
SYNTHESIS OF SUPERVISORS FOR TIME-VARYING DISCRETE EVENT
SYSTEMS

Eduard Montgomery Meira Costa∗

edmonty@ig.com.br
Antonio Marcus Nogueira Lima†

amnlima@dee.ufcg.edu.br

∗Departamento de Engenharia Elétrica, Universidade Federal da Bahia
40210-630 Salvador, BA, Brasil

†Departamento de Engenharia Elétrica, Universidade Federal de Campina Grande
58109-970 Campina Grande, PB, Brasil

ABSTRACT

We introduce a time-varying automaton to model discrete
event systems. The structure of this time-varying automaton
is very similar structure to (max,+) automaton, but allowing
variable event lifetimes. Based on this time-varying automa-
ton the design of timed supervisors is obtained by using the
dioid algebra, where the languages used to describe the dis-
crete event system as well the desired specification are re-
placed by matrices defined in such algebra and the supervisor
synthesis is achieved through simple matrix operations. The
proposed synthesis algorithm allows one to synthesize super-
visors for un-timed DES, timed DES with constant event life-
time and timed DES with variable event lifetime. All these
cases are treated with the same basic algorithm, the differ-
ences rely only on the definition of the event lifetime func-
tions. The proposed algorithm presents a complexity order
equal to the supervisor synthesis algorithm of un-timed dis-
crete event systems. The proposed approach can be consid-
ered as an alternative procedure, based on a non-traditional
algebraic structure, to achieve the supervisor synthesis for
discrete event systems.

KEYWORDS: Time-Varying Automata, discrete event sys-
tems, supervisory control.

Artigo submetido em 24/04/2002
1a. Revisão em 31/07/2002; 2a. Revisão em 20/11/2003
3a. Revisão em 6/04/2004
Aceito sob recomendação do Ed. Assoc. Prof. Takashi Yoneyama

RESUMO

O autômato com temporização variável é introduzido nesse
artigo para modelar sistemas a eventos discretos. A estrutura
desse autômato é bastante similar à estrutura do autômato
(max,+), mas apresentando tempos de vida variáveis. Base-
ado nesse autômato o projeto de supervisores temporizados
é obtido por meio da álgebra de dióides, onde as linguagens
utilizadas para descrever o sistema a eventos discretos, bem
como a especificação de comportamento desejada são defini-
das por matrizes descritas nesta álgebra e a síntese do super-
visor é formalizada através de simples operações matriciais.
O algoritmo de síntese proposto permite sintetizar superviso-
res para sistemas a eventos discretos não temporizados, sis-
temas a eventos discretos temporizados com tempos de vida
constantes e e variáveis. Todos esses casos são tratados com
o mesmo algoritmo básico, em que a diferença existe apenas
na definição das funções de tempos de vida dos eventos. O
algoritmo proposto apresenta uma ordem de complexidade
igual ao algoritmo de síntese do supervisor para sistemas a
eventos discretos não temporizados. A formulação proposta
pode ser considerada como um procedimento alternativo ba-
seado numa estrutura algébrica não tradicional, para cons-
truir supervisores para sistemas a eventos discretos.

PALAVRAS-CHAVE: Autômatos com Temporização Variá-
vel, Sistemas a Eventos Discretos, Controle Supervisório.

0 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

1 INTRODUCTION

Manufacturing systems, traffic systems, computer networks,
communication protocols, process control plants are exam-
ples of discrete event systems (DES). A DES is a dynamic
system in which state changes occur in response to the oc-
currence of events. The behavior of a DES can be expressed
in terms of a language L and the desired behavior is specif-
ied by another language E. In general, L ⊆ E meaning that
the DES may generate illegal behaviors. A supervisor is de-
signed to eliminate the illegal behaviors. The set of events
(Σ) is partitioned into controllable (Σc) and uncontrollable
(Σuc) events thus creating the possibility for controlling the
DES. Controllable events can be enabled or disabled by a
supervisor which actively monitors the DES and can inter-
vene at any moment to prevent an illegal behavior. The su-
pervisor control problem can be elegantly solved by using
the Supervisory Control Theory (SCT) (Ramadge e Won-
ham, 1987b; Ramadge e Wonham, 1987a; Ramadge e Won-
ham, 1982). Automata theory and formal languages theory
form the basis of this theory. The supervisor as synthesized
by the SCT deals only with the un-timed or logic behavior
where there is no timing information explicitly associated to
the events of the DES.

The timed behavior of DES is of great applied interest but
also of significant complexity. Timed automata are one of
the most studied models for representing real-time systems
(Saksena e Selic, 1999). In some cases the timing infor-
mation must be explicitly introduced to guarantee that the
control action be feasible within the designated time bounds.
Furthermore, these time bounds may be uncertain or time-
varying and thus an adaptive supervisor must synthesized.

One approach to control a timed DES is to adopt a global
clock and to introduce a clock-tick event (Brandin e Won-
ham, 1994). The use of the ‘tick’ event, introduces new
classes of events (prospective, remote, forcible, prohibitible
and eligible) and increases the complexity of the problem
since the state space is augmented in order to represent the
timing information related to each activity in the system.
In this case there are two representations for the DES: i)
for displaying the activity transition graph (ATG) (Ostroff
e Wonham, 1990) is employed and ii) the timed transition
graph (TTG) (Lawford, 1997) where the timing information
is explicitly represented by using ‘tick’ transitions. The de-
sired behavior is given by a timed-language and the classical
supervisor synthesis provided by the SCT is applied to the
TTG.

The use of a max-algebra provides another alternative to
deal with some control problems of timed DES (Cofer e
Garg, 1996). In this case the DES is represented by a timed-
event graph and the dynamics is modelled by a system of lin-

ear equations written in a nontraditional algebraic structure
known as a dioid. The desired behavior is given by a range
of acceptable execution times for the events and a supervi-
sor synthesis algorithm was developed since the max-algebra
model prevents the use of the classical algorithm provided by
the SCT. It is important to remark that the synthesis of timed
and un-timed supervisors is usually done by employing dif-
ferent models for the DES.

This article proposes an unifying framework based on dioid
algebra for synthesizing both timed and un-timed supervi-
sors. It exploits the advantage of the dioid algebra for com-
pactly representing the timing information and on the other
hand allowing to express the DES model as well as the de-
sired behavior in terms of languages. The proposed approach
employs a time-varying automaton (TVA) to represent the
DES by using its incidence matrix. The synthesis algorithm
is based on the classical algorithm provided by the SCT and
it is implemented in the matrix form.

This paper is organized as follows: in Section 2 some ba-
sic definitions concerning dioid algebra, (max,+) automaton,
formal series and languages are presented; in Section 3 the
time-varying automaton is introduced; in Section 4 the su-
pervisor synthesis is formulated; in Section 5 the supervisor
synthesis algorithm is presented; in Section 6 several illus-
trating examples are studied and in Section 7 the conclusions
of this work are presented.

2 PRELIMINARIES

Definition 1 A dioid is a set D endowed with two opera-
tions: ⊕ (addition) and ⊗ (multiplication), that satisfy the
following axioms:

Axiom 1 Commutativity of ⊕:

a ⊕ b = b ⊕ a, ∀a, b ∈ D (1)

Axiom 2 Associativity of ⊕:

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c), ∀a, b, c ∈ D (2)

Axiom 3 Associativity of ⊗:

(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c), ∀a, b, c ∈ D (3)

Axiom 4 Distributivity of ⊗ over ⊕:

(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c), ∀a, b, c ∈ D (4)

c ⊗ (a ⊕ b) = (c ⊗ a) ⊕ (c ⊗ b), ∀a, b, c ∈ D (5)

Axiom 5 Null element in ⊕:

∃ε ∈ D : ∀a ∈ D, a ⊕ ε = a (6)

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 1

Axiom 6 Absorbing element in ⊗:

a ⊗ ε = ε ⊗ a = ε, ∀a ∈ D (7)

Axiom 7 Identity element in ⊗:

∃e ∈ D : ∀a ∈ D, a ⊗ e = e ⊗ a = e (8)

Axiom 8 Idempotency in ⊕:

a ⊕ a = a, ∀a ∈ D (9)

A dioid is said commutative if ⊗ is commutative.

Considering that D = Rmax := R∪−∞, the null element is
ε := −∞ and the identity element is e := 0. The ⊕ operator
is the usual max and the ⊗ is the usual sum. In this case D is
commutative and the related algebra is known as the (max,+)
algebra.

2.1 (max,+) automaton

The (max,+) automaton can be used to model the timed be-
havior of DES. In this case the system dynamics can be de-
scribed through formal series as explained in the following
and it is also possible to consider the partition of the set of
events (Σ) into controllable (Σc) and uncontrollable (Σuc)
events, i.e., Σ = Σc ∪ Σuc, as usual in the SCT.

Definition 2 A finite (max,+) automaton over an alphabet Σ
is a quadruple A(max,+) = (Q, θ, T, φ) where Q is a finite
set of states, θ, φ, T are maps θ : Q → Rmax, φ : Q → Rmax

T : Q × Σ × Q → Rmax (named initial delays, final delays,
and transition times, respectively).

For displaying purposes a (max,+) automaton is represented
by valued multigraph where the set of vertices is given by Q

and there are three types of arcs:

i) The internal arcs i
σ
→ j, ∀i, j ∈ Q, σ ∈ Σ. If Ti,σ,j 6= ε

the arc i → j is valued by the scalar Ti,σ,j like i
Ti,σ,jσ
→ j;

ii) The input arcs→ i, ∀i ∈ Q. If θi 6= ε the input arc is valued

by the scalar θi like
θi→ i;

iii) The output arcs i →, ∀i ∈ Q. If φi 6= ε the output arc is

valued by the scalar φi like i
φi→.

Example 1 Let Σ = {α, β}. The automaton with set the of
states Q = {0, 1, 2}, transition times T0,α,1 = 1, T0,α,2 = 3,
T1,α,2 = 4 , T2,β,2 = 1, T2,β,1 = 5, T2,β,0 = 7, T1,β,1 = 1,
T1,β,0 = 2, final and initial delays φ0 = 2 and θ0 = 0,
respectively (all the other values of φ, θ and T are equal to ε)
is shown in Figure 1. The values equal to 0 are omitted from
the diagram, i.e., the not valued arc → 0 stands for θ0 = 0.

Comparing a (max,+) automaton with an un-timed automa-
ton having the same structure we can note that the transition
function is embedded in the T map. The initial state is def-
ined at the vertex q0 ∈ Q in which θq0

6= ε and the marked
states are those vertices qm ∈ Q where φqm

6= ε. The dy-
namics of a (max,+) automaton can be explained as follows:

1. There is a global clock that is continuously being incre-
mented;

2. The arcs are valued by Ti,σ,j ∈ T , i, j ∈ Q. This means
that the transition from i to j takes at least Ti,σ,j units
of time, or, in other words, given that the automaton
reached state i, then it will jump to state j after the oc-
currence of σ, however the event σ will be enabled to
occur only after Ti,σ,j units of time. The term Ti,σ,j is
denoted the lifetime of the event σ.

