : dgd.cpp
// Sandeep Koranne, (C) 2010
#include <gd.h>
#include <gdfontl.h>
#include <stdio.h>

int main() {
gdImagePtr image;
FILE *fout = fopen("dgd.png", "wb");
image = gdImageCreate(64,64);
int white = gdImageColorAllocate(image,255,255,255);
int red = gdImageColorAllocate(image,255,0,0);
int x=0,y=0;
for(unsigned int i=0; i < 25; ++i) {
if(i % 2) { // vertical lines
gdImageLine(image,x,y,x,y+5,red);
y+=5;

} else {
gdImageLine(image,x,y,x+5,y,red);
x+=5;

}
}
unsigned char *s = (unsigned char*)"Gd";
gdImageString(image,gdFontGetLarge(),6,30,s,red);
gdImagePng(image,fout);
fclose(fout);
gdImageDestroy(image);
return 0;

}

Compiling this program as:

19.11 asymptote 443

g++ dgd.cpp -lgd -lpng -lm
$./a.out

produces the diagram shown in Figure 19.19.

Fig. 19.19 gd : graphics
library

19.11 asymptote

Asymptote is a descriptive vector graphics language to represent and draw coor-
dinate based mathematical drawings of high quality. In this respect it is similar to
LATEXdiagram packages, and pictex, but Asymptote has many more features. It sup-
ports command-line operation by running the tool asy, and xasy. An example of
xasy running in shown in Figure 19.20.

Fig. 19.20 Asymptote drawing language : xasy tool

Since Asymptote is a complete programming language, procedural rendering can
be used to draw complex graphs which otherwise would take a long time to draw

444 19 Information Visualization

correctly. Asymptote is also based on and designed for mathematical use, and sup-
ports complex numbers as objects to manipulate diagrams. A simple example of
vector procedural drawing is:

draw((0,0) -- (10,10));
$asy -V line.asy

This will create a PostScript file containing a depiction of a line from (0,0) to
(10,10), moreover since we invoked asy with the -V option it will call an appropri-
ate PostScript viewer to display this file. The size of the canvas (so to speak) can be
specified using the size function in the .asy file. If we want to cap the line with an
arrow, we can add:

draw((0,0) -- (10,10), Arrow);

Similarly, Labels can be added using the label command. Consider the following
example:

size(5cm);
draw((0,0)--(1,0)--(2.14,1)--
(2.14,2)--(1,2)--(0,2)--cycle);
label("\sqrt{x}",(0,0), SW);
label("$\frac{1}{z}$",(1,0), SW);
label("A",(2.14,1),SE);
label("Bz",(2.14,2),SE);
label("Az",(1,2),NE);
label("$\frac{zˆ2}{x}$",(0,2),NW);
draw((2.14,1){down}..{left}(0,2), Arrow);

The output of this file is shown in Figure 19.21.

Fig. 19.21 Mathematical
drawing with asymptote

19.12 FreeType : Font Rendering 445

19.12 FreeType : Font Rendering

FreeType is an open-source software library that implements font rasterization. Font
rasterization is the process of converting font character shapes into bitmaps; a simple
enough operation to describe, but which has many subtleties. FreeType simplifies
this procedure by providing an easy and uniform interface to access the contents
of font description files. Another related project is Pango, which is an open-source
multi-lingual text rendering engine. An example of using FreeType to render font
glyphs as raster spans of pixels is shown in Listing 19.10.

// \file freetype_example.cpp
// Example derived from FreeType tutorial
// original (C) Erik M<F6>ller
// \description Example of using FreeType library

5 #include <iostream> // program IO
#include <cassert> // assertion checking
#include <fstream> // FILE IO
#include <cstdlib> // exit function
#include <cstring> // memset function

10 #include <vector> // SPAN rep.
#include <ft2build.h> // FreeType library

// A horizontal pixel span generated by the FreeType renderer.

15 struct Span
{
Span() { }
Span(int _x, int _y, int _width, int _coverage)

: x(_x), y(_y), width(_width), coverage(_coverage) { }
20

int x, y, width, coverage;
};

typedef std::vector Spans;
25

void
RasterCallback(const int y,

const int count,
30 const FT_Span * const spans,

void * const user)
{
Spans *sptr = (Spans *)user;
for (int i = 0; i < count; ++i)

35 sptr->push_back(Span(spans[i].x, y, spans[i].len, spans[i].coverage));
}
void
RenderSpans(FT_Library &library,

FT_Outline * const outline,
40 Spans *spans)

{
FT_Raster_Params params;
memset(¶ms, 0, sizeof(params));
params.flags = FT_RASTER_FLAG_AA | FT_RASTER_FLAG_DIRECT;

45 params.gray_spans = RasterCallback;
params.user = spans;

FT_Outline_Render(library, outline, ¶ms);
}

Listing 19.10 Example of using FreeType

446 19 Information Visualization

19.13 Anti-grain geometry : AGG

Anti-Grain Geometry (AGG) is an open-source graphic library written in C++
which provides rendering engine that produces pixel accurate images in memory
from vector data. In addition, AGG also supports anti-aliasing, high-quality, high-
performance and numerical stability (important for degenerate input). AGG sup-
ports drawing of arbitrary polygons with different stokes, and line styles. It uses the
General Polygon Clipper library for polygon Boolean operations.

19.14 Geomview

Geomview is an interactive 3D viewer for UNIX. It can be used as a standalone
viewer or as a display engine integrated with other data analysis or computation
tool. Figure 19.22 shows the diagram of a 3-dimensional cube with one of its vertices
truncated. Using the polymake software we can invoke the Geomview visualization
as:

$polymake t.poly VISUAL geomview

Ofcourse, in this instance polymake does the conversion of geometry into the
format required by Geomview, but afterwards Geomview interacts with the user. The
user can change a number of settings in the view including (i) world coordinate, (ii)
camera positions, (iii) light settings, (iv) material setting, (v) scaling, and (vi) also
perform fly throughs.

(a)

Fig. 19.22 Geomview visualization software

19.14 Geomview 447

Most of the parameters controlled by the user have a parallel in OpenGL (see
Section 19.2). The file format for Geomview is called Object Oriented Graphics
Library (OOGL). Data written in the OOGL syntax and adhering to OOGL specifi-
cation can be rendered and browsed using Geomview.

