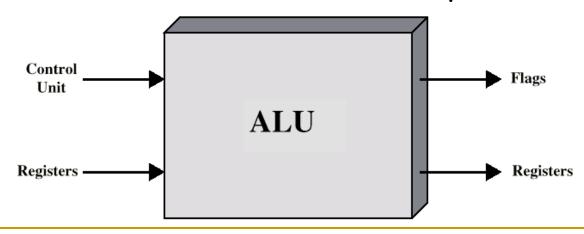
Aritmética Computacional

Sumário


- Introdução;
- Representação de Números Inteiros;
- Aritmética de Números Inteiros;
- Representação de Números de Ponto Flutuante;
- Aritmética de Números de Ponto Flutuante;
- Bibliografia.

Introdução

- A CPU consiste de uma unidade de controle, dos registradores, da unidade lógica e aritmética, da unidade de execução de instruções e das interconexões entre esse componentes;
- Vejamos como funciona a unidade lógica e aritmética para implementar as operações aritméticas;
- Geralmente, os processadores implementam dois tipos de aritmética: de números inteiros ou ponto fixo e de ponto flutuante;

Introdução

- A ULA é a parte do computador que de fato executa as operações aritméticas e lógicas sobre os dados. Em suma, a ULA constitui a essência de um computador;
- A figura abaixo mostra, em termos gerais, como a ULA é conectada com o restante do processador:

Introdução

Considerações:

- Os dados são fornecidos à ULA em registradores e os resultados de uma operação armazenados em registradores;
- A ULA pode ativar bits especiais (flags) para indicar o resultado de uma operação. Por exemplo, overflow.
- A unidade de controle fornece sinais para controlar a operação da ULA e a transferência de dados entre a ULA e os registradores;

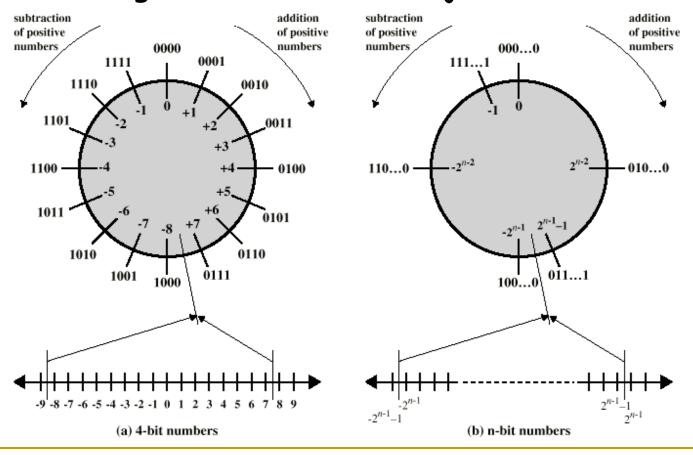
- Existe diversas formas para representar um número inteiro no computador. Uma delas é através do sinalmagnitude;
- Em uma palavra de n bits, os n-1 bits mais à direita representam a magnitude do número inteiro

$$+110_{10} = 01101110$$
 $-110_{10} = 11101110$
Sinal Magnitude

- As desvantagens apresentadas pela representação de sinal-magnitude são:
 - Duas representações para 0:

$$+0_{10} = 00000000$$

$$-0_{10} = 10000000$$


- Magnitude para operandos e operadores;
- Em conseqüência, o esquema mais utilizado é a representação em complemento de dois;

- Assim como a representação sinal-magnitude, a representação em complemento de dois usa o bit mais significativo como bit de sinal;
 - Porém, os demais bits são interpretados de maneira diferente;
- Considere um inteiro A de n bits. Se A for positivo, então o bit de sinal, n_{a-1} , será igual a zero.
 - O número zero é tratado como um número positivo;
 - □ Faixa de números inteiros: 0 a 2n-1 1

- Se A é um número negativo (A < 0), o bit de sinal, n_{a-1} , é 1.
- Vejamos a aplicação do complemento de 2 no inteiro positivo 4 (0100₂), por exemplo:

Inteiro original:	0100	(4 em decimal)
Complemento de 1:	1011	(Inversão dos bits)
	1011	
	+1	(Soma do bit 1 ao
Complemento de 2:	1100	complemento de 1)

A representação do complemento de dois pode ser visualizada geometricamente, vejamos:

Vejamos a representação vetorial do complemento de dois:

								_
-128	64	32	16	8	4	2	1	
1	0	0	0	0	0	1	1	
-128						+2	+1	- = -125
-128	64	32	16	8	4	2	1	7
1	0	0	0	1	0	0	0	
-128				+8				= -120

Embora a representação em complemento de dois possa parecer pouco natural, ela torna mais simples a implementação das operações aritméticas mais importantes (adição e subtração);