3. The initial state q0 ∈ Q will be reached only after θq0

units of time with respect to the global clock time origin;

4. When the automaton reaches a given state i the coun-
ters associated to events such that Ti,σ,j 6= ε will be
initialized with Ti,σ,j and all start decrementing simul-
taneously. When a given counter reaches zero it stops
decrementing and the respective event becomes enabled
and may occur from now on;

5. When a given event occurs all the running counters are
stopped and the state of the automaton changes;

6. When a marked state qm is reached it takes the final
delay for the automaton to recognize the event sequence
started at q0;

7. If at a given state i there are two arcs leaving that state
and the labels are equal but valued with different life-
times then the automaton is said non-deterministic.

Example 2 The dynamics of the (max,+) automaton shown
in Figure 2 can be described in the following way: i) After
started the global clock at t = 0 it takes 2 units of time to
reach the initial state 1. ii) At t = 3 the automaton may
recognize the string 3ε, where ε is the empty string. iii) At

0 1 2

2

7β

3α

1α

2β
1β

4α

5β

1β

Figure 1: Example of a (max,+) automaton.

2 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

t = 4 the counter of event α reaches zero and it becomes
enabled until its occurrence. iv) If α occurs at state 1 the
automaton will jump to state 2. v) Once at state 2 it takes 3
units of time for event β to become enabled. vi) If β occurs
at state 2 the automaton will jump to state 1. vii) Once again
in state 1 it takes one more unit of time for the automaton to
recognize the string 8αβ. viii) If β did not occurred at state
2 then after one more unit of time κ becomes enabled. Then,
after t = 8 the events β and κ are both enabled until one of
them occurs. ix) If κ occurs at state 2, the state 3 is reached.
x) At state 3 it takes 2 units of time for β to become enabled.
xi) When β occurs the automaton returns to state 1 and then,
after one unit of time it recognizes the string 11ακβ.

In a (max,+) automaton a sequence of states is defined as a
path. A path of length n is given by

p = (q0, ..., qn) ∈ Qn (10)

where

Qn := {p|p = (q0, · · · , qn) ∧ q0, ..., qn ∈ Q} . (11)

A string s = σ1...σn is recognized in a path if

W (p, s):=θ(q0)⊗Tq0,σ1,q1⊗· · ·⊗Tqn−1,σn,qn⊗φ(qn)6=ε (12)

where W (p, s) is the path weight function. In other words, a string
is recognized if it takes a finite time for its completion. The mul-
tiplicity of a string is the maximum of the weights for all the paths
where that string is recognized, namely

(
A(max,+)|s

)
:= max

p∈Qn
W (p, s) (13)

A dater is a map y : Σ∗ → Rmax and (y|s) is interpreted as the time
for completing the sequence of events that composes s. A (max,+)
automaton recognizes a dater if

(y|s) =
(
A(max,+)|s

)
(14)

Example 3 The string s = αβ is recognized by the automaton
shown in Figure 2 since

P (p, s) = θ1 + T1,α,2 + T2,β,1 + φ0 = 5 6= ε (15)

with p = (1, 2, 1).

2

1
2α

3β

4κ
2β

1 2

3

Figure 2: Explaining the dynamics of a (max,+) automaton.

Example 4 The two automata shown in Figure 3(a) and (c) rec-
ognize the same timed-languages. For the sake of comparison,
the automaton given in Figure 3(a) is an ATG (Brandin e Won-
ham, 1994) where the events are defined by (σq,q′ , tσ ,∞) ∈ Σ.
Then, in terms of Brandin and Wonham notation we have that
the events (α1,2, 2,∞), (β2,3, 2,∞), (β3,4, 2,∞), (α4,1, 3,∞),
(κ4,5, 1,∞), (λ5,1, 2,∞) are all of remote type. The automaton
shown in Figure 3(b) is a TTG representing the dynamics of the
ATG. Figure 3(c) shows a (max,+) automaton that exhibits the same
dynamics. In the TTG, each arc labelled with a t (‘tick’) indicates
one unit of time. It is worth noting that the number of states of the
(max,+) automaton is largely inferior to the number of states of the
TTG. Besides, the timing information is more compact and directly
represented with the (max,+) automaton.

1 2 3 4 5 6 7

8

91011

1213

141516

t t t t

t

t

t

t
t

tt

α β

β
κ

λ

α

1 2 3

4
5

e

e

3α
2λ

2α 2β

2β

1κ

(c)

(a)

t t

t

t

t

κκ

1 2 3

4
5

α
λ

α β

β

κ

(b)

Figure 3: Automata comparison: (a) ATG, (b) TTG and (c)
(max,+) Automaton.

2.2 (max,+) automaton and formal series

Formal series can be used to describe timed and un-timed languages
(Berstel e Reutenauer, 1988; Klimann, 1999).

Definition 3 A formal series f over an alphabet Σ with coefficients
in D is a map

f : Σ∗ → D (16)

where each string s ∈ Σ∗ has its image f (s) ∈ D that is denoted
(f |s) and represents the coefficient of s in f .

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 3

The set of all the formal series over f with coefficients in D is
denoted D 〈〈Σ〉〉. Given f1 : Σ∗ → D, f2 : Σ∗ → D and ∀s ∈ Σ∗

the set D 〈〈Σ〉〉 is endowed with the following operations

(f1 ⊕ f2|s) = (f1|s)⊕ (f2|s) (17)

(f1 ⊗ f2|s) =
⊕

uv=s

(f1|u)⊗ (f2|v) . (18)

These operations are known as the Cauchy sum and product, re-
spectively. The Cauchy sum represents the union of languages and
the Cauchy product represents the concatenation. The convention
(f |s) = ε indicates that s never occurs.

The star operation can also be defined for the formal series.

Definition 4 The star operation for a formal series f ∈ D 〈〈Σ〉〉 is
defined by

f∗ = e⊕ f ⊕ f2 ⊕ f3 ⊕ · · · (19)

where ‘e’ is the identity element and

fn =

n times
︷ ︸︸ ︷

f ⊗ · · · ⊗ f . (20)

The formal series allows to describe languages by using equation
(18). An un-timed language can also be described as formal series
if D = B = {ε, e} that is a binary semi-ring.

Definition 5 A regular language L = {s0, s1, ...} ⊆ Σ∗ can be
described by

YB〈〈Σ〉〉 =
⊕

s∈Σ∗

(y|s) s (21)

where B 〈〈Σ〉〉 is the semi-ring of formal series with (y|s) ∈ B and
s ∈ Σ∗.

Example 5 The language L ={ε, α, αβ, βα, αα, ββ, βαβ} def-
ined over Σ = {α, β} can be represented by the following formal
series

YB〈〈Σ〉〉=eε⊕eα⊕eαβ⊕eβα⊕eαα⊕eββ⊕eβαβ⊕εααα⊕· · ·
︸ ︷︷ ︸

s/∈Σ∗−L

(22)

where (y|s) = e, ∀s ∈ L, and (y|s) = ε, ∀s ∈ Σ∗−L. The above
formal series can also be written as

YB〈〈Σ〉〉 = eε⊕ eα⊕ eαβ ⊕ eβα⊕ eαα⊕ eββ⊕ eβαβ (23)

or
YB〈〈Σ〉〉 = ε⊕ α⊕ αβ ⊕ βα⊕ αα⊕ ββ ⊕ βαβ (24)

since ε⊗ L = ε, e⊗ L = L, ∀L ⊆ Σ∗.

Similarly, a timed language (Alur e Henzinger, 1992; Tripakis,
1998; Fribourg, 1998; Asarin, 1998) can be described by a formal
series defining that D = Rmax. A timed language L is a language
where each s ∈ L has a scalar value ts associated to it. This scalar
is a time stamp that indicates how much units of time it takes for
a timed automaton to recognize that string (Alur e Dill, 1990; Alur
e Dill, 1994; Alur e Dill, 1995; Alur, 1997). This concept can be
formalized by the following definition:

Definition 6 A timed language L = {ts0
s0, ts1

s1, ...} with
{s0, s1, ...} ∈ Σ∗ and ts0

, ts1
, ... ∈ Rmax, can be represented by

YRmax〈〈Σ〉〉 =
⊕

s∈Σ∗

(y|s) s (25)

where Rmax 〈〈Σ〉〉 is a semi-ring of formal series with coefficients
in Rmax and noncommutative variables in Σ.

Example 6 The language L = {3ε, 4α, 2αβ, 3βα, 5αα, 2ββ,
βαβ} defined over Σ = {α, β} can be represented by

YRmax〈〈Σ〉〉=3ε⊕4α⊕2αβ⊕3βα⊕5αα⊕2ββ⊕eβαβ⊕ · · ·
︸ ︷︷ ︸

s/∈L

(26)

where (y|ε) = 3, (y|α) = 4, · · · , (y|βαβ) = e. The above
expression can be simplified to

YRmax〈〈Σ〉〉 = 3ε⊕4α⊕2αβ⊕3βα⊕5αα⊕2ββ⊕eβαβ (27)

or

YRmax〈〈Σ〉〉 = 3⊕ 4α⊕ 2αβ ⊕ 3βα⊕ 5αα⊕ 2ββ ⊕ βαβ (28)

since ε ⊗ L = ε, ∀L ⊆ Σ∗.This series represents a language rec-
ognized by a (max,+) automaton. The meaning of (y|s) = ε is that
the automaton does not recognizes the string s.

The above definitions allows to state that formal series can be em-
ployed to describe the automaton dynamics and to determine its
marked language. Then, the language recognized by a (max,+) au-
tomaton can be described by its daters as

Lm = YRmax〈〈Σ〉〉 =
⊕

s∈Σ∗

(y|s)⊗ s (29)

with s ∈ Rmax 〈〈Σ〉〉.

In general, when there is no ambiguity, the ⊗ is omitted from the
expressions. Thus, from now on the notation ab meaning a ⊗ b
will be used to represent this operation between any elements in the
dioid algebra.

Definition 7 The map µ : Σ → R
|Q|×|Q|
max , is a map from Ti,σ,j ,

∀i, j ∈ Q, σ ∈ Σ over R
|Q|×|Q|
max , where R

|Q|×|Q|
max is a dioid

(Rmax,max, +) defined for square matrices having dimension
equal to |Q| × |Q|.

By using this map we can construct a matrix µ (σ)ij := Ti,σ,j .
From this matrix and by identifying Θ as a row vector with all the
input arcs and Φ as column vector with all the output arcs we can
write that:

(y|s)=
(
A(max,+)|s

)
= Θµ (σ1) · · ·µ (σn) Φ = Θµ (s)Φ (30)

where s = σ1 · · ·σn. Then, we say that the series YRmax〈〈Σ〉〉 is
recognizable if exists a (max,+) automaton, represented by the triple
(Θ, µ,Φ), Θ∈ R

1×Q
max , Φ∈ R

Q×1
max , µ:Σ∗ → R

Q×Q
max for finite Q such

that
YRmax〈〈Σ〉〉=

⊕

s∈Σ∗

Θµ (s)Φs (31)

4 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

Example 7 For the automaton shown in Figure 4 we have that

Θ =
[

e ε ε
]

Φ =

2
ε
ε

µ (α) =

ε 1 ε
ε ε 4
ε ε ε

 µ (β) =

ε ε ε
2 ε ε
ε 5 ε

 .