Consider the example of a simple quadrilateral in OOGL format:

CQUAD
-1 -1 0 1 0 0 1
1 -1 0 0 1 0 1
1 1 0 0 1 1 1

-1 1 0 1 0 0 1

We save this data in a file “csq.oogl”, and invoke Geomview as geomview
csq.oogl, to get Figure 19.23. In addition to specifying color per vertex, OOGL

Fig. 19.23 Colored square in
OOGL format

also allows specifying color per facet. It is also possible to render data made of
meshes, vector polylines, and triangulations. In OOGL using the LIST command it
is possible to refer to other stored geometries. OOGL is also hierarchical, using the
INST command we can not only refer to another stored geometry but also apply a
geometrical transform to the element. The transform is a 4x4 geometrical transform
encoding the rotation, translation, scaling, shearing and perspective transformation.

Consider the following example:

INST
geom { < csq.oogl }
transforms { =
TLIST
1 0 0 0
0 1 0 0
0 0 1 0
2 2 0 1

1 0 0 0
0 -1 0 0
0 0 1 0

448 19 Information Visualization

5 5 0 1
}

In this OOGL file we refer to the previously created colored square “csq.oogl”.
We create an INST block and specify that the geometry comes from a stored disk
file. Next we create a transform list TLIST containing the number of different in-
stantiations we want for the square. In this case we specify two 4x4 matrices. The
format of a transformation matrix contains the rotation, scaling and X-flip compo-
nent in the upper left 3x3 sub-matrix. The last row contains the Tx,Ty translation
component (of non-shearing transforms). In the new OOGL file we create an object
comprising of two squares placed at (2,2) and (5,5), additionally, the second square
is rotated and flipped. See Figure 19.24.

Fig. 19.24 Hiearchical
OOGL file with INST

It is thus easy to build complicated models of geometry, and to interact with the
3d model. External tools can also interface with Geomview by generating OOGL
files on the fly, and invoking Geomview as their display engine.

19.15 HippoDraw

HippoDraw is a powerful object oriented statistical data analysis package written in
C++, with user interaction via a Qt-based GUI and a Python scriptable interface.

19.16 GGobi : multi-dimensional visualization

GGobi is the next generation of XGobi and XGvis, multi-dimensional data visual-
ization tools. It provides dynamic and interactive graphics such as scatter-plot, bar-
chart and parallel coordinate plots. It is best to illustrate the capabilities of ggobi

19.17 ParaView and VTK 449

with the help of an example. Consider a fictional multi-dimensioned data as given
below:

Name, Region, Age, Weight, Score, Rank
"Jack", "OR", 12, 76, 88, 4
"Jane", "CA", 11, 43, 54, 32
"Mary", "OR", 14, 76, 66, 23
"Gus", "WA", 11, 56, 82, 7
"Jack2", "WA", 11, 56, 82, 7
"Jane2", "CA", 11, 43, 17, 32
"Mary2", "CA", 11, 43, 45, 32
"Gus2", "OR", 12, 76, 8, 4
"Zack", "WA", 9, 54, 53, 23
"Dave", "CA", 12, 56, 65, 26
"Dawn", "OR", 11, 54, 76, 15

This data represents the Age, Weight, Score and Rank of 11 children. We would
like to use ggobi to perform and visualize the data. By running ggobi we can
load this CSV file and immediately visualize the scatter-plot. Algorithms such as
clustering, brush, XY-plot are all included. See Figure 19.25 for an illustration. The
axes to be used for the X and Y in the scatter-plot can be chosen using the control
panel as shown in Figure 19.25(a). The dimensional dependence (or independence)
of data can be visually inferred using the XY plots based on Region-Score, and
Region-Weight (as shown in Figure 19.25(a).

Dynamic display (animated) of the data as the value of the variables in each di-
mension changes can also highlight a principal axis, or dependence in the data. Us-
ing the 2D-Tour facility of ggobi we can analyze this as shown in Figure 19.25(b).

19.17 ParaView and VTK

ParaView is an open-source multi-platform data analysis and visualization software.
ParaView was developed to analyze and render extremely large datasets using dis-
tributed memory computing resources, and is thus often run on supercomputing
clusters to analyze datasets of terascale magnitude. The main window when Par-
aView is run is shown in Figure 19.17.

The important features of ParaView are:

1. Support for terascale data:
2. Support for structured data: in scientific visualization and analysis, structured

data refers to data present and collected on (i) uniform rectilinear grid, (ii) non-
uniform rectilinear, and (iii) curvilinear grid,

3. Consistency: processing operations such as filters, themselves produce datasets,
allowing for chaining of operations,

4. Contour extraction: isosurfaces and contours can be extracted from the data,

450 19 Information Visualization

(a) ggobi Scatter Plot with Brush

(b) 2d Tour plot

Fig. 19.25 ggobi analyzing CSV data

5. Clipping: a sub-region can be clipped. The clip can be a plane (specified as a
threshold), or a volume-of-interest (for structured data only),

6. Python integration:

ParaView is implemented using the Qt framework (see Section 19.1.3), and is thus
eminently portable. It utilizes MPI (see Section 12.3) and can run on distributed
computing platforms and analyze large terascale datasets. It is implemented as a
client-server software. Using the Visualization Tool Kit (VTK) it implements a
level-of-detail(LOD) model to maintain high framerate when displaying large mod-
els. We can construct a 3d object in ParaView, by adding geometrical primitives
from the “Sources” menu. An object has been constructed comprising of a cylinder,
sphere and a box, as shown in Figure 19.26(a). Objects can be sliced with a cutting
plane as shown in Figure 19.26(b).

19.17 ParaView and VTK 451

(a) Paraview screen

(b) 3d object

(c) Plane clip

Fig. 19.26 ParaView showing 3d object

452 19 Information Visualization

19.18 OpenDX

OpenDX (for Open Data Explorer) is a scientific data visualization software written
by IBM, but is now available as open-source under IBM Public License. OpenDX
can be used not only to visualize data, but also to create user-interaction based ap-
plications. OpenDX is implemented using the Motif widget library on X-Windows.
Its GUI is oriented around user-interactions; user can interact with the current data
display using a number of interactors. These interactors can be direct (such as ro-
tation of current view), or indirect (such as applying a filter). Complex interaction
sequences and program control can be built up which allow a sophisticated user to
use the visual data effectively.