- Vejamos a conversão entre representação de um número inteiro com n bits para sua representação com m bits, onde m > n;
 - Notação sinal-magnitude:

```
+10 = 00001010 (8 bits) 0000000000001010 (16 bits)
```

```
-10 = 10001010 (8 bits) 100000000001010 (16 bits)
```

Notação complemento de dois:

```
+10 = 00001010 (8 bits) 0000000000001010 (16 bits)
```

-10 = 11110110 (8 bits) 1111111111110110 (16 bits)

- Vejamos a implementação das operações aritméticas mais comuns em números representados em complemento de dois:
 - Negação
 - Soma e Subtração
 - Multiplicação
 - □ Divisão

 Negação: Basta aplicar o complemento de 2 ao inteiro original;

Inteiro original: 11111100 (-4 em decimal)

Complemento de 1: 00000011 (Inversão dos bits)

11111011

- Casos especiais da negação:
 - Overflow:

Inteiro original:	0000000	(0 em decimal)
Complemento de 1:	11111111	(Inversão dos bits)
	11111111	
	<u>+1</u>	
Complemento de 2:	1 00000000	(carry-in igual a 1- valor final = 0)
Ignorado		

- Casos especiais da negação:
 - **□** -128:

Inteiro original: 10000000 (-128 em decimal)

Complemento de 1: 01111111 (Inversão dos bits)

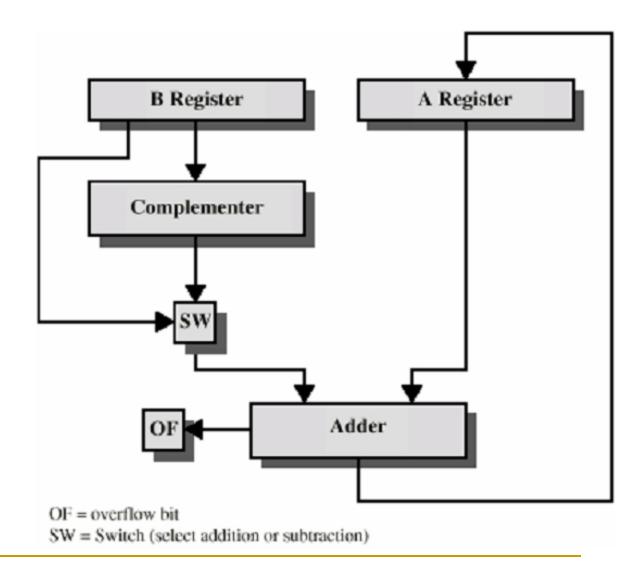
01111111

Complemento de 2:

10000000

(-128 em decimal)

Anomalia que não pode ser evitada.

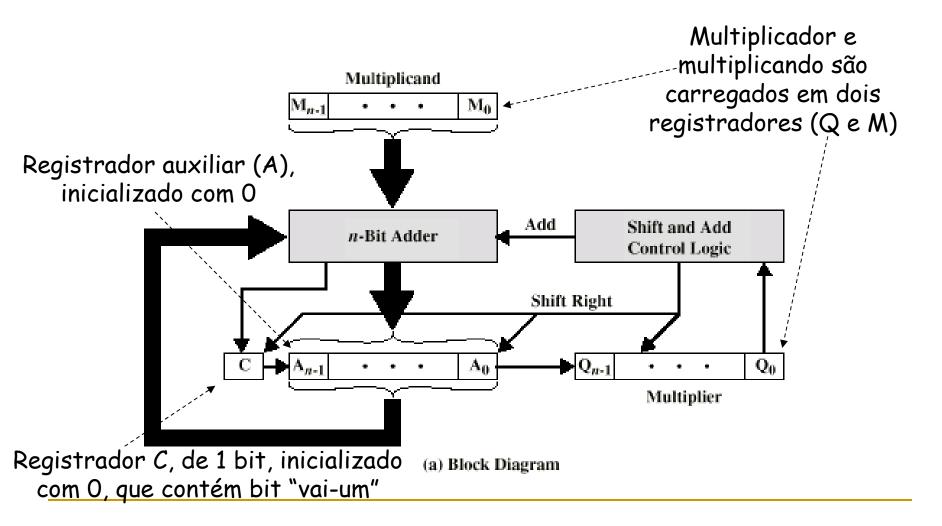

 Adição: Basta somar e quando ocorrer um "vai-um" para fora do bit mais significativo da palavra, que é ignorado.

 Overflow: Overflow sinalizado pela ULA para que o resultado não seja usado

 Subtração: para subtrair S - M, pegue o complemento de dois de M e acrescente esse valor a S (S + (-M)).