(32)

Computing (y|s) when s = αβ we obtain (y|αβ) = Θµ(αβ)Φ =
Θµ(α)µ(β)Φ = 5. On the other hand, YRmax〈〈Σ〉〉 for this automa-
ton is given by

YRmax〈〈Σ〉〉=2(3α(9αβ)∗β)
∗
=2⊕5αβ⊕8αβαβ⊕14ααββ⊕... (33)

Where YRmax〈〈Σ〉〉 represents all the strings formed by α and β,
always starting with α and recognized by the automaton.

0 1 2

2

1α

2β

4α

5β

0

Figure 4: Deterministic (max,+) automaton.

In the present paper the basic tool for representing discrete event
systems is the incidence matrix as defined in the following.

2.3 (max,+) automata and incidence ma-
trices

Definition 8 Let A(max,+) a (max,+) automaton. Its incidence ma-
trix represented by A, is defined by

A=[ai,j]; ai,j =

{
tσσ if ∃σ from vertex i to vertex j;
ε otherwise

(34)

where tσ is the lifetime of σ. If there is more one event link-
ing state i to state j then ai,j =

⊕

k tσk
σk is a regular expres-

sion. The initial state is always the state 1 and is represented by
the row vector Θ(A) =

[
tin ε · · · ε

]
, where tin is the

initial delay. The marked states are defined by the column vector
Φ(A) =

[
tm1

tm2
· · · tmn

]T , where tmi
represent the

final delays.

Example 8 The (max,+) automaton shown in Figure 4, has the fol-
lowing matrix representation

A =

ε 1α ε
2β ε 4α
5β ε ε

Θ (A) = [e ε ε]

Φ (A) =
[

2 ε ε
]T

(35)

The incidence matrix can also be constructed by

A =

n⊕

i=1

µ (σi)⊗ σi (36)

where µ (σi) is as defined by Definition 7. Then, the incidence
matrix satisfies all the properties described in the previous section.

Formal languages can be used to construct languages from the timed
incidence matrices. The following definition will help the construc-
tion of languages.

Definition 9 Let A be an incidence matrix. An element ai,j =
σ ∈ (Σc ∪ Σuc) can be interpreted as a path of length 1 through
which the automaton jumps from state i to state j with a lifetime
equal to tσ . Then, the matrix

A
n =

n times
︷ ︸︸ ︷

A⊗A⊗ ...⊗A (37)

is a path matrix where each element an
i,j represents one or strings

s = σn · · ·σn of length n from state i to state j and the total life-
time is ts = tσ1

+ · · · + tσn . The initial and final vectors of A
n

are the same of A.

If there is no path from state i to state j then an
i,j = ε.

Example 9 The (max,+) automaton shown in Figure 5 can be rep-
resented by

A =

ε 4α ε
5β ε 2µ
ε 2β 2α

 ,

Θ (A) =
[

1 ε ε
]
,

Φ (A) =
[

3 ε 2
]T

(38)

The path matrix A2 for this automaton is

1 2 3

4α

5β

2µ

2α

2β

1

3 2

Figure 5: Strings in a timed incidence matrix: the path matrix
of the automaton.

A
2 = A⊗A =

9αβ ε 6αµ
ε 4µβ + 9βα 4µα

7ββ 4αβ 4αα + 4βµ

 (39)

with Θ(A2) = Θ (A) and Φ(A2) = Φ (A). The path matrix A
3

is

A
3=

ε 13αβα + 8αµβ 8αµα
9µββ + 14βαβ 6αµβ 6µαα

9αββ
11ββα + 6ααβ

+6βµβ
6αβµ + 6ααα

+6βµα

(40)

also with Θ(A3) = Θ (A) and Φ(A3) = Φ (A). In these matri-
ces, each element represents a string of length 2 and 3, respectively.
The string αβ is recognized since

(y|αβ) = Θ (A)⊗ µ (α)⊗ µ (β)⊗ Φ(A) = 13 6= ε, (41)

according to Eq. (30).

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 5

Based on these operators it is possible to construct the timed lan-
guage L (A) as specified in the following definition.

Definition 10 Given an incidence matrix A, the language L (A) is
defined by

L(A)=
⊕

i

(

Θ(A)⊗A
i
)

=
⊕

i

n⊕

j=1

(

θ1 (A)⊗ ai
1,j

)

, (42)

where θ1 (A) denotes the first element of the initial state row vector
Θ (A) and ai

1,j ∈ A
i.

The following definition determines how to construct the marked
language Lm (A).

Definition 11 Given an incidence matrix A, the language Lm (A)
is defined by

Lm (A) =
⊕

i

(

Θ (A)⊗A
i⊗Φ(A)

)

(43)

Lm (A) =
⊕

i

n⊕

j|φj(A)6=ε

(

θ1 (A)⊗ ai
1,j ⊗ φj (A)

)

(44)

where φj (A) is j-th element of the column vector Φ(A) and
ai
1,j ∈ A

i.

Example 10 The matrix representation for the automaton shown in
Figure 6 is

A =

[
ε 5α

3β κ

]

,Θ (A) =
[

1 ε
]
,Φ (A) =

[
3
e

]

. (45)

To determine its language we compute

1 21

3

5α

3β

κ

e

Figure 6: Timed language of a (max,+) automaton.

A
2 =

[
8αβ 5ακ
3κβ 8βα + κκ

]

A
3 =

[
8ακβ 13αβα + 5ακκ

11βαβ + 3κκβ 8κβα + 8βακ + κκκ

]

...

(46)

The elements of these matrices are strings of length 2, 3, and so on.
Multiplying these matrices by θ1 (A) we found that

L (A) = {1ε, 6α, 9αβ, 6ακ, 9ακβ, 14αβα, 6ακκ, ...} . (47)

Note that ε ∈ L (A) and tε = 1 that is the initial delay of the
automaton. On the other hand, all the strings of length i are found
at the first line of the A

i matrices. By multiplying the first line

A
i by θ1 (A) and φk (A) we found the marked language of the

automaton

Lm(A)={4ε, 6α, 12αβ, 6ακ, 12ακβ, 14αβα, 6ακκ, ...} . (48)

That is the same marked language we obtain by using formal series
as given by

Lm(A)=4ε⊕6α⊕12αβ⊕6ακ⊕12ακβ⊕14αβα⊕6ακκ... (49)

with Lm (A) = YRmax〈〈Σ〉〉.

With these definitions, the languages related to the A(max,+) au-
tomaton will be referred as L (A) or Lm (A) to make an explicit
reference to its incidence matrix.

The reachability and co-reachability of a (max,+) automaton can be
determined from its incidence matrix as defined below.

Definition 12 The j-th row of an incidence matrix A is said reach-
able if ∃i, i ∈ N∗, such that

Θ(A)⊗A
i ⊗ Π 6= ε, (50)

where Π is a column vector, its j-th element is πj = e and all the
other elements are πk = ε, k 6= j, k = 1, · · · ,dim (A).

The row j is said reachable if, starting from the first row, there is at
least one string s 6= ε that leads to row j.

Definition 13 The row i of an incidence matrix A is said co-
reachable if ∃k, k ∈ N

∗, such that

Υ⊗A
k ⊗ Φ (A) 6= ε, (51)

where Υ is a row vector, its i-th element is υi = e, and all the
remaining elements are υk = ε, k 6= i, k = 1, · · · ,dim (A).

The row i is said co-reachable if, starting from that row, there is, at
least, one string s 6= ε that leads to a marked row j.

An incidence matrix is said reachable if all its rows are reachable.
An incidence matrix is said co-reachable if all its rows are co-
reachable. An incidence matrix is said trim if its both reachable
and co-reachable at the same time.

Example 11 The automaton shown in Figure 6 is reachable since

Θ(A)⊗A
1 ⊗ Φ = 6α 6= ε, Φ =

[
ε e

]T
, (52)

and
Θ(A)⊗A

2 ⊗ Φ = 9αβ 6= ε, Φ =
[

e ε
]T

. (53)

This automaton is also co-reachable since

Φ(A) =
[

3 e
]T

, (54)

Υ⊗A
1 ⊗ Φ(A) = 5α 6= ε,Υ =

[
e ε

]
(55)

Υ⊗A
1 ⊗ Φ(A) = 6β 6= ε, Υ =

[
ε e

]
(56)

Then the automaton is trim.

6 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

The equivalence between timed-automata can be defined in terms
of its respective incidence matrices as shown below.

Definition 14 Let A and B denote two timed matrices, such that
∀a

i,j
, a

i,j
∈ Σ∗, ∀b

i,j
, b

i,j
∈ Σ∗. These matrices are said equiva-

lent, denoted by A ≡ B, if for any two timed strings sA (A) and
sB (B), such that (yA|sA) = (yB|sB), there exists a σ ∈ Σ that is
feasible both in A and B, such that (yA|sAσ) = (yB|sBσ).

Example 12 The timed matrices A1 and A2 are equivalent

A1 =

ε 2α ε
2λ ε 3β
ε 3β ε

 ,Θ (A1) =
[

2 ε ε
]
,

Φ(A1) =

ε
3
3

 ,A2 =

[
ε 2α

2λ 3β

]

Θ (A2) =
[

2 ε
]
,Φ (A2) =

[
ε
3

]

(57)

and thus exhibit the same timed language

L(A1)=L(A2)={2ε, 4α, 6αλ, 8αλα, 7αβ, 10αββ, · · · } (58)

and its respective automata recognize the same marked language

Lm (A1) = Lm (A2) = {7α, 11αλα, 7αβ, 10αββ, · · · } (59)

The automata represented by these two matrices are shown in Fig-
ure 7.

1 2 3

1 2

2α 3β

3β

3β

2α

2λ

2λ

A

A

1

2

2

2

3

33

(max,+)

(max,+)

2λ

Figure 7: Two equivalent (max,+) automata.

2.4 Synchronous composition

To define the synchronous composition in terms of the timed inci-
dence matrices it is necessary to introduce the following operator.

Definition 15 Given a dioid D = Rmax 〈〈Σ〉〉, the operator ~ def-
ines the intersection between elements as

a ~ b =

k⊕

i=1

(tσi
⊕ t′σi

)σi, if tσi
σi ⊂ a ∧ t′σi

σi ⊂ b. (60)

∀a, b ∈ D, where

tσσ ~ ε = ε
tσ1

σ1 ~ tσ2
σ2 = ε

tσσ ~ t′σσ = (tσσ ⊕ t′σσ)σ,
(61)

∀σ, σ1, σ2 ∈ Σ and ∀tσ , tσ1
, tσ2

, t′σ ∈ Rmax. For timed incidence
matrices the intersection operation is defined by

C = A ~ B, ci,j = ai,j ~ bi,j , (62)

where ai,j ~ bi,j is as defined above with

Θ (C) = Θ (A) ~ Θ (B) and Φ(C) = Φ (A) ~ Φ(B) . (63)

From this definition and considering that the elements of Θ (·) and
Φ(·) belong to Rmax, the ~ operation is equivalent to the ⊕ oper-
ation. However, when dealing with the control of a DES this def-
inition must be restricted since the alphabet of events is partitioned
as Σ = Σc ∪ Σuc and only the controllable events Σuc can be
delayed by the supervisor.

