SISTEMAS OPERACIONAIS

Introdução a Processos

Andreza Leite andreza.leite@univasf.edu.br

Plano da Aula

- □ Introdução a Processos
- □ Threads vs Processos

Características dos Processos

Estados dos Processos

Processos/Multiprogramação

- □ Por que executar vários programas simultaneamente?
 - Permitir que vários usuários usem uma máquina simultaneamente
 - Melhorar a eficiência do sistema

Processo

■ Um programa em execução

- Em sistema operacional é conveniente diferenciar um programa de sua execução:
 - □ Programa entidade estática e permanente
 - composto por uma seqüência de instruções: passivo sob o ponto de vista do sistema operacional
 - Processo entidade dinâmica
 - altera seu estado a medida que avança sua execução;
 - o processo é uma abstração que representa um programa em execução;

- □ Um processo é composto por:
 - Programas
 - Dados
 - Contexto (valores)

- □ Analogia entre um Processo e um Cozinheiro
- Imagine um engenheiro com dotes culinários fazendo um bolo:
 - Receita = programa
 - Engenheiro cozinheiro = processador (CPU)
 - □ Ingredientes = dados de entrada.
 - Processo é a atividade desempenhada pelo cozinheiro em ler a receita, buscar os ingredientes e assar o bolo.

- Características/Propriedades de um processo
 - Um processo é uma abstração que representa um programa em execução
 - Um processo tem execução sequencial
 - O resultado da execução de um processo independe da velocidade do processador em que for executado
- O mesmo programa executado por dois usuários gera dois processos

Características/Propriedades de um processo

- □ Um programa pode gerar (criar) vários processos
- Um processo tem duas partes:
 - Ativa fluxo de controle
 - Passiva espaço de endereçamento (memória, registradores, arquivos)

Thread

- Denota um fluxo de controle (Processo leve)
- Por questão de eficiência, processos podem ter múltiplas threads que compartilham o espaço de endereçamento do processo

Escalonador

Programa que controla/decide que thread deve ser executada a cada instante

□ Ciclos de um processo

Criados

- Início do sistema
- Chamada de Sistema de criação de processo por um processo em execução
- Requisição do usuário para criar um novo processo
- Início de uma tarefa em lote (computadores de grande porte)

Destruídos

- Saída normal (voluntária)
- Saída por erro (voluntária)
- Erro fatal (involuntário)
- Cancelamento por outros processos (involuntária)

□ Ciclos básicos de operação

- Ciclo de processador
 - Tempo que ocupa a CPU
- Ciclo de Entrada/Saída
 - Tempo de espera de um evento E/S

□ A troca de ciclos ocorre por:

- \square Chamada de Sistema (CPU \rightarrow E/S)
- $lue{}$ Ocorrência de Evento Interrupção (E/S ightarrow CPU)
 - inserir um pendrive na USB, escrever um bloco em disco, receber um pacote pela rede...

- Processos CPU-bound
 - □ Ciclo de processador > Ciclo de E/S
- Processos I/O bound
 - □ Ciclo de E/S > Ciclo de processador

□ Relacionamentos:

- Processos Independentes
 - Não apresentam relacionamentos com outros processos
- □ Grupo de Processos
 - Apresentam algum tipo de relacionamento, por exemplo, hierarquia de processos com mesma filiação:
 - Processo criador é o processo pai
 - Processo criado é o processo filho
 - Representação através de uma árvore
 - Evolução dinâmica

□ Relacionamentos:

- Processos Independentes
 - Não apresentam relacionamentos com outros processos
- □ Grupo de Processos
 - Apresentam algum tipo de relacionamento, por exemplo, hierarquia de processos com mesma filiação:
 - O que fazer na destruição de um processo?
 - Toda descendência "morre"?
 - A descendência é herdada pelo processo "avô"?
 - Postergar a destruição efetiva do processo pai até o final de todos os filhos?

ESTADOS

- Após ser criado, um processo precisa entrar num ciclo de processador
- Possibilidades:
 - Processador não está disponível
 - Vários processos estão sendo criados
- O que fazer então?
 - Criar uma fila de processos prontos para executar

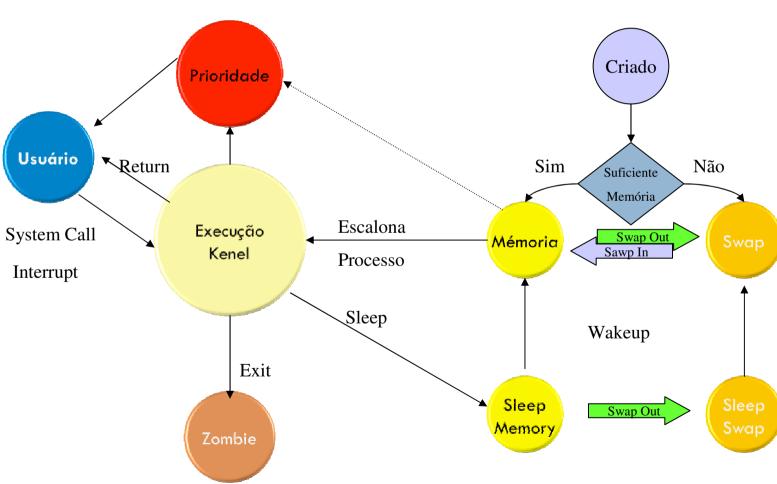
ESTADOS

- Diagrama de transição de estados de um processo
- Um escalonador, através do uso da fila de processos prontos (aptos para a execução) atribui a cada instante, o processador a um dos processos

Processos Chamada Sistema Execução Aplicação Sistema Usuário New peracional Fila de Processos Escalonador Executando Finalização Prazo Exec. **Pronto** Operações E/S Evento Bloqueado

ESTADOS

□ Finalização de processos


- Final normal da execução
- Excesso de tempo
- Falta de memória
- Violação de limites
- Erros de proteção

- Erros aritméticos
- Timeout de eventos
- Erro em periféricos de E/S
- Intervenção do SO
- Logoff de usuários

Escalonador

- Cada processo é representado por um PCB (Process Control Block) que contém:
 - Estado do processo
 - Rodando (Executando)
 - Pronto
 - Bloqueado
 - Número do processo
 - Contador de Programa
 - Registradores
 - Localização da pilha de execução
 - Prioridade de execução

Escalonador

□ Resumindo:

- Um processo é uma abstração de um programa em execução
- Funções do S.O.
 - Alocar recursos a processos
 - Suportar criação de processos pelo usuário
 - Suportar comunicação entre processos

É função do Escalonador de Processos:

Dividir tempo de CPU para diferentes processos de forma a maximizar a utilização da CPU, fornecendo um tempo de resposta razoável!

■ Resumindo:

- □ Criação de um processo:
 - O que é necessário?
 - construir estruturas de dados
 - alocar espaço de endereçamento
- Quando?
 - usuário inicia sessão;
 - quando gerado por outro processo
 - (e.g., servidor de web ,ftp);

□ Resumindo:

- Destruição de um processo:
 - Quando terminar?
 - execução de instrução de finalização;
 - condições de erro;
 - Algumas razões para o término:
 - tempo excedido;
 - falta de memória;
 - uso de instrução privilegiada;
 - término do processo pai; ...

□ Resumindo:

- Estados de um Processo
 - Pronto (Ready)
 - Quando um processo aguarda que o sistema operacional aloque a CPU para sua execução
 - **Espera (Wait)**
 - Quando um processo está aguardando algum evento externo para prosseguir com o processamento
 - Executando (Running)
 - Quando um processo está sendo processado pela CPU
 - Bloqueado
 - Esperando operações de entrada ou saida