Overflow: Overflow sinalizado pela ULA para que o resultado não seja usado

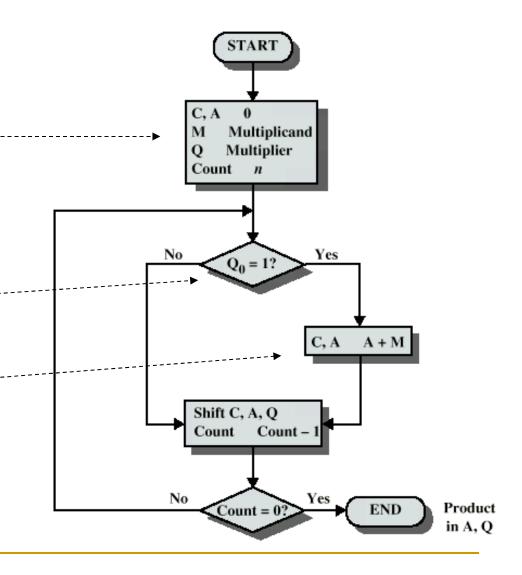
Vejamos os caminhos de dados e elementos de hardware necessários para efetuar a adição e a subtração:



Considerações:

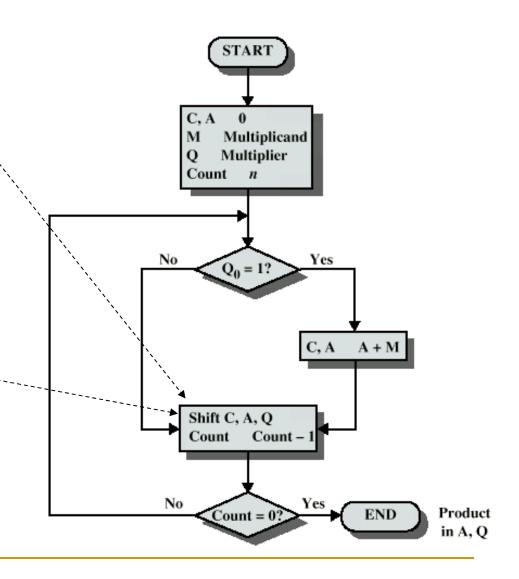
- Somador Binário (Meio-Somador): Elemento central que recebe dois números e produz a soma e uma indicação de overflow;
- Operandos: tratados como números inteiros sem sinal;
- Registradores: responsáveis por armazenar os operandos;
- Complemento de dois: usado para calcular o complemento de 2 sobre números negativos;

- Para a multiplicação, um grande número de algoritmos tem sido adotados em diversos computadores.
- Analisemos um problema mais simples de multiplicar, dois números inteiros sem sinal (não negativos);


- A multiplicação pode ser feita direta e simples, mas pode ser melhorada nos seguintes aspectos:
 - Armazenamento dos produtos parciais em um único registrador;
 - Na multiplicação pelo bit 1, é necessário, apenas realizar uma operação de soma e um deslocamento;
 - Na multiplicação pelo bit 0, é necessário, apenas o deslocamento.
- Vejamos uma solução que emprega a idéia acima.
 Multiplicação de números inteiros binários sem sinal;

A lógica de controle lê os bits do multiplicador, um de cada vez.

• Se Q_0 for 1:

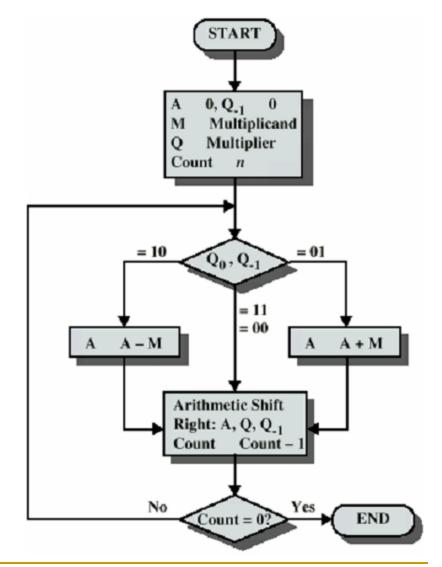

o multiplicador será adicionado ao registrador A e o resultado, armazenado nesse registrador;

Então, todos os bits dos registradores C, A e Q são deslocados um bit para a direita (A_{n-1} = C; Q_{n-1} = A₀ e Q₀ eliminado)

• Se Q_0 for 0:

 Nenhuma adição é efetuada, sendo feito apenas o deslocamento dos bits;