Definition 16 Consider that the incidence matrix A denotes the de-
sired timed behavior for a given timed DES represented by an in-
cidence matrix B. The elements of the matrices A and B (ai,j

and bi,j) can be regular expressions like tσ1
σ1 + ... + tσk

σk and
t′σ1

σ1 + ... + t′σk
σk, respectively. In this case the ai,j ~ bi,j is

defined by

ai,j~bi,j=

⊕k
i=1(tσi

⊕t′σi
)σi if (tσi

σi⊂ai,j)∧
(
t′σi

σi⊂bi,j

)

∧(σi∈Σc)
⊕k

i=1 t′σi
σi if (tσi

σi⊂ai,j)∧
(
t′σi

σi⊂bi,j

)

∧(σi∈Σuc) .

(64)

The ~ operator as defined previously can be employed in the super-
visor synthesis algorithm as it will be shown in the following.

To deal with the possibility of having uncontrollable events with
variable lifetimes the synchronous product of timed incidence ma-
trices must be defined as follows:

Definition 17 Given two timed incidence matrices A, dim (A) =
m, and Bn×n, dim (B) = n, corresponding, respectively, to the
automaton A(max,+) with an alphabet of events ΣA and to the au-
tomaton B(max,+) with an alphabet of events ΣB . The timed inci-
dence matrix P , dim (P) = q = mn and an alphabet of events
given by Σ = ΣA ∪ ΣB corresponding to the automaton resulting
from the synchronous composition of these two automata is defined
as

P = A||B, pk,l = aiA,jA ~ biB,jB (65)

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 7

where k = iA + m (iB − 1) and l = jA + m (jB − 1) such that

P=

b1,1~[a1,1 a1,2...a1,n] ... b1,m~[a1,1 a1,2...a1,n]
...

...
...

b1,1~[an,1 an,2...an,n] ... b1,m~[an,1 an,2...an,n]

b2,1~[a1,1 a1,2...a1,n] ... b2,m~[a1,1 a1,2...a1,n]
...

...
...

b2,1~[an,1 an,2...an,n] ... b2,m~[an,1 an,2...an,n]
...

...
...

bm,1~[a1,1 a1,2...a1,n] ... bm,m~[a1,1 a1,2...a1,n]
...

...
...

bm,1~[an,1 an,2...an,n] ... bm,m~[an,1 an,2 ... an,n]

(66)

if ΣA = ΣB . The marked states of the composite automaton are
defined by a column vector Φq×1 (P) and its k-th element is given
by

φk (P) = φiA (A) ~ φiB(B), (67)

with k = iA+m (iB − 1). The initial state vector of the composite
automaton a row vector defined as

Θ1×q (P) =
[

θ1(A)⊕ θ1(B) ε · · · ε
]
. (68)

If ∃σA /∈ ΣA, or ∃σB /∈ ΣB , such that ΣA ∩ ΣB 6= ∅, then

Pq×q = (A||B)⊕C
¬, (69)

where

C
¬=

A
¬B⊕D

¬A

(b1,1)
D

¬A

(b1,2)
... D

¬A

(b1,n)
D

¬A

(b2,1)
A

¬B⊕D
¬A

(b2,2)
... D

¬A

(b2,n)

D
¬A

(b3,1)
D

¬A

(b3,2)
...

...

...
... ... D

¬A

(bn−1,n)
D

¬A

(bn,1)
D

¬A

(bn,2)
... A

¬B⊕D
¬A

(bn,n)

(70)

dim (C¬) = m × n, A¬B is the matrix with elements of ΣA that
does not belong to ΣA and D

¬A

(bi,j)
is a matrix having dimension

m×m such that its diagonal contains the elements bi,j not defined
in A while ε is put in all the other elements.

The algorithm for constructing the synchronous product P = A||B
of two timed incidence matrices is given below:

Algorithm 1 Algorithm for constructing the synchronous product
P = A||B

1. jA ← 1;

2. jB ← 1;

3. iA ← 1;

4. iB ← 1;

5. θ1 (P)← θ1 (A)⊕ θ1 (B);

6. while iB ≤ n, do:

a) if biB,jB = ε, do jB ← jB + 1;

b) if jB > n, do iB ← iB + 1 and jB ← 0;

c) while iA ≤ m, do:

i. if aiA,jA = ε, do jA ← jA + 1;

ii. if jA > m, do iA ← iA + 1 and jA ← 0;

v. k ← iA + m (iB − 1);

vi. l← jA + m (jB − 1);

vii. pk,l ← aiA,jA ~ biB,jB ;

viii. φk (P)← φiA (A) ~ φiB (B);

ix. jA ← jA + 1;

x. if jA > m, do iA ← iA + 1 and jA ← 0;

d) jB ← jB + 1;

e) if jB > n, do iB ← iB + 1 and jB ← 0;

7. if ∃σA /∈Σ2 or ∃σB /∈Σ1, make C
¬, and do pk,l ← pk,l⊕c¬k,l.

Remark 1 This algorithm is very similar to the algorithm em-
ployed for the synchronous composition of un-timed automata.
The computational complexity of this algorithm has the order of
O (nm).

Example 13 Given

A=
[

ε 2α
3β ε

]

, Θ (A) =
[

e ε
]
, Φ(A)=

[
3
ε

]

, (71)

B=

ε 2α ε
2β ε 3η
2λ 4β ε

,Θ (B) =
[
2 ε ε

]
,Φ(B)=

2
1
ε

 (72)

representing the automata shown in Figures 8(a) and 8(b), re-
spectively, the synchronous product matrix P can be determined.
The elements of such matrix defined by pk,l = p(iA,iB),(jA,jB),
k = iA + m (iB − 1) and l = jA + m (jB − 1) when aiA,jA =
biB,jB 6= ε, are given by

• k = 1 + 2× 0 = 1, l = 2 + 2× 1 = 4, p1,4 = p(1,1),(2,2) =
a1,2 ~ b1,2 = 2α

• k = 2 + 2× 1 = 4, l = 1 + 2× 0 = 1, p4,1 = p(2,2),(1,1) =
a2,1 ~ b2,1 = 3β

• k = 2 + 2× 2 = 6, l = 1 + 2× 1 = 3, p6,3 = p(2,3),(1,2) =
a2,1 ~ b3,2 = 4β

P =

ε ε ε 2α ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε

3β ε ε ε ε ε
ε ε ε ε ε ε
ε ε 4β ε ε ε

Θ (P) =
[

2 ε ε ε ε ε
]

,
Φ(P) =

[
3 ε 3 ε ε ε

]T

(73)

8 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

1 2

1 2 3

11 21

12 22

13 23
65

43

21

2α

3β

2λ

4β

3η

2β

2α

2α

3β

4β

2λ
2λ

3η 3η

(c)
A

3

2

1

(b)

(a)

2

3

2 1

2 3

3

0

(max,+)

A(max,+)

A(max,+)

Figure 8: Illustrating the use of the synchronous composi-
tion: (a) A(max,+)1 , (b) A(max,+)2 and (c) A(max,+)3 .

Considering that λ, η ∈ B, but λ, η /∈ A, it is required to
build the matrix C

¬ given by

C
¬ =

A
¬B⊕D

¬A

b1,1

︷ ︸︸ ︷

ε ε
ε ε

D
¬A

b1,2

︷ ︸︸ ︷

ε ε
ε ε

D
¬A

b1,3

︷ ︸︸ ︷

ε ε
ε ε

D
¬A

b2,1

︷ ︸︸ ︷

ε ε
ε ε

A
¬B⊕D

¬A

b2,2

︷ ︸︸ ︷

ε ε
ε ε

D
¬A

b2,2

︷ ︸︸ ︷

3η ε
ε 3η

D
¬A

b3,1

︷ ︸︸ ︷

2λ ε
ε 2λ

D
¬A

b3,2

︷ ︸︸ ︷

ε ε
ε ε

A
¬B⊕D

¬A

b1,1

︷ ︸︸ ︷

ε ε
ε ε

(74)

and thus

P = P⊕C
¬ =

ε ε ε 2α ε ε
ε ε ε ε ε ε
ε ε ε ε 3η ε

3β ε ε ε ε 3η
2λ ε ε ε ε ε
ε 2λ 4β ε ε ε

(75)

where Θ (P) and Φ (P) are given by (73). Finally, matrix
P together with Θ (P) and Φ (P) represent the automaton
A(max,+)3 shown in Figure 8(c).

It must be noted that all the elements of row 2 are such that
p2,j = ε and it can be reached after the string s = Θ (P) ⊗
P

3 ⊗ π = p1,4p4,6p6,2 = 9αηλ, for

π =
[

ε e ε ε ε ε
]T

. (76)

This shows that from the composition of A(max,+)1 with
A(max,+)2 may result an automaton with a blocking state.

Remark 2 The definition 17 establishes that the composition of
two automaton when ΣA ∩ ΣB = ∅ requires the determination of
the matrix C

¬. It is worth noting that such composition is based
on the operator ~ (see Definition 15). However, when the alphabet
of events Σ is partitioned into controllable Σc and uncontrollable
events Σuc, the intersection operator ~ must be redefined according
to Definition 16.

3 TIME-VARYING AUTOMATON

Based on the formalism outlined the previous sections we introduce
here an extended version of the (max,+) automaton named time-
varying automaton (TVA).

Definition 18 A time-varying automaton TVA over an alphabet Σ
is a quintuple given by

TV A = (Q, Σ, q0, t0, ti, tf) , (77)

where:

• Q = {q0, ..., qn} is a finite set of states;

• Σ = {σ1, ..., σm} is an alphabet of events;

• q0 is the initial state;

• t0 : q0 → Rmax is the initial delay;

• ti : ti−1×Q×Σ×Q→ Rmax is the transition function and

• tf : ti−1 ×Q→ Rmax is the final delay function.

The graphical representation of an TVA is a graph constituted by
vertices representing Q and three types of arcs:

1. Internal arcs qj
σ
→ qj+1, ∀qj , qj+1 ∈ Q, σ ∈ Σ such that

ti 6= ε. The qj
σ
→ qj+1 is valued by ti = f(ti−1);

2. Input arc→ q0 valued by t0 6= ε;

3. Output arcs qj → valued by tf , ∀qf ∈ Q such that tf =
f(tj−1) 6= ε.

Note that the (max,+) automaton is simply a special case of the
TVA automaton when all the transition functions are considered to
be constants. Then, consequently, the dynamics of the TVA is quite
similar to the dynamics of the (max,+) automaton.