OpenDX has a number of unique features:

• Data prompter: user interface for describing data to be brought into OpenDX,
• Data model: data fields, geometric objects, and rules describing data,
• Data browser: user interface for viewing data file,
• Scripting language:
• Visual program editor: GUI for creating and editing networks (visual programs),
• Modules: blocks which constitute visual program network. Each module per-

forms some action,
• Module builder,
• Control panel,
• Main window: rendering window.

(a) OpenDX control pane (b) Data from MRI

Fig. 19.27 OpenDX scientific visualization software

As we mentioned above the visual program or network concept of OpenDX sets
it apart from other data visualization software we have discussed. Using networks,
the user can visualize both observed and simulated data. Modules, many of which
implement core transformations and filters, are shipped as part of OpenDX and can
be used by the user to create a network quickly. Moreover, the visual program editor
can be used to create visual programs even more easily.

19.18 OpenDX 453

19.18.0.1 Data import in OpenDX

OpenDX can import user data in a variety of ways:

1. General Array Importer,
2. NetCDF, CDF, HDF file import,
3. OpenDX ImportSpreadsheet,
4. OpenDX Import module,
5. ReadImage to import TIFF,
6. Read OpenDX native format,
7. Use gis2dx.

19.18.0.2 General OpenDX Flow

The steps to visualize data with OpenDX can be broken into the following steps:

1. Collect data,
2. Import data,
3. Define visual form and concept,
4. Define user interaction,
5. Prepare output.

We conclude this section on OpenDX by presenting a small example of analyzing
2d data. Assume that we are given a series of position-dependent 2d data and we
would like to develop an interactive environment to analyze and visualize it. The
size of the data is moderate, say, 100x100, but could be very large also. We can use
OpenDX to quickly put together a visual program which will perform the interactive
visualization. The data is in a TEXT file with 100x100 floating point values. We
write a data importer using the visual Data Import tool as:

file = rainfall.txt
grid = 100 x 100
format = ascii
interleaving = record
majority = row
field = rainfall
structure = scalar
type = float
dependency = positions
positions = regular, regular, 0, 1, 0, 1
end

This is the “rain.general” data importer. Next we create a visual program using
the VPE (visual program editor) as shown in Figure 19.28(a). The data flows from
the Import module, to the AutoColor, to the Collector (which combines the Isosur-
face pixels), to form the final image (as shown in Figure 19.28(b)).

454 19 Information Visualization

(a) Visual program (b) Image rendering

Fig. 19.28 Visual program in OpenDX to analyze 2d data

As can be seen in Figure 19.28(a) the controls of the Isosurface module are con-
trolled using input controls which the end-user can control. The rendered image can
also be rotated, zoomed, and saved in a disk file.

19.19 Conclusion

In this chapter we have discussed information visualization. This is an important
part of any software system, since an image can transmit and convey large amount
of information. In some domains (such as robotics), and computational geometry,
visualization can lead to insights in problems, which otherwise would be difficult.

While it is true that most high-performance computing environments have excel-
lent batch processing capabilities, more and more users are demanding a graphical
user interface (GUI) front-end (atleast to ease in the transition to new features or
tools). In this chapter we have discussed the GTK, Qt, Fox toolkit and wxWidgets.
Any discussion about visualization would be incomplete without OpenGL, and we
discussed OpenGL utility libraries such as GLUT and GLUI.

There are a number of pre-built applications such as ParaView, OpenDX, Ge-
omview which cater to data visualization and rendering. While analysis packages
such as HippoDraw and GGobi perform statistical analysis. Visualization has two
components, information assimilation and information creation. Tool to create static
and animated images from data were also presented in this chapter, including XFig,
gnuplot, Inkscape, and Graphviz dot.

Appendix A
Websites of Open-Source Applications

In this chapter we describe the websites of many of the open-source tools we have
presented in this book. The website often contains links to download and install
the software. As I stated in the Preface, the fact that the software considered for
inclusion in this book has to be Open Source does not imply that it is free to use,
especially in a commercial product. While the code is available to look at and learn,
I would advise the reader to contact the author of the software, and read the license
carefully to determine the responsibility the user has prior to including the software
library, or using the software system.

Table A.1 Open-source software websites

Name Website
ACL2 (theorem prover) www.cs.utexas.edu/users/moore/acl2/
ASA (adaptive simulated annealing) www.ingber.com/
ATLAS (automatically tuned linear algebra) math-atlas.sourceforge.net/
Alliance (VLSI CAD) www-asim.lip6.fr/recherche/alliance/
Anti-grain geometry (graphics rendering) www.antigrain.com/
Antlr (parser generator) www.antlr.org
Apache Portable Runtime (APR) apr.apache.org
Apache Webserver www.apache.org
Asymptote (graphics drawing) asymptote.sourceforge.net/
Audacity (sound processing) audacity.sourceforge.net
Axiom (math software) www.open-axiom.org
BLAS (linear algebra) www.netlib.org/blas/
BRL-CAD (3d CAD) www.brlcad.org
BZIP2 Compression www.bzip.org
Blender (solid modeling) www.blender.org