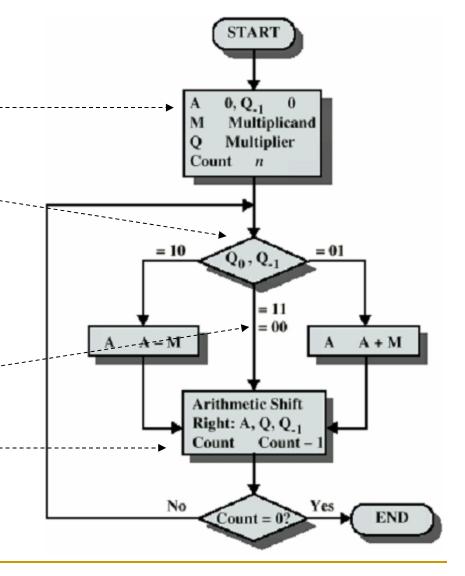
 Vejamos a aplicação da solução na multiplicação de 13 (Registrador Q) x 11 (Registrador M):

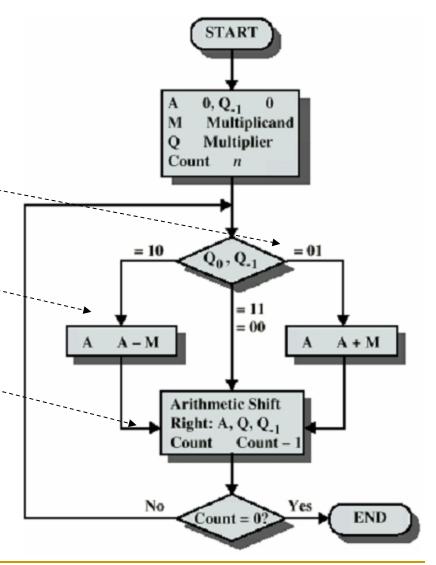

C	A	Q	M		
0	0000	1101	1011	Initial	Values
0	1011	1101	1011	Add }	First
0	0101	1110	1011	Add } Shift }	Cycle
0	0010	1111	1011	Shift }	Second Cycle
0	1101	1111	1011	Add }	Third
0	0110	1111	1011	Shift 5	Cycle
1	0001	1111	1011	Add }	Fourth Cycle
0	1000	1111	1011	Shift ${f S}$	Cycle

Infelizmente, o esquema anterior não funciona para multiplicação com sinal, vejamos uma analogia:

 Existem diversas soluções possíveis para esse e outros dilemas gerados na multiplicação com sinal. Um dos algoritmos mais usados é o de Booth;

 Como antes, multiplicador e multiplicando são armazenados nos registradores Q e M, respectivamente.

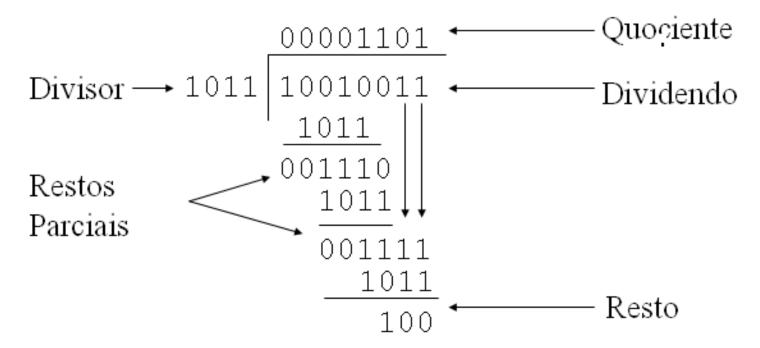

O registrador de 1 bit é posicionado logicamente à direita do bit menos significativo (Q₀) do registrador Q e designado como Q₋₁;

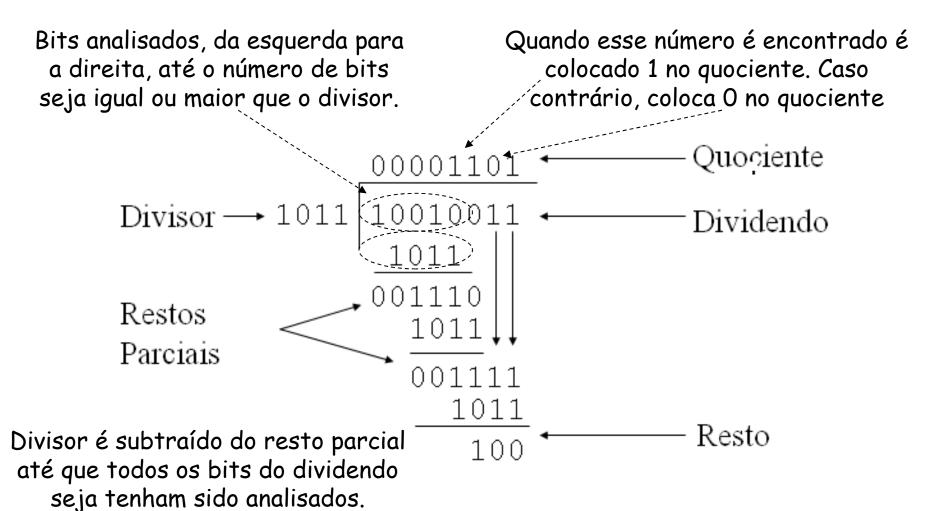

• A e Q_{-1} são inicializados com zero.