1. There is a global clock that is continuously being incremented;

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 9

2. Given that the automaton reached state i−1, then it will jump
to state i after the occurrence of σ, however the event σ will
be enabled to occur only after ti units of time. In a TVA ti is
not constant as in a (max,+) automaton but depends on ti−1,
i.e., ti = f(ti−1).

3. The initial state q0 ∈ Q will be reached only after t0 units of
time with respect to the global clock time origin;

4. When the automaton reaches a given state i the counters asso-
ciated to events ti (σ) all start decrementing simultaneously.
When a given counter reaches zero it stops decrementing and
the respective event becomes enabled and may occur from
now on;

5. When a given event occurs all the running counter are stopped
and the state of the automaton changes;

6. If at a given state i there are two arcs leaving that state and the
labels are equal but valued with different transition times then
the TVA is said non-deterministic.

Example 14 Let Σ = {α, β}, Q = {1, 2, 3}, t0 = 2, the follow-
ing transition functions

f1(t) = t2 − t,
f2(t) = 3t,
f3(t) = 4,
f4(t) = 1 + 2t

(78)

and the final delay function

f5(t) = 5− 2/t. (79)

The other transition functions are equal to ε. The corresponding au-
tomaton is shown in the Figure 9. The t in the above expressions is
measured in units of time (of a given time base) must be interpreted
as the last lifetime, i.e., ti−1 as explained previously. The value of
the lifetime for α related with the arc q1

α
→ q2 is

t1 = f1 (2) = 2, (80)

since t0 = 2. The final delay for recognizing ε (if α does not occur)
is

tf = f5(2) = 4, (81)

and consequently the total time it takes for recognizing ε is 6 units
of time. However, if α occurs the automaton jump to state 2 where
the lifetime for α is

t2 = f2(2) = 6 (82)

and the lifetime for β is

t2 = f4(2) = 5. (83)

If at state 2, α occurs the automaton jumps to state 3 where the
lifetime for β is

t3 = f3(5) = 4. (84)

If at state 2, β occurs the automaton jumps to state 1 where the
lifetime for α is

t3 = f1(6) = 30, (85)

the final delay for recognizing αβ is

tf = f5 (5) = 4.6, (86)

and consequently the total time it takes for recognizing αβ is 13.6
units of time.

It is worth noting that the recognition of a given string occurs when
a marked state is reached and the final delay has passed. This string
recognition process can also be described by the daters of the strings
as presented in the following:

Definition 19 A dater is a map given by

Y : Σ∗ → Rmax, (87)

where Y is the time it takes for the string

s = σ1σ2...σn ∈ Σ∗. (88)

to be processed within a TVA.

The dater defines the lifetimes related to the strings of Σ∗. Conse-
quently, a TVA takes Y units of time to change its state from q to q′

by processing s, where (y|s) denotes the value of Y for the string
s.

Definition 20 A dater is said recognized if there exists a TVA such
that

(y|s) 6= ε. (89)

Example 15 For the automaton of the Example 14, we can see that
s = αβ is a recognized string since

(y|αβ) = (t0 + f1(t0) + f4(t1) + tf) = 13, 6 6= ε. (90)

3.1 TVA and formal series

The use of formal series to define the dynamics of a TVA is quite
similar what has been done for the (max,+) automaton. Thus, it
follows that:

Definition 21 A timed language

L = {tss, ts
′ s′, ...}, (91)

with s, s
′

, ... ∈ Σ∗ and ts, ts
′ , ... ∈ Rmax, can be represented by a

formal series
YRmax〈〈Σ〉〉 =

⊕

s∈Σ∗

(y|s) s, (92)

where
Rmax 〈〈Σ〉〉 (93)

denotes the semi-ring of the formal series having coefficients in
Rmax and non commutative variables in Σ.

Example 16 The language L = {3ε, 4α, 2αβ, 3βα} over Σ =
{α, β} can also be represented by

YRmax〈〈Σ〉〉 = 3ε⊕4α⊕2αβ⊕3βα = 3⊕4α⊕2αβ⊕3βα (94)

since ε ⊗ L = ε, ∀L ⊆ Σ∗. This series represents the language
recognized by a TVA. The term (y|s) denotes the coefficient of the
string s that is equal to ‘ε’ if s is not recognized by the TVA.

According to this formalism, a dater function Y can be described
by using a formal series defined over Σ with coefficients defined in
Rmax, as presented in the following:

10 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

Definition 22 A timed language of a TVA is defined by a formal
series

L (TV A) =
⊕

s∈Σ∗

(y|s) s, (95)

where (y|s) ∈ Rmax denotes the dater of the string s ∈ Σ∗.

Example 17 For the automaton of the Example 14, the formal se-
ries YRmax〈〈Σ〉〉 related to the recognized timed language is given
by

YRmax〈〈Σ〉〉 = 6⊕13, 6αβ⊕74, 95αβαβ⊕27, 78ααββ⊕... (96)

3.2 TVA and incidence matrices

The definition of an incidence matrix for a TVA follows similar
rules as it was done for the (max,+) automaton. However, instead of
fixed lifetimes, the elements of the incidence matrix will be related
with the transition functions as shown in the following:

Definition 23 Given a TVA, its incidence matrix, denoted by A, is
defined as

A=[ai,j]; ai,j=
{
f (tσ) σ if ∃σ from vertex i to vertex j;
ε otherwise, (97)

where f (tσ) represents the lifetime of event σ. The automaton
jumps from state i to state j upon the occurrence of σ. If more than
one string may provoke the jump from state i to state j then the
respective element of the matrix must be written as a timed regular
expression like ai,j =

⊕

k f (tσk)σk. For mathematical conve-
nience, the state 1 is always considered as the initial state and can
be represented by the row vector Θ(A) = [t0 ε ... ε], the
marked states are also represented by the column vector Φ(A) =
[f(tf1

) f(tf2
) ... f(tfn)]T .

Example 18 The TVA shown in Figure 9 has the following matrix
representation

A=

ε (t2-t)α ε
(1+2t)β ε (3t)α

ε 4β ε

,Θ(A)=[2 ε ε],Φ(A)=

5-2/t
ε
ε

 (98)

The t in the above matrices and vectors is measured in units of time
(of a given time base) and must be referred to the last transition time.

1 2

α

β

α

β

32

f (t)1 f (t)2

f (t)3f (t)4

f (t)5

Figure 9: Example of a time-varying automaton.

All the matrix formalisms already presented for the (max,+) are also
valid for the time-varying automaton. However, when defining lan-
guages by using path matrices we must consider that the lifetimes
change at every automaton execution as illustrated by the following
example:

Example 19 The matrix representation for the TVA shown in Fig-
ure 10 is given by

A=
[

ε 2tα
(2-t)β ε

]

, Θ (A) =
[
2 ε

]
, Φ(A) =

[
3t
ε

]

(99)

The path matrix A
2 for this automaton is given by

A
2 =A⊗A=

[
((2t1) + (t2-2))αβ ε

ε ((t2-2) + (2t3))βα

]

(100)

where Θ(A2) = Θ (A) and Φ(A2) = Φ (A). Note that some ele-
ments of A

2 contain different lifetimes since every ti is calculated
separately.

1 2

α

β

2

3

2t

(t-2)t

Figure 10: Time-varying automaton for illustrating how to
construct the path matrix.

For the proposed TVA formulation the language definitions given
in 10 and 11, the definitions for reachability, co-reachability as well
as the automata composition operator defined previously for the
(max,+) automaton are also valid.

4 SUPERVISOR SYNTHESIS

The so called SupC(L) algorithm (Ramadge e Wonham, 1987a) pro-
vides a procedure for synthesizing a supervisor for a DES. The syn-
thesis of a timed (fixed lifetime) supervisor based on this algorithm
has already been proposed (Brandin e Wonham, 1994). The su-
pervisor synthesis as proposed in the present article is also based
on the SupC(L) algorithm but allows one to consider variable event
lifetime. The following definitions are required in order to state the
proposed synthesis procedure:

Definition 24 Given an alphabet of events Σ, partitioned into Σ =
Σc ∪ Σuc, and an timed incidence matrix A, we can define its un-
controllable timed incidence matrix Auc by

Auc=
[

(auc)i,j

]

; (101)

(auc)i,j=
{
f(tσuc)σuc if ∃σuc from vertex i to vertex j;
ε otherwise, (102)

where f (tσuc) represents the lifetime of σuc. The automaton jumps
from state i to state j upon the occurrence of σuc. If more than
one string may provoke the change from state i to state j then the
respective element of the matrix must be written as a time regular
expression like (auc)i,j =

⊕

l f(tσl)σl. The initial state and the
marked state vectors are given by Θ(Auc) = Θ(A) and Φ(Auc) =
Φ(A).

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 11

The desired behavior for the closed-loop DES, usually denoted by
specification, is an essential input information for any supervisor
synthesis procedure.

Definition 25 The specification for a TVA is denoted by a matrix
E defined by

E=[ei,j]; ei,j=
{
f(tσ)σ if ∃σ from vertex i to vertex j;
ε otherwise, (103)

where f (tσ) represents the lifetime of σ. The automaton jumps
from state i to state j upon the occurrence of σ. If more than
one string may provoke the change from state i to state j then the
respective element of the matrix must be written as a time regu-
lar expression like ei,j =

⊕

l f(tσl)σl. For mathematical conve-
nience, the state 1 is always considered as the initial state and can
be represented by the row vector Θ (E) = [t0 ε ... ε], the
marked states are also represented by the following column vector
Φ(E) = [f(tf1

) f(tf2
) ... f(tfn)]T . If the state k is not

a marked state, thenf(tfk
) = ε.

Definition 26 A supervisor synthesized for a given specification E

is also defined as a matrix

S=[sti,j],sti,j=
{
f(tσ)σ⊂ei,j if f(tσ)σ⊂ei,j is allowed in A;
ε otherwise

(104)

where sti,j = ε for ai,j 6= ε, indicates that either it is possible
to prevent the occurrence the event enabled at ai,j , ai,j ∈ Σc or
that the state j (row j) its not reachable. If more than one string
is allowed at ai,j then sti,j =

⊕

l f(tσl)σl. For mathematical
convenience, the state 1 is always considered as the initial state and
can be represented by the row vector Θ (S) = [t0 ε ... ε]
the marked states are also represented by the column vector Φ(S) =
[f(tf1

) f(tf2
) ... f(tfn)]T . If the state k is not a marked

state, then f(tfk
) = ε.

The control action of the timed supervisor is executed as follows:
the supervisor observes the events and its respective lifetimes and
determines the control input for the DES by delaying the occurrence
of the controllable events as illustrated in Figure 11.

SED

Supervisor

t σσγ= t' σσ

Figure 11: Supervision of a timed DES.

The set of control inputs for the timed supervisor is defined by:

Definition 27 The set of control inputs for a timed supervisor is
defined by

Γ = {γ1, γ2, ...} , (105)

where
γi = f(t

′

σk
)σk,∀σk ∈ Σ(i) , k = 1, 2, ..., (106)

with
f(t

′

σk
) = f(tσk

),∀σk ∈ Σuc

(f(t
′

σk
) ≥ f(tσk

)),∀σk ∈ Σc.
(107)

The meaning of f(t
′

σk
) ≥ f(tσk

) is that σk will inhibited by t =

f(t
′

σk
)− f(tσk

) units of time, i.e., the lifetime is increased.