475

476 A Websites of Open-Source Applications

Table A.2 Open-source software websites

Name Website
Boost C++ Library www.boost.org
Bugzilla (defect tracking) www.bugzilla.org
CGAL (computational geometry) www.cgal.org
CImg (image processing) cimg.sourceforge.net
CLIPS (expert system) clipsrules.sourceforge.net/
CMake (dependency tool) www.cmake.org
CTags ctags.sourceforge.net
CVS Version Control www.nongnu.org/cvs
Cairo Graphics Library cairographics.org
CoCoA (commutative algebra) cocoa.dima.unige.it/
Comp. Infra. for OR (COIN-OR) www.coin-or.org
CouchDB Database couchdb.apache.org
Doxygen (documentation generator) www.doxygen.org
Eclipse (editor and IDE) www.eclipse.org
Emacs (editor) www.gnu.org/software/emacs/
Erlang Programming Language www.erlang.org
Expat (XML processing) expat.sourceforge.net
FFTW (FFT library) www.fftw.org
FWTools (GIS tools) fwtools.maptools.org/
Fast Artificial Neural Networks (FANN) eenissen.dk/
Folding At Home (protein folding) folding.stanford.edu
Fox Toolkit (GUI library) www.fox-toolkit.org
FreeType (font rendering) www.freetype.org
GAUL (genetic algorithm) gaul.sourceforge.net/
GDAL www.gdal.org
GGobi (multi-dimensional viewing) www.ggobi.org
GLUI (OpenGL UI) www.cs.unc.edu/ rademach/glui/
GLUT (OpenGL) www.opengl.org/resources/libraries/glut/
GNU Autoconf (build tool) www.gnu.org/software/autoconf/
GNU Automake (build tool) www.gnu.org/software/automake/
GNU Binutils www.gnu.org/software/binutils
GNU Bison (parser generator) www.gnu.org/software/bison/
GNU Compiler Collection (GCC) gcc.gnu.org
GNU Image Manipulation Program (GIMP) www.gimp.org
GNU Libtool (build tool) www.gnu.org/software/libtool/
GNU Linear Programming (GLPK) www.gnu.org/software/glpk/
GNU Make (dependency tool) www.gnu.org/software/make/
GNU Octave www.gnu.org/software/octave/
GNU PSPP (statistical) www.gnu.org/software/pspp
GNU Scientific Library (GSL) www.gnu.org/software/gsl/
GNU debugger (gdb) www.gnu.org/software/gdb
GNU flex (lexical analysis) www.gnu.org/software/flex/
GNU multi-precision library (GMP) www.gmplib.org
GNUPlot (plotting software) www.gnuplot.info

A Websites of Open-Source Applications 477

Table A.3 Open-source software websites

Name Website
GNUs Not UNIX (GNU) www.gnu.org
GRASS (GIS) www.grass.itc.it/
GROMACS www.gromacs.org
GTK (GUI library) www.gtk.org
GTKWave (waveform viewer) gtkwave.sourceforge.net/
GeomView (visualization) www.geomview.org
Go Programming Language golang.org
Grace/Xmgr (plotting) plasma-gate.weizmann.ac.il/Grace/
GraphicsMagick Image Processing www.graphicsmagick.org
Graphviz (graph layout) www.graphviz.org/
HDF5 (high-performance data format) www.hdfgroup.org/HDF5/
Hadoop (distributed computing framework) hadoop.apache.org
Icarus (verilog simulator) www.icarus.com/eda/verilog/
Inkscape (vector drawing) www.inkscape.org
Insight (debugger) sourceware.org/insight/
JMol (molecule viewer) jmol.sourceforge.net/
KDevelop (IDE) www.kdevelop.org
LAPACK (linear algebra) www.netlib.org/lapack/
LIBSVM (machine learning) www.csie.ntu.edu.tw/ cjlin/libsvm/
LLVM (low level virtual machine) www.llvm.org
LZMA (compression) www.7-zip.org/sdk.html
LibGD (graphics drawing) www.libgd.org
Linux Kernel www.kernel.org
Lout (document typesetting) www.qtrac.eu/lout.html
Lua (programming language) www.lua.org
MPFR (multi-precision floating library) www.mpfr.org
Macaulay2 (commutative algebra) www.math.uiuc.edu/Macaulay2/
Magiv (VLSI layout editor) opencircuitdesign.com/magic
MapServer mapserver.gis.umn.edu/
Maxima (computer algebra) maxima.sourceforge.net/
Memcached Library www.memcached.org
Message Passing Interface (MPI) www.mcs.anl.gov/mpi/
NAMD (molecular dynamics) www.ks.uiuc.edu/Research/namd/
NTL (number theory library) www.shoup.net/ntl/
NVIDIA CUDA www.nvidia.com/object/cuda home.html
Nauty (graph isomorphism) cs.anu.edu.au/ bdm/nauty/
NgSPICE (circuit simulator) ngspice.sourceforge.net/
OGDI ogdi.sourceforge.net/
OGRE (3d graphics) www.ogre3d.org
OpenCL (parallel programming) www.khronos.org/opencl/
OpenCV (computer vision) opencv.willowgarage.com

478 A Websites of Open-Source Applications

Table A.4 Open-source software websites

Name Website
OpenDX (data visualization) www.opendx.org
OpenEV (map viewer) OpenEV: openev.sf.net/
OpenFOAM (CFD tool) www.openfoam.com
OpenGL (3d graphics) www.opengl.org
OpenMP www.openmp.org
OpenOffice suite www.openoffice.org
OpenSSL www.openssl.org
PARI/GP (group theory software) pari.math.u-bordeaux.fr/
POVRay (ray tracer) www.povray.org
PROJ4 www.remotesensing.org/proj
ParaView (high-performance 3d viewer) www.paraview.org
Perftools http://code.google.com/p/google-perftools/
Polymake (polytope) www.opt.tu-darmstadt.de/polymake/
PostgreSQL database www.postgresql.org
PyCUDA mathema.tician.de/software/pycuda
QCAD (2d CAD drawing) www.qcad.org
QUCS (simulator) qucs.sourceforge.net/
Qt (GUI and application development) qt.nokia.com
Quantum GIS www.qgis.org
R (statistical software) www.r-project.org
REDUCE (algebra) reduce-algebra.sourceforge.net/
SAGE (math software) www.sagemath.org
SCons (dependency tool) www.scons.org
SGML (markup language) www.w3.org/MarkUp/SGML/
SOX (sound processing) sox.sourceforge.net
SQLite database www.sqlite.org
SWIG (wrapper generator) www.swig.org
Scala (programming language) www.scala-lang.org
Scheme (programming language) www.schemers.org
Scientific Python (SciPy) numpy.scipy.org
Scribus (desktop publishing) www.scribus.net
Singular (computer algebra) www.singular.uni-kl.de/
SourceNavigator sourcenav.sourceforge.net/
Subversion Version Control subversion.tigris.org