 Ao analisar cada bit do multiplicador, o bit à sua direita Q₋₁ também é analisado;

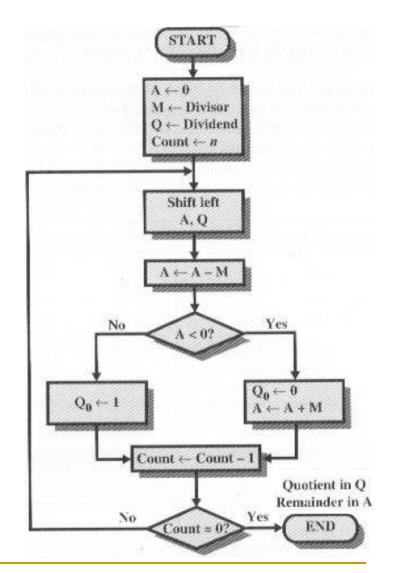
- Se esse dois bits foremiguais (1-1 ou 0-0)
 - Então todos os bits dos registradores A, Q e Q₋₁ são deslocados 1 bit para a direita;

- Se esse dois bits forem diferentes:
 - O multiplicando será somado (O1) do registrador A;
 - ou subtraído (10) do registrador A;
- Em seguida, ocorre o deslocamento de um bit para a direita, porém:
 - O bit mais a esquerda de A (A_{n-1}), é deslocado para A_{n-2} mas também permanece em A_{n-1};

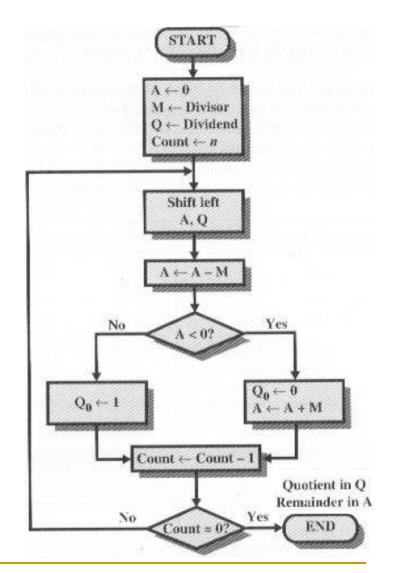


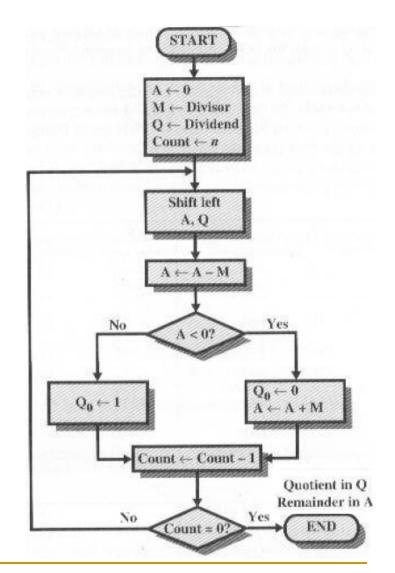

Vejamos do algoritmo de Booth na multiplicação de 3 (Registrador Q) x 7 (Registrador M):

A 0000		Q ₋₁ 0	M 0111	Initial Valu	es
1001 1100	0011 1001	0 1	0111 0111	A A - M }	First Cycle
1110	0100	1	0111	Shift }	Second Cycle
0101 0010	0100 1010	1 0	0111 0111	A A + M }	Third Cycle
0001	0101	0	0111	Shift }	Fourth Cycle

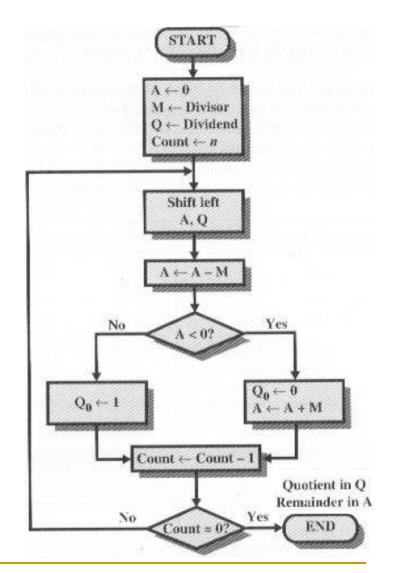

Resultado armazenado nos registradores A e Q

A divisão é um pouco mais complicada que a multiplicação, vejamos um simples exemplo de números binários sem sinal:




- Vejamos um algoritmo de máquina para o processo de divisão usando o complemento de 2:
 - □ Passo 1:
 - Divisor, no registrador M;
 - Dividendo, nos registradores A e Q;
 - O dividendo dever ser expresso como um número em complemento de dois com 2n bits. Ex: 1001, como 11111001;

- Passo 2: Deslocar o conteúdo dos registradores A e Q, juntos, um bit para a esquerda;
- Passo 3: Se M e A têm o mesmo sinal, fazer A = A - M; caso contrário, A = A + M;
- Passo 4: Se o sinal de A for o mesmo, antes e depois da operação, então, operação bem sucedida;



- Passo 4.a: Se a operação for bem-sucedida ou se (A = 0 e Q = 0), então faça Q₀ = 1;
- Passo 4.b: Se a operação não for bem sucedida e se (A = 0) ou Q = 0, então faça $Q_0 = 0$ e restaure o valor antigo de A (somando M a A)
- Passo 5: Repetir os passos 2 e
 4 enquanto houver bits a
 examinar em Q;

Aritmética de Números Inteiros

- Passo 6: Ao final, o resto estará em A.
- Se o divisor e o dividendo tiverem o mesmo sinal, o quociente estará em Q;
- Caso contrário, o quociente correto é o complemente de dois no número armazenado em Q;

Aritmética de Números Inteiros

Vejamos
 a
 aplicação
 do
 algoritmo
 em um
 exemplo:
 (7) ÷ (3)

Α	Q	M=0011		
0000	0111	Valor incial		
0000	1110	Deslocar		
1101		Subtrair		
0000	1110	Restaurar		
0001	1100	Deslocar		
1110		Subtrair		
0001	1100	Restaurar		
0011	1000	Deslocar		
0000		Subtrair		
0000	1001	Fazer Q _o = 1		
0001	0010	Deslocar		
1110		Subtrair		
0001	0010	Restaurar		

- A notação de ponto fixo não possibilita representar números muito grandes nem frações muito pequenas.
- Além disso, em uma divisão de dois úmeros muito grandes, a parte fracionárias do quociente pode ser perdida;
- Essas limitações são superadas com a representação de ponto flutuante;

Um número pode ser representado da seguinte forma:

$$\pm M \times B^{\pm E}$$

Onde:

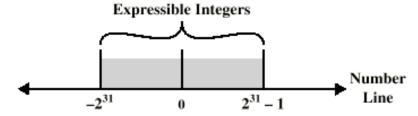
- Sinal: mais ou menos
- Mantissa: M
- Expoente: E
- Base: B (Implícita e não precisa ser armazenada porque é a mesma para todos os número)

A figura abaixo mostra a representação de números binários de ponto flutuante:

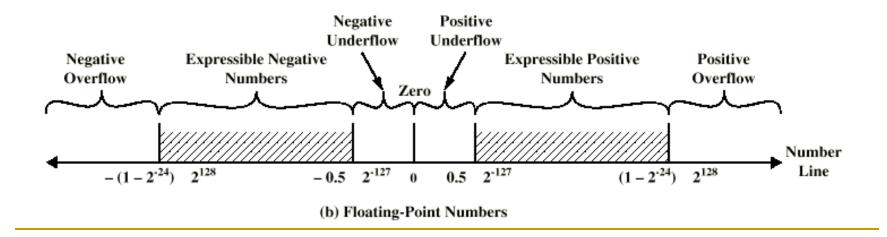
Expoente Polarizado. Um valor fixo é subtraído ao valor desse campo de 8 bits para se obter o verdadeiro valor do expoente

Mantissa. Armazena o número normalizado, ou seja, ±0,1 bbb...b x 2^{±E}

8 bits 23 bits


Sinal da Mantissa (0 = Positivo; 1 = Negativo)

Vejamos os exemplos a seguir:


- O sinal é armazenado no primeiro bit da palavra;
- O primeiro bit da mantissa é sempre q (após normalização);
- O valor 127 é adicionado ao expoente verdadeiro e armazenado no campo do expoente;
- □ A base é 2.

