
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Representing automata and languages with

dioid algebra

Eduard Montgomery Meira Costa1, Antonio Marcus Nogueira

Lima2

1 Departamento de Engenharia Elétrica

Escola Politécnica

Universidade Federal da Bahia

Aristides Novis, 2 - Federação

40210-630 Salvador, BA, Brazil

e-mail: eduard@ig.com.br

2 Departamento de Engenharia Elétrica

Universidade Federal de Campina Grande

Avenida Apŕıgio Veloso, 882 - Bodocongó

58109-970 Campina Grande, PB, Brazil

e-mail: amnlima@dee.ufcg.edu.br

Received: date / Revised version: date

Abstract In this paper is presented a formulation based on dioid algebra

and in the incidence matrices for transition function of finite automata which

have not self-loops. This formulation makes feasible the determination of a

2 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

state of a finite automaton being given as input the actual state and a string.

For this procedure, any specific definitions are introduced.

1 Introduction

Automata are mathematical models used to represent state machines that

recognize strings of a given alphabet [1]. The symbols are read sequentially

and in this way, an automaton can be viewed as a control entity that have

an internal variable that represents its state. Thus, each symbol read results

in updating this variable in accordance with the transition function that as-

sociates a new state for each pair (event, state) [2]. The set of all automaton

states is represented by Q. The initial state of an automaton is designated

by q0. The marked states, represented by the set Qm ⊆ Q, are the states

which the automaton reach when recognizes strings. The automata can be

classified as finite-state, infinite-state, deterministic or non-deterministic.

In automata theory, the state changes that occurs after reading symbols

are defined by the transition function δ; the transition function is normally

represented as a transition table. To determine the state reached by the

automaton when a string is read the transition function is employed recur-

sively.

This article proposes the use of dioid algebra [3,4] and formal series [5,

6] framework as an alternative way to represent automata, its transition

function as well its associated languages. In this case, the automaton is

Representing automata and languages with dioid algebra 3

represented by an incidence matrix and then the transition function as well

its languages can be described through simple matrix operations.

The paper is organized as follows: in Section 2 the basic definitions are

presented; in Section 3 the representation of the automata by incidence ma-

trices and the definition of the automata languages using the dioid algebra

are presented; in Section 4 the the definition of transition function and some

examples to illustrate the use of the proposed formalism are presented; in

Section 5 the main conclusions are presented.

2 Preliminaries

We recall in this section 2 some basic de notions of automata and languages.

2.1 Formal Languages and Automata

The alphabet of the formal languages is usually represented by the Greek

character Σ. The concatenation of symbols of the alphabet defines a string

or a word of the formal language. This operation is defined by catΣ : Σ ×

Σ → Σ∗, where Σ∗ is the set of all strings that can be defined with symbols

from Σ. The length of a string s is denoted by its cardinality |s|, which is

equal to number of symbols that constitutes the string.

The empty string, represented by ε, is the unique string which length is

zero, that is, |ε| = 0. In this way, ε /∈ Σ because it is a string, and not a

symbol of the alphabet Σ.

4 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

The concatenation operation can be extended to strings as shown below

cats : Σ
∗ ×Σ∗ → Σ∗, where

cats(ε, s) = cats(s, ε) = s, s ∈ Σ∗

cats(s1, s2) = s1s2 = s, s1, s2 ∈ Σ+.

(1)

It is worth noting that the empty string ε is the identity element to the

operation of concatenation, that is, all string s concatenated with an empty

string ε is always equal to same string.

A set of strings consisting of symbols of a given alphabet Σ, is defined

as a language, that is:

Definition 1 Given an alphabet Σ, L is a language over Σ if and only if,

L ⊆ Σ∗.

An initial portion, of arbitrary length, of a given string s is denoted as

prefix of s. This can be stated formally as

Definition 2 The prefix of a string s over an alphabet Σ is any string

u ∈ Σ∗ that can be completed with another string v ∈ Σ∗ to build the string

s.

The set that includes all the strings of a given language L ⊆ Σ∗ as well

as all its prefixes is denoted the prefix-closure of L.

Definition 3 The prefix-closure of L, is defined by:

L = {u|∃ v ∈ Σ∗ ∧ uv ∈ L}. (2)

Representing automata and languages with dioid algebra 5

From this definition we can easily see that L ⊆ L. A language is said to

be prefix-closed if and only if L = L. The Kleene-closure of a given language

is defined by

L∗ = {ε} ∪ L ∪ LL ∪ LLL ∪ · · · (3)

which is an idempotent operation, that is, (L∗)
∗
= L∗.