A Websites of Open-Source Applications 479

Table A.5 Open-source software websites

Name Website
Tcl/Tk (programming language) www.tcl.tk
TeXMacs (math editor) www.texmacs.org
Thread Building Block (TBB) www.threadingbuildingblocks.org/
Tinderbox www.mozilla.org/projects/tinderbox/
TkCVS kcvs.sourceforge.net/
VNC (remote computing) www.realvnc.com
Valgrind (profiler) www.valgrind.org
WxWidget (GUI library) www.wxwidgets.org
X Window System www.x.org
X10 (programming language) x10.codehaus.org
XCircuit opencircuitdesign.com/xcircuit/
XFig (vector drawing) www.xfig.org
ZLIB Compression www.zlib.org
LATEX(document typesetting) www.latex-project.org
TEX(document typesetting) www.tug.org

Index

ABC synthesis tool, 324
ACL2, 398
Ada, 58
addr2line, 256
agg, 452
Alliance, 332
ANTLR, 271
antlr, 271
Apache, 464
Apache Portable Runtime, 113
apr, 113
ar, 258
arrays, 362
artificial neural networks, 406
asa, 404
asymptote, 449
ATLAS, 353
attributes

pthread, 214
attributes in GCC, 52
audacity, 308
autoconf, 66
automake, 66
automatic theorem proving, 398
AXIOM, 375

Bash shell, 11
Berkeley DB, 181
BFD, 268
bgl, 135
binutils, 256
bison, 250
BLAS, 352
Blender, 316
Boost, 127
Boost graph library, 135
Boost SPIRIT, 253

BRLCAD, 313
bugzilla, 75
bzip2, 162

C library, 105
C++, 19
c++filt, 258
CAIRO, 201
cell placement, 324
CGAL, 390
clang, 283
CLIPS, 396
cloud computing, 466
cmake, 74
code-generation, 256
COIN-OR, 357
Common Lisp, 26
compiler optimization passes, 282
compression, 155
computational geometry, 390
couchdb, 477
cpp, preprocessor, 49
ctags, 81
CUDA, 232
cvs, 59

data-path design, 319
db, 181
detailed routing, 325
DOT language, 442
doxygen, 90
dragonegg, 277

Eclipse, 78
elfutils, 264
emacs, 77
Erlang, 27

481

482 Index

expat, 179

FANN API, 409
FFT, 356
find, 12
flex, 243
floorplanning, 324
Home, 307
Fourier transform, 356
FOX toolkit, 424
FPGA design, 319
freetype, 451
full-custom design, 319

ganglia, 468
garbage collection, 151
gate-level netlist, 321
GAUL, 401
gc, 151
GCC inline assembly, 53
gcj, 57
gcov, 82
gd, 448
GDAL, 299
gdb, 87
geomview, 452
getopt, 249
ggobi, 454
gimp, 300
git, 64
glade, 420
glfw, 435
global routing, 325
GLPK, 357
GLUI, 436
GLUT, 435
GMP, 355
GNU coreutils, 10
GNU glibc, 105
GNU lightning RISC, 269
GNU/Linux, 5
gnuplot, 442
GOLD, 266
gold, 266
Google perftools, 145
GP, 374
gperf, 245
GPL cver, 330
gprof, 96, 259
Grace, 443
graph isomorphism, 374
Graphicsmagick, 209
Graphviz dot, 441
GRASS, 309

grep, 12
Gromacs, 306
group theory, 374
gschem, 326
GSL, 354
gtk, 419
GTKWave, 331
guile, 27
gzip, 156, 160

HDF, 191
HDF5, 191
HippoDraw, 454

icarus verilog, 327
Inkscape, 445
insight debugger, 89
intrinsics, 56

Joomla, 465
JPEG, 206

kdevelop, 79
keys

pthread, 214

LAMP, 464
LAPACK, 353
LaTeX, 37
libelf, 264
libpng, 205
library binding, 321
libSVM, 409
libtool, 69
libunwind, 256
libxml, 180
lightning, 269
linear programming, 357
Linux, 5
LLVM, 273
llvm, 273
LLVM core, 273
LLVM IR, 273
llvm-bcanalyzer, 283
llvm-llc, 281
llvm-lli, 280
llvm-system, 280
logic synthesis, 321
Lout, 38
Lua, 33
LyX, 39
LZMA2, 163

m4, 248

Index 483

make, 69
mask manufacture, 325
Matlab, 362
Matplotlib, 23
Maxima, 362
MD5 checksum, 174
memcached, 185
memory-array design, 319
mged, 313
molecular dynamics, 305
MPFR, 356
MPI, 228
multi-precision, 355
MySQL, 472

nagios, 468
NAMD, 306
Nauty, 374
ngspice, 347
nm, 259
NTL, 354
number theory, 354
NumPY, 22
NumPy, 23

objcopy, 260
objdump, 260
Octave, 362
ogre3d, 440
OpenCL, 239
OpenDX, 459
OpenFOAM, 302
OpenGL, 433
OpenMP, 218
OpenMP in GCC, 50
OpenOffice.org, 35
OpenSSH, 18
OpenSSL, 177
OSI, Open Solver Interface, 358

ParaView, 455
PARI, 374
Perl, 25
PHP, 464
physical design flow, 324
PLA design, 319
polymake, 383
polynomials, 362, 379
POSIX thread API, 214
Postgres, 468
PovRay, 446
preface, v
PSPP, 369

pthread API, 216
pthread programming model, 214
pthread attr destroy, 215
pthread attr init, 215
pthread create, 214
pthread once, 215
pthreads, 214
PyCUDA, 24, 237
PyQt, 426
Python, 22

qcad, 311
qmake, 74
Qt, 420
qucs, 345

R, 365
ranlib, 261
RasMol, 306
ray tracing, 446
readelf, 262
readline, 249
Reduce, 377
regular expression, 13
RPC, 165
rsync, 12
Ruby, 465