- Na notação em complemento de dois, podem ser representados todos os números inteiros de -231 a 231-1 (total de 232 números distintos);
- No formato de ponto flutuante, números nas seguintes faixas podem ser representados:
 - □ Número negativos entre -(1 2^{-24}) x 2^{128} e -0,5 x 2^{-127}
 - □ Número positivos entre 0,5 x 2^{-127} e $(1 2^{-24})$ x 2^{128}

Vejamos a representação dos limites de representação na figura abaixo:

(a) Twos Complement Integers

- Cinco regiões na reta de números não estão incluídas nessas faixas:
 - □ Overflow em número negativos: números negativos menores que -(1 - 2⁻²⁴) x 2¹²⁸
 - Underflow em números negativos: números negativos maiores que -0,5 x 2⁻¹²⁷;
 - Zero.
 - Underflow em números positivos: números positivos menores que -0.5×2^{-127} ;
 - Overflow em números positivos: números positivos maiores que $(1 2^{-24}) \times 2^{128}$;

- A representação de ponto flutuante terá que prever um código especial para o 0 (zero);
- Ocorre overflow quando a magnitude do resultado é maior que o maior valor que pode ser expresso com expoente igual a 128 (por exemplo, 2¹²⁰ x 2¹⁰⁰ = 2²²⁰);
- Ocorre underflow quando a magnitude é muito pequena (por exemplo, $2^{-120} \times 2^{-100} = 2^{-220}$);

- Analisemos também que os números não são distribuídos igualmente ao longo da reta de números:
 - Maior quantidade de valores representáveis próximo à origem;
 - Quantidade diminui com a distância à origem;
- Se aumentarmos o número de bits do expoente, expandimos a faixa de valores representáveis. Porém teremos uma menor precisão;
- Os cálculos em ponto flutuante, tendem a serem arredondados para os valores mais próximos que a notação possibilitar;

Padrão IEEE para representação de números binários de ponto flutuante

- A mais importante representação de ponto flutuante é definida no padrão IEE 754 de 1985;
- O padrão define um formato simples de 32 bits e um formato duplo de 64 bits com expoentes de 8 e 11 bits respectivamente;

Sinal

Expoente Polarizado.

Mantissa.

52 bits

- Diminui overflow em operações intermediárias;
- Diminui erros por arredondamento;

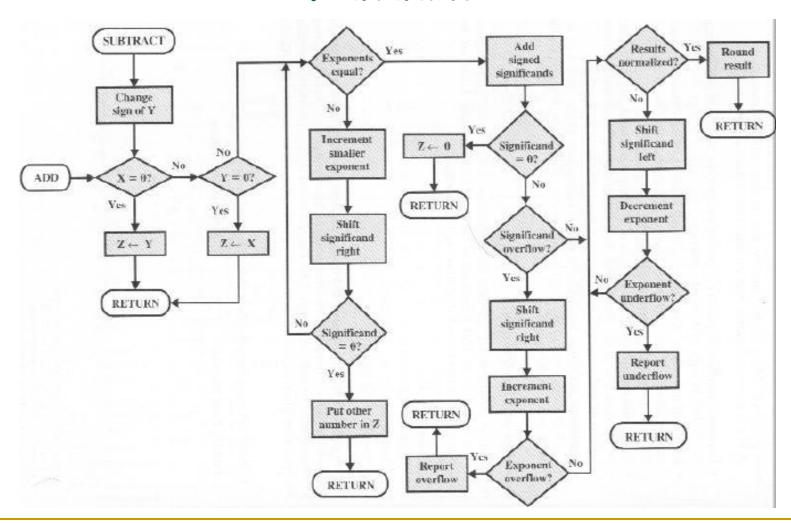
Padrão IEEE para representação de números binários de ponto flutuante

Alguns bits e combinações de bits são interpretado s de forma especial no formato IEEE, vejamos tabela:

Positive	
zero	
Negative	
zero	
Plus	
The state of the s	
infinity	
4440000	
Minus	
infinity	
Ouiet	
NaN	
Section 1	
Signaling	
NaN	
Positive	
normalized	
nonzero	
Negative	
normalized	
nonzero	
Positive	
denormalized	
Negative	
denormalized	

Single Precision (32 bits)				Double Precision (64 bits)				
Sign	Biased exponent	Fraction	Value	Sign	Biased exponent	Fraction	Value	
0	0	0	0	0	0	0	0	
i	0	0	-0	1	0	0	-0	
0	255 (all 1s)	0	- 00	0	2047 (all 1s)	0	00	
1	255 (all 1s)	0	- 00	ì	2047 (all 1s)	0		
() or 1	255 (all 1s)	≠ 0	NaN	0 or 1	2047 (all 1s)	70	NaN	
0 or 1	255 (all 1s)	# 0	NaN	0 or 1	2047 (all 1s)	≠ 0	NaN	
0	0 < c < 255	f	2° 177(1.f)	0	0 < e < 2047	f	2° 1003(1.f)	
1	0 < e < 255	f	-2°-127(1.f)	1	(I < e < 2047	t.	-2e-1023(1.f)	
0	0	0 ≠ 1	2e-126(0.f)	0	U	f < 0	2e 1022(0,f)	
1	0	f ≠ 0	2°-126(0.f)	1	0	f ≠ 0	-2e ⁻¹⁰²² (0.f)	