According to the definition 27, the control input provided by the
timed supervisor is γ = f(t

′

σ)σ that defines what are the en-
abled events in a given state as well as its respective lifetimes
(f(t

′

σ) ≥ f(tσ)). In other words, the supervisor may inhibit a given
event at a given state by f(t

′

σ)− f(tσ) units of time or block com-
pletely its occurrence if f(t

′

σ) = ε. The dynamics of the supervised
time system can be studied either by constructing the recognized
language through formal series or by using the synchronous com-
position of S||A as obtained according to Definition 11.

In order to make a formal binding of the proposed approach with
the standard supervisory control theory it is important to consider
the following remarks:

1. A sub-automaton has a similar structure but contains a sub-
set of the states or a sub-set of the arcs of a given automaton.
The lifetimes associated to the arcs of the sub-automaton must
be greater than or equal to the respective lifetimes of a given
automaton;

2. A timed sub-language presents a sub-set of the strings of a
given timed language. The lifetimes associated to the strings
of the sub-language must be greater than or equal to the re-
spective lifetimes of the strings of the language. Given that
L

′

⊂ L this does not necessarily imply that the automaton
built for recognizing L

′

is a sub-automaton of the automaton
built for recognizing L;

3. A sub-matrix is formed by the first m rows and first m
columns of a given incidence matrix. The sub-matrix has an
elementwise relationship with the matrix but considering that
the lifetimes of its elements are greater or equal to the respec-
tive lifetimes of the elements of the matrix.

In order to synthesize the timed supervisor as proposed in the
present paper it is required that the incidence matrix representing
the specification be a sub-matrix of the incidence matrix represent-
ing the DES; i.e., E must be a sub-matrix of A. If this is not the case
we must transform A into A

and build E
to be a sub-matrix of

A
such that

L(A#) = L (A)

L(E#) = L (E) .

By doing this, whenever E is a sub-matrix of A, or due to the sug-
gested transformation E

is a sub-matrix of A
#, the following or-

der relationship
L (E) ⊆ L (A) (108)

is always satisfied.

The transformation to be applied when E is not a sub-matrix of A,
is described in the following procedure:

12 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

1. Build a synchronous composition of A with a matrix E
∗ that

generates Σ∗ to create A
such that

L(A#) = L (A) . (109)

The matrix E
∗ is derived from E by adding to it a forbidden

state (row ie/column je), named error state. Then the matrix
A

is obtained by

A
= A||E∗; (110)

2. The matrix E
is obtained from A

by making all the ele-
ments of the form (iA, ie) = ε and (jA, je) = ε. By doing
this, the matrix E

is such that

L(E#) ⊂ L(A#) = L (A) , (111)

with
L (E) = L(E#) (112)

and such that E# is a sub-matrix of A
#;

3. The lifetimes for E are used to determine the lifetimes for E#

(that are equal to the lifetimes of A) by computing tσ ⊕ t
′

σ ,
where tσ is the lifetime of σ ⊂ ei,j and t

′

σ is the lifetime
of e#

k,l, for k representing the pair (iA, iE) for iE = i and l
representing the pair (jA, jE) for jE = j;

4. The vector Θ(E#) is obtained from Θ (E) by

θ1(E
#) = θ1(E

#) ~ θ1 (E) ; (113)

5. The vector Φ(E#) is also determined from Φ(E) by

φk(E#) = φk(E#) ~ φi (E) (114)

where k represents the pair (iA, iE) with i = iE and
φi (E) 6= ε.

Following these steps, E# will be a sub-matrix of A
and conse-

quently

L(E#) ⊂ L(A#) = L (A)

L(E#) = L (E) .

Remark 3 The lifetimes for E
∗ must be tσ = e such that

L(A) =L(A||E∗).

The transformation of E into E
∗ and the transformation of E into

E
#, respectively can be achieved with following algorithms:

Algorithm 2 Algorithm for transforming E into E
∗

1. ∀i, do φi (E)← e, and

∀ei,j = f (tσ1) σ1 + ... + f (tσn)σn, (115)

do
f (tσk)← e, k = 1, ...,dim (E) ; (116)

2. for each row i of E, include the self-loops ei,i = Σ −
{σ1, σ2, ..., σn}, such that σk 6⊂ ei,j , k = 1, 2, ...,dim (E);

3. make dim (E) ← dim (E) + 1, where (i,dim (E)) and
(dim (E) , j) are the elements of the error row/column
(ie/je);

4. θdim(E) (E)← ε;

5. φdim(E) (E)← e;

6. for i = 0 until i < ie, do:

a) for j = 0 until j < je, do:

i. for k = 0 until k < je, do:
I) if σ ⊂ ej,i ∨ σ ⊂ ej,j and ei,k 6= σ do ei,je ← σ;

ii. if ei,j 6= σ
′

do ei,je ← σ
′

;

7. eie,je ← Σ.

Algorithm 3 Algorithm for transforming E into E
#

1. Transform E in E
∗;

2. Construct A# = A||E∗;

3. for i = 1 until n×m do:

i. for j = 1 until n×m, do:

a) if a#
i,j 6= ε, do e#

i,j ← a#
i,j .

4. for k = 1 until n×m:

a) if φk

(
A

#
)
6= ε, do

iE ← ((k − (k mod m)) /m) + 1, (117)

and

φk

(

E
#

)

← φk

(

E
#

)

~ φiE (E) ; (118)

5. do θ1

(
E

#
)
← θ1

(
E

#
)

~ θ1 (E).

In this algorithm mod is the operator that determines the remainder
of the division k/m. The step 4 of this algorithm define the final
delays and step 5 defines the initial delay in order to make sure that
L

(
E

#
)

= L (E) and Lm

(
E

#
)

= Lm (E).

The use of these algorithms will be illustrated by an example where
the transition functions of the TVA are constants, like in a (max,+)
automaton.

Example 20 Consider the matrix

A=

ε 2α1 3α2 ε
2β1 ε ε 3α2

4β2 ε ε 2α1

ε 4β2 2β1 ε

,

Θ(A)=
[
3 ε ε ε

]
,

Φ(A)=
[
e ε ε 3

]T

and the desired specification

E =

[
α1 + β2 5β1

4α2 α1 + β2

]

,
Θ (E) =

[
4 ε

]
,

Φ (E) =
[

2 ε
]T

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 13

where Σuc = {β1, β2}. To build E# such that L
(
E

#
)
⊂

L
(
A

#
)

= L (A) we first create E∗ that generates Σ∗. In this
case

E
∗ =

α1 + β2 β1 α2

α2 α1 + β2 β1

ε ε α1 + β1 + α2 + β2

 ,

Θ (E) =
[

e ε ε
]
,Φ(E) =

[
e e e

]T

where the error row/column is the third one. Now computing A||E∗

we obtain

A
#=

ε 2α1 ε ε ε ε ε ε ε ε 3α2 ε
ε ε ε ε 2β1 ε ε ε ε ε ε 3α2

4β2 ε ε 2α1 ε ε ε ε ε ε ε ε
ε 4β2 ε ε ε ε 2β1 ε ε ε ε ε
ε ε 3α2 ε ε 2α1 ε ε ε ε ε ε
ε ε ε 3α2 ε ε ε ε 2β1 ε ε ε
ε ε ε ε 4β2 ε ε 2α1 ε ε ε ε
ε ε ε ε ε 4β2 ε ε ε ε 2β1 ε
ε ε ε ε ε ε ε ε ε 2α13α2 ε
ε ε ε ε ε ε ε ε 2β1 ε ε 3α2

ε ε ε ε ε ε ε ε 4β2 ε ε 2α1

ε ε ε ε ε ε ε ε ε 4β2 2β1 ε

Θ(A#) =
[
3 ε ε ε ε ε ε ε ε ε ε ε

]
,

Φ(A#) =
[
e ε ε 3 e ε ε 3 e ε ε 3

]T

and then we get E# as given by

E
=

ε 2α1 ε ε ε ε ε ε ε ε ε ε
ε ε ε ε 2β1 ε ε ε ε ε ε ε

4β2 ε ε 2α1 ε ε ε ε ε ε ε ε
ε 4β2 ε ε ε ε 2β1 ε ε ε ε ε
ε ε 4α2 ε ε 2α1 ε ε ε ε ε ε
ε ε ε 4α2 ε ε ε ε ε ε ε ε
ε ε ε ε 4β2 ε ε 2α1 ε ε ε ε
ε ε ε ε ε 4β2 ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε

Θ(E#)=
[
4 ε ε ε ε ε ε ε ε ε ε ε

]
,

Φ(E#)=
[
2 ε ε ε ε ε ε ε ε ε ε ε

]T

Note that only φ1(E
#) 6= ε since φ1(E

#) = φ1 (A) ~ φ1 (E).

In order to synthesize the timed supervisor S it is required to intro-
duce the following operators:

Definition 28 The ACES operator is defined as

ACES(A) = B, bi,j =

{
ai,j if i is reachable
ε otherwise. (119)

The operation ACES(A) eliminates all the elements ai,j of a non-
reachable i row. For a given matrix F, the ACES operator can be
implemented by the following algorithm:

Algorithm 4 ACES Operator

1. Create a vector vac1×N of reachable states.

2. for i = 1 until N , do:

a) for j = 1 until N , do:

i. if F(1, j) 6= ε, do vac(j)← 1.
ii. if i > 1 and F(i, j) 6= ε and vac(i) = 1, then do

vac(j)← 1.

3. for i = N − 1 until 1, do:

b) for j = 1 until N , do:

i. if F(i, j) 6= ε and vac(i) = 1, then do vac(j)← 1.

4. for i = 1 until N , do:

a) for j = 1 until N , do:

i. if vac(i) = 0, do F (i, j)← ε.

Definition 29 The COACES operator is defined as

COACES(A) = B,

bi,j=

ai,j if ∃s|s=ai,j1aj1,j2 ...ajn−1,jn ,
ai,j1,aj1,j2,..., ajn−1,jn 6=ε and φjn(A)=e;

ε otherwise

(120)

The COACES (A) operation eliminates the elements that lead to
non-reachable rows. For a given matrix F, the COACES operator
can be implemented by the following algorithm:

Algorithm 5 COACES Operator

1. Create a vector vcoN×1 of coreachable states.

2. for i = 1 until N , do:

a) for j = 1 until N , do:

i. if F(1, j) 6= ε and φj (F) = e, do vco(i)← 1.
ii. if i > 1 and F(i, j) 6= ε and (φj (F) = e or

vco(j) = 1), then do vco(i)← 1.

3. for j = 1 until N , do:

b) for i = N − 1 until 1, do:

i. if F(i, j) 6= ε and (φj (F) = e or vco(j) = 1), then
do vco(i)← 1.

4. For j = 1 until N , do:

a) for i = 1 until N , do:

i. if vco(j) = 0, do F (i, j)← ε.