SAGE, 392
Scala, 30
schematic capture, 325
Scheme, 27
scientific software, 289
SciPy, 23
scons, 71
SCons node objects, 72
SConstruct, 72
scribus, 41
sgml, 38
SHA1 checksum, 175
signals, 9
simulated annealing, 404
Singular, 379
size, 263
slocate, 12
Smalltalk, 29
snavigator, 92
source code control, 59
sox, 308
SPIRIT, 253
SQL, 468
SQLite, 475
ssh, 12
statistics, 365

Magic (VLSI), 346

484 Index

strings, 263
strip, 264
support vector machines, 409
SVM, 409
svn, 62
SWIG, 186
symbolic integration, 362
symbolic math, 362
system calls, 7

TBB, 231
Tcl/Tk, 25, 426
TeX, 37
texinfo, 39
TeXMacs, 392
Texmaker, 40
thread cancellation, 214
thread pools, 117
thread scheduling, 214
thread specific data

pthread, 215
tinderbox, 64
tkcvs, 64

virtualization, 466
VLSI CAD, 319
vnc, 34

wget, 12
WxWidgets, 424

X10, 32
xcircuit, 325
XDR, 169
xfig, 444

yacc, 250

zlib, 156

	Cover
	Handbook of Open Source Tools
	ISBN 9781441977182
	Preface
	Contents
	List of Tables
	List of Figures
	Listings

	Part I
Fundamentals
	Chapter 1 GNU/Linux Operating System
	1.1 Basic GNU/Linux Usage
	1.1.1 System Calls
	1.1.1.1 Usage Limits
	1.1.1.2 Signals

	1.1.2 GNU/Linux introspection
	1.1.3 GNU coreutils

	1.2 Bash shell
	1.2.1 Bash shell scripting

	1.3 External commands and programs in GNU/Linux
	1.3.1 GNU regular expression syntax

	1.4 Next steps
	1.5 OpenSSH: OpenBSD Secure Shell
	1.5.0.1 The ssh client

	1.6 Programming Languages
	1.6.1 C and C++
	1.6.2 GNU FORTRAN
	1.6.3 Ada
	1.6.4 Java
	1.6.5 Python
	1.6.5.1 NumPY
	1.6.5.2 PyCUDA
	1.6.5.3 PuLP

	1.6.6 Tcl/Tk
	1.6.7 Perl
	1.6.8 Common Lisp
	1.6.9 Scheme
	1.6.10 Erlang
	1.6.11 Smalltalk
	1.6.12 Scala
	1.6.13 Google’s GO Programming Language
	1.6.14 X10 Language
	1.6.15 Lua

	1.7 Miscellaneous Topics
	1.7.1 VNC : Virtual Network Computing

	1.8 Conclusion

	Chapter 2 Text processing
	2.1 OpenOffice.org Suite
	2.2 TeX and LaTeX
	2.2.1 Lout Typesetting System
	2.2.2 SGML Processing
	2.2.3 Texinfo : GNU Documentation System
	2.2.4 LyX Frontend
	2.2.5 Texmaker LaTeX Editor
	2.2.6 PostScript and PDF Support

	2.3 Scribus
	2.3.1 Citation management

	2.4 Document classification software
	2.4.1 GNU locate

	2.5 Wiki
	2.6 Conclusion

	Part II
Software Engineering and Libraries
	Chapter 3 Software Engineering
	3.1 GCC : GNU Compiler Collection
	3.1.1 GCC Command-line Options
	3.1.2 GCC Preprocessor
	3.1.2.1 GCC Pragmas
	3.1.2.2 Predefined Macros

	3.1.3 GCC Support of OpenMP
	3.1.4 GCC Advice Mode
	3.1.5 GCC Attributes
	3.1.6 GCC : Inline Assembly
	3.1.6.1 cpuid instruction

	3.1.7 GCC Intrinsics
	3.1.7.1 X86 builtin functions: intrinsics

	3.1.8 Compiling Java using GCC
	3.1.9 Compiling Ada using GCC
	3.1.10 Conclusion

	3.2 Source Code Configuration Systems
	3.2.1 Introduction to Version Control Systems
	3.2.2 CVS
	3.2.3 SVN
	3.2.4 GIT
	3.2.5 TkCVS
	3.2.6 Tinderbox

	3.3 GNU Build System
	3.3.1 Autoconf
	3.3.2 Automake
	3.3.3 Libtool

	3.4 Automatic Build Dependency Management
	3.4.1 GNU make : automatic build dependency
	3.4.2 SCONS : A software construction tool
	3.4.2.1 The SConstruct file

	3.4.3 CMAKE and QMake
	3.4.3.1 CMake
	3.4.3.2 QMake

	3.5 Bugzilla : Defect Tracking System
	3.6 Editing Source Code
	3.6.1 Emacs
	3.6.2 Eclipse
	3.6.3 KDevelop

	3.7 Static Checks on Source Code
	3.7.1 ctags

	3.8 GNU gcov: Test Coverage Program
	3.8.1 Compiling programs for gcov
	3.8.2 Running gcov

	3.9 Debug Tools
	3.9.1 GDB
	3.9.2 Insight

	3.10 Doxygen
	3.10.1 Using Doxygen
	3.10.1.1 Writing .doxy files
	3.10.1.2 Generating output
	3.10.1.3 Doxygen markup in source code

	3.11 Source Navigation
	3.12 Profilers
	3.12.1 GNU profiler : gprof
	3.12.1.1 gprof - display call graph profile data

	3.12.2 Valgrind
	3.12.2.1 Cachegrind, a cache and branch-prediction profiler
	3.12.2.2 Callgrind, a call-graph generating cache profiler
	3.12.2.3 Memcheck, memory error detector
	3.12.2.4 Helgrind, a thread error detector

	3.13 Conclusions

	Chapter 4 Standard Libraries
	4.1 GNU C Library
	4.2 C++ Library
	4.3 Conclusion

	Chapter 5 Apache Portable Runtime (apr)
	5.1 APR Memory Pool
	5.2 APR Processes
	5.3 APR Threads
	5.4 APR Thread Pool
	5.5 File information, IO, and Memory mapped files
	5.6 Hash tables
	5.7 Using Memcache with APR
	5.8 Shared memory with APR
	5.9 Conclusion