Padrão IEEE para representação de números binários de ponto flutuante


Considerações:

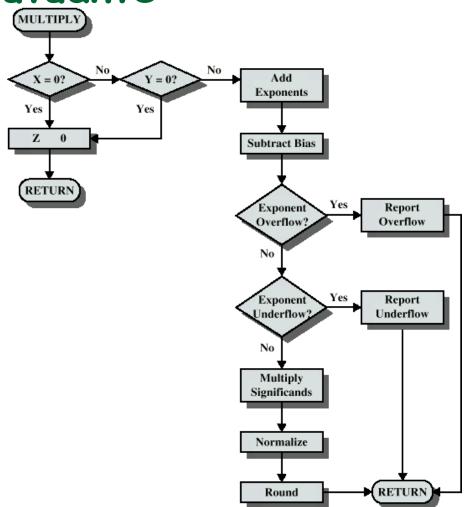
- O expoente O junto com uma fração O representa O;
- Expoente totalmente preenchido com uns junto com uma fração igual a zero representa infinito, positivo ou negativo, (dependo do bit de sinal).
- Expoente 0 junto com uma fração diferente de 0 representa um número não-normalizado;
- Um expoente totalmente com uns junto com uma fração diferente de zero representa o valor NaN (Not a Number).

- Na aritmética de ponto flutuante, a adição e a subtração são operações mais complexas que a multiplicação e a divisão;
- Isso ocorre devido à necessidade de alinhar os operandos, tornando-os iguais.
- O algoritmo tem as seguintes fases:
 - Verificar se algum operando é zero;
 - Alinhas as mantissas;
 - Adicionar ou subtrair as mantissas;
 - Normalizar o resultado.

$$(987 \times 10^{\circ}) + (654 \times 10^{-2}) =$$

 $(987 \times 10^{\circ}) + (6,54 \times 10^{\circ}) =$
 $6454,98 \times 10^{\circ}$

- Em caso de subtração, mudar o sinal do subtraendo;
- Iguala os expoentes e desloca os bits para efetuar a soma (alinhamento dos números, por exemplo: 6+7);
- Soma as duas mantissas
- Normaliza o resultado. A normalização consiste em deslocar os dígitos da mantissa para a esquerda, até que o dígito mais significativo seja diferente de 0;
- Resultado ainda pode ser arredondado;


A multiplicação é mais simples do que a adição e a subtração:

Considerações:

- Caso um dos operadores é 0, o resultados será 0.
- Soma-se os expoentes. Se eles forem armazenados na forma polarizada, a soma dobrará a polarização;
- Portanto, o valor da polarização deve ser subtraído da soma dos expoentes;
- Se o expoente do produto estiver dentro da faixa de números representáveis, as mantissas devem ser multiplicadas (mesma forma dos números inteiros), levando em conta seus sinais;

Vejamos o fluxograma da multiplicação de números de ponto flutuante:

 \Box z = x.y

- Vejamos os passos para efetuarmos uma divisão bem sucedida com ponto flutuante:
 - Caso o divisor seja 0, erro ou representação de infinito;
 - Dividendo 0, resultado 0;
 - Caso não ocorra nenhum desses casos, o expoente do divisor será subtraído do expoente do dividendo;
 - Em seguida, são efetuados testes de overflow e underflow no expoente;
 - O passo seguinte é dividir as mantissas;
 - Por fim a normalização e o arredondamento;

- Diversas técnicas para arredondamento foram exploradas, De fato, o padrão IEEE relaciona quatro abordagens alternativas:
 - Arredondamento para o mais próximo: arredondado para o número representável mais próximo;
 - □ Arredondamento para cima (+∞): arredondado na direção do infinito positivo;
 - □ Arredondamento para baixo (-∞): arredondado na direção do infinito negativo;
 - Arredondamento para 0: arredondado na direção de zero;

- O padrão IEEE traz também procedimentos específicos para que a aritmética de pnto produza resultados uniformes, previsíveis e independente de plataformas:
 - □ Infinito:

$$5 + (+\infty) = +\infty$$

$$5 - (-\infty) = -\infty$$

- NaN silencioso e NaN sinalizador: se propaga sem gerar exceção e gera exceção de operação inválida, respectivamente
- Números não-normalizados: trata casos de underflow de expoente;

Bibliografia

 Stallings, W. Arquitetura e Organização de Computadores, Pearson Hall, 5 ed. SP: 2002.