Definition 30 The operator TRIM is defined by

TRIM (A) = ACES (COACES(A)) = B. (121)

The use of the TRIM operator for a given incidence A yields an
incidence matrix B that is both reachable and co-reachable.

The last but not least operator to be introduced allows to compare
two matrices to determine if the language generated by one is con-
tained in the language generated by the other.

14 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

Definition 31 Given two timed incidence matrices A = [ai,j] and
B = [bi,j], the operator E is defined by

A E B⇒ L (A) ⊆ L (B) . (122)

Similarly, the operators D, C and B can be defined by

A D B⇒ L (A) ⊇ L (B) ,
A C B⇒ L (A) ⊂ L (B) ,
A B B⇒ L (A) ⊃ L (B) .

(123)

Based on definition 31, and considering a generic element σ =
f (tσ1)σ1 + ... + f (tσn) σn, the determination of A E B can be
achieved through the following algorithm:

Algorithm 6 Algorithm for determining A E B

1. for i = 1 until N , do:elemento ai,j faça:

i. for j = 1 until N , do:

a) if σ /∈ B and ai,j = σ, then A 6E B;

b) if
(

ai,j = t
′

σhσh + ... + t
′

σkσk, t
′

σi ≥ tσi

)

∨

(ai,j = ε), where σi, ..., σk ⊂ σ and bi,j = tσσ,
then A E B;

2. if θ1 (A) ≥ θ1 (B), then A E B.
3. for i = 1 until N , do:

i. if (φi (A) ≥ φi (B)) or (φi (A) = ε ∧ φi (B) 6= ε) or
(φi (A) = ε ∧ ∀φi (B) = ε), then A E B.

The condition A E B implies the execution time of every sequence
in A (string of events with its respective lifetimes) must be greater
than or equal to the execution time of the same sequence in B. In
other words, given two timed languages L (A) and L (B) this con-
dition also implies that L (A) ⊆ L (B), i.e., the execution time of
a given timed language is always less than or equal to the execution
time of any sub-language of that language (Alur e Dill, 1990; Alur
e Dill, 1994; Alur, 1997). Equivalently,

(y|sA) ≥ (y|sB) , (124)

where the lifetime of every event satisfies

tσiA
≥ tσiB

. (125)

1 2

6α

2α
4β2β

1 2 3

3α 5κ

2β 4β

(a)

(b)

A
1

2

4

5
(max,+)

A (max,+)

2

5

2β 2α e

Figure 12: (max,+) automata for illustrating the use of the C

operator.

Example 21 The automaton shown in Figure 12(a) has the follow-
ing matrix representation

A1 =

2β 6α ε
4β 2α ε
ε ε ε

 ,
Θ (A1) =

[
4 ε ε

]
,

Φ(A1) =
[

5 ε ε
]T

and the automaton shown in Figure 12(b) has the following matrix
representation

A2 =

2β 3α ε
2β 2α 5κ
ε 4β ε

 ,
Θ (A2) =

[
2 ε ε

]
,

Φ(A2) =
[

5 ε e
]T

Executing the Algorithm 6 we determine that A1 C A2.

Besides the use of these operators, the proposed supervisor synthe-
sis procedure requires that the desired specification E must be valid
and controllable.

Definition 32 A specification E for a given DES A is said valid if
E 6= [ε] and

∀ei,j , f(tσ) ≥ f(t
′

σ), f(t
′

σ) lifetime of σ ⊂ ai,j

θ1 (E) ≥ θ1 (A) and
φi(E)≥φi(A)∨φi(E) = ε, ∀φi(A)6=ε, ∀i = 1 to N ,

(126)

where [ε] is the null matrix that all its elements equal to ε and if
∀i, j, σ ⊂ ei,j , σ ∈ Σ.

The controllability condition is applied for valid a specification as

Definition 33 A specification E for a given DES A is said control-
lable if

ACES (E) = E, (127)

and
ACES (E⊕Auc) = E. (128)

The last condition can be employed to determine the existence of
supervisor for a given DES.

Lemma 1 Given A (system) and E (specification) a supervisor S

is defined if and only if

ACES (E⊕Auc) = E. (129)

If the specification E satisfies the controllability condition then the
supervisor S is determined by taking its trim component.

Corollary 2 Given A (system) and E (specification) the supervi-
sor S is given by

S = TRIM (E) (130)

if and only if
ACES (E⊕Auc) = E. (131)

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 15

Example 22 The automaton shown in Figure 13(a) has the follow-
ing matrix representation

A =

ε (t2-2t)β 3tµ
(t-2)α ε 4µ

ε 3µ (t-1)κ

 ,
Θ (A) =

[
2 ε ε

]
,

Φ(A) =
[
3t ε 1

]T

where Σ = {α, β, κ, µ}, Σuc = {κ} and Σc = {α, β, µ}. Consid-
ering that the specification given by

E=

ε (t2-2t)β (3t + 1)µ
(t2-2)α ε 4µ

ε 3µ (t-1)κ

,
Θ (E) =

[
4 ε ε

]
,

Φ(E) =
[
5t ε 2

]T

corresponding to the automaton shown in Figure 14(b), we have

ACES(E⊕Auc) = E,

where θ1 (E) > θ1(A) (θ2 and θ3 are equal), φ1(E) = 5t,
φ3(E) = 2 provided that E is controllable. Since E is also trim,
the supervisor is given by S =TRIM (E) = E.

For a given specification when ACES (E⊕Auc) B E, it is re-
quired to determine the supremal controllable sub-language in or-
der to synthesize the supervisor. This case will be discussed in the
following:

Definition 34 For a given E we can form the matrix

B
n
uc = E⊗ (Auc)

n−1 , (132)

that is denoted the path matrix of order n. In this matrix the first
element of every string is an element of E and all the others belong
to Auc. The marked states vector is defined by

φi (Bn
uc) = φi (E) ~ φi (A) (133)

and the initial state vector by

Θ (Bn
uc) = Θ (A) ~ Θ (E) . (134)

In a path matrix a given event σuc belonging to (auc)i,j always
appears as the last event in the elements of (bn

uc)k,j . These terms of
B

n
uc are preceded by (bn−1

uc)k,i. Considering this we have that:

Theorem 3 If for a valid E and a given Auc

ACES (E⊕Auc) B E, (135)

then the supremal controllable sublanguage sup C(L) will be de-
termined recursively by:

1 2 3

µ

β 4µ κ

3µα

2

3 1t (t-2)

3t

(t -2t)2 (t-1)

Figure 13: Automaton for illustrating the supervisor synthe-
sis procedure.

1 2 3

µ

β 4µ κ

3µα

4

5 2t (t -2)2

(3t+1)

(t -2t)2 (t-1)

Figure 14: Controllable behavior specification.

1. For n = 1, S1 = E.

2. For n = n + 1 while (n ≤ N)∧∃σuc /∈ E do

B
n
uc = E⊗ (Auc)

n−1

S
n=

[
sn

i,j

]
, sn

i,j=
{

sn−1
i,j if σ1σ2

uc...σn
uc∈B

n
uc∧σn

uc∈E;
ε if σn

uc /∈ E ∧ σ1 ∈ Σc

S
n = TRIM(Sn)

The term σn
uc is n-th event of a string of an element of B

n
uc

that can be σuc /∈ E.

3. If (n > N) ∧ (∃σuc /∈ E in S
n) then S = [ε].

5 SYNTHESIS ALGORITHM

Based on the previous formalism we can state the algorithm to syn-
thesize the supervisor:

Algorithm 7 Supervisor synthesis algorithm

1. if E /CA, construct A
and E

starting of A and E, and do
E← E

and A← A
#.

2. do D← ACES (E⊕Auc).

3. if D = E, do S← TRIM (E) and stop.

4. if D B E, do n← 1:

a) for k = 1 until M (M is the number of distinct elements
between Auc and Euc), do:

i. S
n ← E, xdif (k, n− 1) ← i and ydif(k, n −
1)← j (where Auc 6= Euc);

b) compute B
n
uc;

c) for k = 1 until M , do:

i. search the elements in

B
n
uc(i, ydif(k, n− 1)), (136)

where σn
uc /∈ E (σn

uc being the last element of the
sequence).

(1) if σn
uc /∈ E and σ1 ∈ Σc, do

S
n(i, xdif(k, n− 1))← ε (137)

and compute

COACES(Sn) and ACES(Sn); (138)

16 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

(2) if σn
uc /∈ E and σ1 ∈ Σuc, do

xdif(k, n)← i (139)

and

ydif(k, n)← ydif(k, n− 1); (140)

d) for k = 1 until M , do:

i. if

S
n(xdif(k, n− 1), ydif(k, n− 1)) = ε (141)

∀k, stop.
ii. else, do:

(1) n← n + 1;
(2) if n ≤ N then return to step 4.b.
(3) else stop (E is not feasible).

6 ILLUSTRATIVE EXAMPLES

In this section we presented selected examples to illustrate the su-
pervisor synthesis procedure as proposed in the present paper. The
examples will focus the supervisor synthesis for un-timed automata,
(max,+) automata and for TVA automata.

1 2 3

µ

β 5µ

µα

4

5t (t-2)

3t

(t -1)2

3t

1 2

β

α

4

5t (t-2)

(t -1)2

(a)

(b)

Figure 15: Time-varying automata: (a) Uncontrollable
specification and (b) Supervisor.

Example 23 Consider that for the TVA shown in Figure 13 the
specification is given by

E=

ε (t2-1)β 3tµ
(t-2)α ε 5µ

ε 3tµ ε

, Θ (E) =
[
4 ε ε

]
, Φ(E)=

5t
ε
ε

The automaton for this specification is shown in Figure 15(a). The
controllability test shows that

ACES (E⊕Auc) B E.

and then the synthesis procedure employing the path matrix must
be employed. The first step is

S
1 = E.

Next we compute B
2
uc

B
2
uc = E⊗Auc =

ε ε µκ
ε ε µκ
ε ε ε

from where we can identify the terms

(b2
uc)1,3 = µκ

and
(b2

uc)2,3 = µκ,

that contain a controllable µ event followed by an uncontrollable κ
event that does not belong to E. Since µ is controllable, we can set

s2
1,3 = s2

2,3 = ε.

to avoid this sequence and, as a result the state 3 becomes unreach-
able, i.e.,

s2
3,2 = s2

3,3 = ε.

The the supervisor can determined by taking the trim component of
S

2 as given by

S=TRIM
(
S

2
)
=

ε (t2-1)β ε
(t-2)α ε ε

ε ε ε

,
Θ(S)=

[
4 ε ε

]
,

Φ(S)=
[
5t ε ε

]T

and is shown in Figure 15(b).

Example 24 Consider the Example 20 that is an extension of clas-
sical problem of a system consisting of machines and buffer. Con-
sider that Σ = {α1, α2, β1, β2} , Σuc = {β1, β2} and the ex-
tended specification E

shown in Figure 16. The controllability

1

2
2

1 2
2α 2β1

4

3

4α4β

5 76

8

24α

2α12
4β

24β

24β

12β

2α1

2α
1

4

2

Figure 16: Timed behavior specification for the two ma-
chines and a buffer problem.

teste shows that

ACES(E# ⊕A
#

) B E
#.