	Chapter 6 Boost C++ Libraries
	6.1 Boost smart pointer and memory pool
	6.2 Boost asio framework
	6.2.1 Boost IOStreams framework

	6.3 Boost data structures
	6.3.0.1 Dynamic bitset
	6.3.0.2 Bimap: bidirectional map
	6.3.0.3 Array: STL compliant container for fixed size array

	6.4 Boost Graph Library
	6.5 Boost Spirit Framework
	6.6 Boost multi-threading
	6.7 Boost Python integration
	6.8 Boost Generic Image Processing Library (GIL)
	6.9 Conclusion

	Chapter 7 Performance Libraries
	7.1 Google perftools
	7.1.1 perftools : tcmalloc
	7.1.1.1 Implementation

	7.1.2 perftools : heap checker
	7.1.3 perftools : heap profiler
	7.1.4 perftools : cpu profiler

	7.2 Boehm GC : garbage collection
	7.3 Using Boehm GC
	7.4 Conclusion

	Chapter 8 Compression Engines
	8.1 ZLIB Compression Library
	8.1.1 Compression ratio
	8.1.2 gzip file access functions
	8.1.3 Integration of zlib and gzip in Python

	8.2 LIBBZ2 and BZIP2
	8.2.1 Integration of bzip2 in Python

	8.3 LZMA and XZ Utils
	8.3.1 XZ Utils

	8.4 Conclusion

	Chapter 9 Application Development Libraries
	9.1 RPC (remote procedure call) library
	9.1.1 XDR : External Data Representation Library

	9.2 Checksum computation
	9.2.1 MD5
	9.2.2 SHA1 checksum

	9.3 OpenSSL
	9.4 XML Processing
	9.4.1 Expat : XML processing
	9.4.2 libXML : XML processing library

	9.5 Berkeley DB
	9.5.1 DB open function
	9.5.2 Other Berkeley DB functions

	9.6 Memcached Library
	9.7 SWIG interface generator
	9.8 Conclusion

	Chapter 10 Hierarchical Data Format 5 : HDF5
	10.1 HDF5 files
	10.1.1 HDF5 API Naming Conventions

	10.2 Example of HDF5 API
	10.2.1 Writing and Reading compound datatype in HDF5
	10.2.2 HDF5 Attributes
	10.2.3 References to objects
	10.2.4 Conclusion

	Chapter 11 Graphics and Image Processing Libraries
	11.1 Cairo: A Vector Drawing Library
	11.2 Graphics File Formats
	11.2.1 libPNG: library for Portable Network Graphics
	11.2.1.1 Format of a PNG file
	11.2.1.2 JPEG file format

	11.2.2 Scalable Vector Graphics (SVG)
	11.2.3 GraphicsMagick and ImageMagick

	11.3 Conclusion

	Part III
Parallel and System Programming
	Chapter 12 Parallel Programming
	12.1 POSIX Thread Library (pthreads)
	12.1.1 Understanding pthread programming model
	12.1.2 Pthreads Keys: using thread specific data
	12.1.3 Pthreads Summary

	12.2 OpenMP: Open specification for Multi-processing
	12.2.0.1 OpenMP directives
	12.2.0.2 Parallel region construct
	12.2.0.3 Task parallelism in OpenMP ver 3.0

	12.3 MPI: Message Passing Interface
	12.3.0.4 MPI Environment functions
	12.3.0.5 C/C++ Library API
	12.3.0.6 Run-time library
	12.3.0.7 Configuration file
	12.3.1 Using Boost.MPI

	12.4 Other libraries and tools
	12.4.1 Thread Building Blocks
	12.4.2 CUDA : C Unified Device Architecture
	12.4.3 SIMT in CUDA
	12.4.4 Compute Kernels in CUDA
	12.4.5 Compiling CUDA code with NVCC
	12.4.5.1 PyCUDA

	12.4.6 OpenCL (Open Compute Language)

	12.5 Conclusion

	Chapter 13 Compiler Construction
	13.1 Introduction
	13.2 Anatomy of a Compiler
	13.3 Lexical Analysis
	13.3.1 GNU flex
	13.3.1.1 Format of the input file
	13.3.1.2 GNU gperf: the perfect hash generator

	13.3.2 GNU m4
	13.3.3 GNU readline
	13.3.4 getopt

	13.4 YACC: Yet Another Compiler Compiler
	13.4.1 Boost SPIRIT Framework

	13.5 Code Generation
	13.5.1 GNU Binutils
	13.5.1.1 GNU Binutils : addr2line and libunwind
	13.5.1.2 GNU Binutils ar : archive manager
	13.5.1.3 GNU Binutils c++filt : Name de-mangler for C++
	13.5.1.4 GNU Binutils gprof
	13.5.1.5 GNU Binutils nm
	13.5.1.6 GNU Binutils objcopy
	13.5.1.7 GNU Binutils objdump
	13.5.1.8 GNU Binutils ranlib
	13.5.1.9 GNU Binutils readelf
	13.5.1.10 GNU Binutils size
	13.5.1.11 GNU Binutils strings
	13.5.1.12 GNU Binutils strip

	13.5.2 GNU Binutils libelf and elfutils
	13.5.3 GNU Binutils ld
	13.5.3.1 Linker script and map files
	13.5.3.2 Linker map cross reference table

	13.5.4 BFD: Binary File Descriptor Library
	13.5.5 GNU lightning
	13.5.5.1 GNU lightning instruction set
	13.5.5.2 Instructions in GNU lightning

	13.5.6 ANTLR

	13.6 LLVM: Low Level Virtual Machine
	13.6.1 LLVM Core and LLVM IR
	13.6.1.1 LLVM Intermediate Representation
	13.6.1.2 LLVM Program High Level Structure
	13.6.1.3 LLVM Instruction Summary: Terminators
	13.6.1.4 LLVM Instruction Summary: Computation

	13.6.2 LLVM dragonegg
	13.6.3 LLVM System
	13.6.3.1 LLVM interpreter and dynamic compiler: lli
	13.6.3.2 LLVM System Compiler
	13.6.3.3 Statistics for fibo.bc
	13.6.3.4 Instruction scheduling
	13.6.3.5 Compiler optimization passes