Note that e#
6,9 and e#

8,11 does not belong to E
and must not occur.

Then, the synthesis procedure employing the path matrix must be
employed. The first steps are to make S

1 = E
#, Θ(S1) = Θ(E#),

Φ(S1) = Φ(E#) and compute B
2
uc = E

#⊗A
#
uc. Observing B

2
uc

we identify (b2
uc)5,9 = 4α1β1, (b2

uc)7,11 = 4α1β1 and (b2
uc)8,9 =

6β2β1 that are terms resulting from e#
5,6⊗(a#

uc)6,9, e#
7,8⊗(a#

uc)8,11

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 17

and e#
8,6 ⊗ (a#

uc)6,9, respectively. The inhibition of the controllable
events that precedes β1 in s1

5,6 and s1
7,8 make row 8 unreachable

and consequently we does not need to examine the term (b2
uc)8,9.

In this case S2 is given by

S
2=

ε 2α1 ε ε ε ε ε
ε ε ε ε 2β1 ε ε

4β2 ε ε 2α1 ε ε ε
ε 4β2 ε ε ε ε 2β1

ε ε 4α2 ε ε ε ε
ε ε ε 4α2 ε ε ε
ε ε ε ε 4β2 ε ε
ε ε ε ε ε 4β2 ε

Θ(S2)=
[

4 ε ε ε ε ε ε ε
]
,

Φ(S2)=
[

2 ε ε ε ε ε ε ε
]T

By making S
2 = COACES(S2) followed by S

2 = ACES(S2)
we eliminate the not co-reachable and not reachable states, respec-
tively. The results is

S
2=

ε 2α1 ε ε ε ε ε
ε ε ε ε 2β1 ε ε

4β2 ε ε 2α1 ε ε ε
ε 4β2 ε ε ε ε 2β1

ε ε 4α2 ε ε ε ε
ε ε ε 4α2 ε ε ε
ε ε ε ε 4β2 ε ε

Θ(S2)=
[

4 ε ε ε ε ε ε
]
,

Φ(S2)=
[

2 ε ε ε ε ε ε
]T

which is the supervisor shown in Figure 17. This supervisor makes
sure that the events will be enabled after a certain delay such that
the timed language of the supervised system will satisfy

L(S||A#) = L (S) . (142)

1

2
2

1 2
2α 2β1

4

3

4α4β

5

7

2α124β

24β

12β

4

2

Figure 17: Timed supervisor.

Example 25 Consider the automaton shown in Figure 18 where
Σ = {α, β, κ, η, λ, µ} and Σuc = {α, λ}. The incidence matri-

ces A and Auc are

A=

ε α ε ε ε ε ε
λ β κ µ ε ε ε
ε ε ε κ + µ ε ε η
ε ε ε α β ε ε
ε ε µ λ ε α η
α µ ε η κ β + λ ε
ε µ η + λ ε ε ε α + β

Θ (A) =
[

e ε ε ε ε ε ε
]
,

Φ (A) =
[

ε e ε ε ε ε e
]T

and

Auc=

ε α ε ε ε ε ε
λ ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε α ε ε ε
ε ε ε λ ε α ε
α ε ε ε ε λ ε
ε ε λ ε ε ε α

Θ (Auc) =Θ (A)
Φ (Auc) =Φ (A)

For each marked state there is an output arc valued with φqm = e;
the initial state is an input arc valued with θq = e and for all the
remaining arcs its transition functions are fσ(t) = e. The specif-
ication is given by

E=

ε α ε ε ε ε ε
λ ε κ ε ε ε ε
ε ε ε µ ε ε ε
ε ε ε α β ε ε
ε ε ε ε ε α η
α ε ε ε ε λ ε
ε ε λ ε ε ε α

ε
e
ε
ε
ε
ε
e

Θ (E) =
[

e ε ε ε ε ε ε
]
,

Φ (E) =
[

ε e ε ε ε ε e
]T

and corresponds to the automaton shown in Figure 19. It is ease to
see that E is valid and E C A, however the controllability test fails
since

ACES(E⊕Auc) B E.

1

2

3

4

5
6

7

α

λ

β µ

κ

µ
κ,µ

µ

η,λ

η

α,β

η

κ

α

β

λ
α

η

αµ

β,λ

Figure 18: Un-timed automaton.

18 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

The term (auc)5,4 = λ does not belong to E. Then, the synthesis
procedure based on the path matrix must be employed, i.e., make
S

1 = E and compute B
2
uc = E⊗Auc

B
2
uc=

αλ ε ε ε ε ε ε
ε λα ε ε ε ε ε
ε ε ε µα ε ε ε
ε ηα ε αα + βλ ε βα ε

αα ε ηλ ε ε αλ ηα
λα αα ε ε ε λλ ε
ε ε αλ ε ε ε αα

with Θ(B2
uc) = Θ (A) = Θ (E), Φ(B2

uc) = Φ (A) = Φ (E),
to determine what events must be disabled to generate the lan-
guage restricted by the supervisor. In this case we are interested
in disabling the event that has made the controllability test to fail.
Observing B

2
uc we see that (b2

uc)4,4 has the sequence βλ, that
leads the automaton, through the controllable event β, from state
4 to state 5, and then back to state 4 through the uncontrollable
event λ that does belong to E. Since β is controllable we can set
s1
4,5 = ε to avoid that sequence and the completing S

2. By making
S

2 = COACES(S2) we eliminate the non co-reachable states to
obtain

S
2=COACES

ε α ε ε ε ε ε
λ ε κ ε ε ε ε
ε ε ε µ ε ε ε
ε ε ε α ε ε ε
ε ε ε ε ε α η
α ε ε ε ε λ ε
ε ε λ ε ε ε α

ε
e
ε
ε
ε
ε
e

or

S
2=

ε α ε ε ε ε ε
λ ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε α η
α ε ε ε ε λ ε
ε ε λ ε ε ε α

ε
e
ε
ε
ε
ε
e

.

Now computing S
2 = ACES(S2) we eliminate all unreachable

states and obtain the supervisor

S=ACES(S2)=
[

ε α
λ ε

]

as it is shown in Figure 20. Note that the final supervisor was
presented with dimension 2, indeed it has same dimension 7, the
same of S

2. However, all the elements of rows and columns from
k = 3, ..., 7 are all equal to ε. This examples shows that the un-
timed synthesis is a special case of the general time-varying super-
visory control problem.

7 CONCLUSIONS

We have provided the framework for studying time-varying DES
problems. The proposed time-varying automaton allows to model
systems where the event lifetime varies during its execution. Such
type of timed discrete event systems cannot be modelled by (max,+)

1

2

3

4

5
6

7

α

λ

κ

λ α

η

α

β

α

α

λ

µ

Figure 19: Un-timed behavior specification.

1

2α

λ

Figure 20: Un-timed supervisor.

automata. The paper has also provided a synthesis procedure that
is based on the standard algorithm of supervisory control theory.
However, the use of a non-traditional algebraic structure (dioid) and
the representation of system and its specification in matrix format
were introduced. This fact has allowed to achieve, with the pro-
posed formalism, the synthesis of both un-timed supervisor, fixed
lifetimes supervisor and time-varying lifetimes supervisors with the
same basic algorithm.

For the general case the order of complexity of the proposed super-
visor synthesis algorithm is O(N4) where N is the dimension of the
incidence matrix. However, if the specification incidence matrix is
a sub-matrix of the system incidence matrix the order of complexity
is reduced to O(N2). When the event lifetimes of the system model
are fixed the complexity of the proposed algorithm is the same as
that of the Ramadge and Wonham approach.

The proposed framework allows to deal with more general issues
in the design of supervisory control problems as illustrated by the
selected examples presented in the paper. Indeed, by the same ba-
sic synthesis procedure we can design finite state supervisors for
un-timed DES, fixed lifetime DES, time-varying DES that can be
either cyclic or acyclic. Thus, the proposed approach provides an
extension of timed automata for representing more general classes
of real-time problems like communication protocols.

REFERENCES

Alur, R. (1997). Timed automata, Proc. NATO-ASI Summer School,
Antalaya, Turkey .

Alur, R. e Dill, D. (1990). Automata for modeling real-time sys-
tems, Proc. 17th International Colloquim on Automata, Lan-
guages and Programming, Lectures Notes on Computer Sci-
ence, New York: Springer Verlag 443: 322–335.

Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004 19

Alur, R. e Dill, D. (1994). A theory of timed automata, Theoretical
Computer Science 126(2): 183–235.

Alur, R. e Dill, D. (1995). Automata-theoretic verification of real-
time systems, Technical report, Computing Science Research
(Bell Labs) and Computer Science Department (Stanford Uni-
versity).

Alur, R. e Henzinger, T. (1992). Back to the future: Towards a
theory of timed regular languages, Proceedings of the 33rd
Annual Symposium on Foundations of Computer Science,
pp. 177–186.

Asarin, E. (1998). Equations on Timed languages, Hybrid Systems:
Computation and Control, Springer-Verlag.

Berstel, J. e Reutenauer, C. (1988). Rational Series and their Lan-
guages, Springer.

Brandin, B. e Wonham, W. (1994). Supervisory control of timed
discrete-event systems, IEEE Transactions on Automatic Con-
trol 39(2): 329–342.

Cofer, D. e Garg, V. (1996). Supervisory control of real time
discrete-event systems using lattice theory, IEEE Transactions
on Automatic Control 41(2): 199–209.

Fribourg, L. (1998). A Closed-Form Evaluation for Extended Timed
Automata, Research Report LSV-98-2, Laboratoire Spécifi-
cation et Vérification, Ecole Normale Supérieure de Cachan,
France.

Klimann, I. (1999). Langages, Séries et Contrôle de Trajectoires,
PhD thesis, l’Université Denis Diderot - Paris 7.

Lawford, M. (1997). Model Reduction of Discrete Real-Time Sys-
tems, PhD thesis, University of Toronto.

Ostroff, J. e Wonham, W. (1990). A framework for real-time dis-
crete event control, IEEE Transactions on Automatic Control
35(4): 386–397.

Ramadge, P. e Wonham, W. (1982). Supervision of discrete event
processes, Procedings of 21st Conference on Decision and
Control pp. 1228–1229.

Ramadge, P. e Wonham, W. (1987a). On the supremal controllable
sublanguage of a given language, SIAM Journal of Control
and Optimization 25(3): 637–659.

Ramadge, P. e Wonham, W. (1987b). Supervisory control of a class
of discrete event processes, SIAM Journal of Control and Op-
timization 25(1): 206–230.

Saksena, M. e Selic, B. (1999). Real-time software design -
state of the art and future challenges, IEEE Canadian Review
2(32): 5–8.

Tripakis, S. (1998). L’Analyse Formelle Des Systémes Temporisés
En Pratique, PhD thesis, L’Université Joseph Fourier.

20 Revista Controle & Automação/Vol.14 no.4/Outubro, Novembro e Dezembro 2004