	13.6.4 Using Clang

	13.7 Conclusion

	Part IV
Engineering and Mathematical Software
	Chapter 14 Scientific Software
	14.1 Computer Vision with OpenCV
	14.2 CImg: C Image Processing Toolkit
	14.3 Binary Decision Diagram (bdd): CUDD Library
	14.4 FWTools: Open Source GIS
	14.4.1 PROJ4
	14.4.1.1 proj: forward cartographic projection filter

	14.4.2 GDAL : Geospatial Data Abstraction Library and OGR

	14.5 GNU Image Manipulation Program
	14.6 Computational Fluid Dynamics using OpenFOAM
	14.6.0.1 Case and File Structure in OpenFOAM
	14.6.0.2 CFD Solvers in OpenFOAM
	14.6.0.3 Utilities in OpenFOAM

	14.7 Molecular Dynamics
	14.7.1 NAMD
	14.7.2 GROMACS
	14.7.3 Molecular Visualization
	14.7.3.1 JMol

	14.7.4 Foldng@Home

	14.8 Audacity
	14.8.1 Sound Exchange : sox

	14.9 Geographical Information Systems
	14.9.1 GRASS GIS
	14.9.2 Quantum GIS

	14.10 QCAD : 2d CAD Tools
	14.11 BRL-CAD
	14.11.0.1 Multi-Device Geometry Editor

	14.12 Blender
	14.13 Conclusion

	Chapter 15 VLSI CAD Tools
	15.1 Algorithmic Design and HDL Capture
	15.2 HDL Capture
	15.3 BLIF Format in a nutshell
	15.4 Schematic capture
	15.4.1 Xcircuit
	15.4.2 GNU gschem

	15.5 Verilog Processing
	15.5.1 Icarus Verilog Simulator
	15.5.2 Pragmatic GPL cver
	15.5.3 GTKWave: Waveform Viewer

	15.6 VHDL Processing
	15.7 Alliance CAD System
	15.7.1 Alliance CAD VHDL processing
	15.7.2 Alliance CAD tool asimut
	15.7.3 VHDL Logic Synthesis using Alliance CAD tool Boom
	15.7.4 Alliance CAD tool xsch schematic viewer
	15.7.5 Gate level processing in Alliance CAD
	15.7.6 Physical design with Alliance CAD
	15.7.7 Alliance CAD tool for standard-cell routing: nero
	15.7.8 QUCS : Universal Circuit Simulator

	15.8 Magic VLSI Editor
	15.9 NGSpice SPICE Engine
	15.9.1 Elementary devices in SPICE
	15.9.2 Performing TRANSIENT analysis
	15.9.3 Conclusion

	Chapter 16 Math libraries
	16.1 BLAS
	16.2 ATLAS
	16.3 LAPACK
	16.4 NTL
	16.5 GSL
	16.6 GMP
	16.7 MPFR
	16.8 FFTW
	16.9 GLPK
	16.10 COIN-OR: Comp. Infrastructure for OR
	16.10.1 Open Solver Interface

	16.11 Conclusion

	Chapter 17 Mathematics Software
	17.1 Maxima
	17.2 GNU Octave
	17.2.0.1 Index expressions

	17.3 R : A Programming Environment for Data Analysis and Graphics
	17.4 PSPP
	17.5 Pari
	17.6 Nauty
	17.7 Axiom
	17.8 Reduce
	17.9 Singular Computer Algebra System
	17.10 polymake: software to analyze Polytopes
	17.11 Other Math Systems
	17.11.1 Macaulay 2
	17.11.1.1 Algebraic Geometry with Macaulay2

	17.11.2 CoCoA

	17.12 CGAL (Computer Geometry Algorithms and Library)
	17.13 TeXMacs
	17.14 Sage
	17.15 Conclusion

	Chapter 18 Artificial Intelligence and Optimization
	18.1 Introduction to AI Problems
	18.2 CLIPS: C Language Integrated Production System
	18.3 ACL2: automatic theorem proving
	18.4 GAUL : Genetic Algorithms Utility Library
	18.5 Representing floor-plans by k – tuples
	18.5.1 Sequence-pair Notation

	18.6 ASA : Adaptive Simulated Annealing Library
	18.7 Artificial Neural Networks : FANN
	18.8 LIBSVM : Support Vector Machines
	18.8.1 SVM Tools

	18.9 Conclusion

	Part V Scientific Visualization
	Chapter 19 Information Visualization
	19.1 Graphical User Interfaces
	19.1.1 X Window System
	19.1.2 GIMP Toolkit: GTK
	19.1.2.1 Hello, World in GTK
	19.1.2.2 Using Glade: User Interface Designer

	19.1.3 Qt: Application development framework
	19.1.3.1 Qt 4 Module Architecture
	19.1.3.2 Qt Signals and Slots

	19.1.4 Qt’s application programming API
	19.1.4.1 Shared Memory
	19.1.4.2 Network programming using Qt API

	19.1.5 Other GUI Toolkits
	19.1.5.1 WxWidgets
	19.1.5.2 Java SWT
	19.1.5.3 FOX Toolkit
	19.1.5.4 GUI Development using Tcl/Tk
	19.1.5.5 GUI Development using PyQt

	19.2 OpenGL
	19.2.1 GLUT : OpenGL Utility Toolkit
	19.2.2 GLUI : GUI for OpenGL
	19.2.3 Using OpenGL from Python

	19.3 OGRE : OO Graphics Rendering Engine
	19.4 Graphviz: dot
	19.4.1 DOT Language

	19.5 gnuplot
	19.6 Grace/Xmgr
	19.7 Xfig
	19.8 Inkscape
	19.9 PovRay : Ray Tracing
	19.10 gd (graphics drawing)
	19.11 asymptote
	19.12 FreeType : Font Rendering
	19.13 Anti-grain geometry : AGG
	19.14 Geomview
	19.15 HippoDraw
	19.16 GGobi : multi-dimensional visualization
	19.17 ParaView and VTK
	19.18 OpenDX
	19.18.0.1 Data import in OpenDX
	19.18.0.2 General OpenDX Flow

	19.19 Conclusion

	Appendix A Websites of Open-Source Applications
	Index