The union and intersection of two languages as well as the complement

of a given language are defined as follows.

Union

L1 ∪ L2 = {s|s ∈ L1 ∨ s ∈ L2} ; (4)

Intersection

L1 ∩ L2 = {s| (s ∈ L1) ∧ (s ∈ L2)} (5)

Complement

Lc = {s ∈ Σ∗|s /∈ L} . (6)

The concatenation operation can be extended to be used with languages

as catL : Σ∗ ×Σ∗ → Σ∗, where

catL({ε} , L) = catL(L, {ε}) = L,L ⊂ Σ∗

catL(L1, L2) = {s1s2|s1 ∈ L1 ∧ s2 ∈ L2} .

(7)

Regular languages can also be expressed by using regular expressions.

The basic regular expressions are: σ{n,∗} representing the repetition of the

symbol σ by a given number of times (n) or by an arbitrary number of times

(∗), respectively; s{n,∗} representing the repetition of a string s by a given

number of times (n) or by an arbitrary number of times (∗), respectively; the

6 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

symbol + denoting the logic or operation, indicating an option between two

or more possibilities. Thus, the regular expressions are defined recursively

in the following manner:

1. ∅ is a regular expression denoting the empty set; ε is a regular expression

denoting the set {ε} and σ is a regular expression denoting the set {σ}

for all σ ∈ Σ;

2. If e1 and e2 are regular expressions, then e1e2, e
∗
1, e

∗
2 and (e1 + e2)

∗
are

regular expressions;

3. All other regular expression can be build by using the rules 1 and 2 a

finite number of times.

The regular expressions provide a compact representation for the com-

plex languages. The empty string ε and the empty language ∅, are also

considered in the regular expressions. The empty string and the empty lan-

guage have the following properties [7]: εs = sε = s, ε∗ = ε, and ∅+L = L,

∅L = L∅ = ∅ and ∅∗ = ε.

Formal languages can also be represented graphically by automata as

shown in Fig. 1. A deterministic finite-state automaton is represented by a

graph consisting of a finite set of nodes connected through arcs. The arcs

are labelled with symbols of an alphabet; among all the arcs leaving a given

node only one must be labelled with a given symbol.

Definition 4 A deterministic finite-state automaton is a 5-tuple denoted

by A = (Q,Σ, δ, q0, Qm) where:

Q = {q1, ..., qn} is a finite set of states;

Representing automata and languages with dioid algebra 7

Σ = {σ1, ..., σm} is the alphabet or symbol set;

δ : Σ ×Q→ Q is the transition function, where

δ(ε, q) = q e

δ(σ, q) = q′, para q, q′ ∈ Q ∧ σ ∈ Σ;

(8)

q0 ∈ Q is the initial state;

Qm ⊆ Q is the set of marked states.

Example 1 For the automaton shown in Fig. 1 the following defintions

apply:

Σ = {α, β, γ};

Q = {0, 1, 2};

δ(α, 0) = 1, δ(α, 1) = 2, δ(α, 2) = 2, δ(β, 0) = 2, δ(β, 1) = 0, δ(β, 2) = 1,

δ(γ, 1) = 1, δ(γ, 2) = 0;

q0 = 0 and Qm = {1, 2}.

β

γ

α
α

β

β

γ

α

Fig. 1 Simple deterministic finite-state automaton.

By extending the transition function, we can describe how the automa-

ton process strings.

8 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

Definition 5 For an automaton A = (Q,Σ, δ, q0, Qm) the extended transi-

tion function δ∗ is defined by δ∗ : Σ∗ → Q, such that:

δ∗ (ε, q) = q

δ∗ (sσ, q) = δ (σ, δ∗ (s, q)) , q ∈ Q, s ∈ Σ∗

(9)

It is a common practice to use δ instead of δ∗, since that

δ∗(σ, q) = δ(σ, δ∗(s, q)) = δ(σ, q)

for the case where s = ε.

The languages associated to a given automaton are defined as follows:

Definition 6 Given the automaton A = (Q,Σ, δ, q0, Qm), its language

L(A) is given by

L (A) = {s|s ∈ Σ∗ ∧ δ (s, q0)!} . (10)

Definition 7 Given the automaton A = (Q,Σ, δ, q0, Qm), its marked lan-

guage Lm(A) is given by

Lm (A) = {s|s ∈ Σ∗ ∧ δ (s, q0) ∈ Qm} . (11)

2.2 Dioid Algebra

Definition 8 A dioid is a set D endowed with two operations denoted by

⊕ (addition) and ⊗ (multiplication), that satisfies the following axioms:

Axiom 1: Commutativity of ⊕: a⊕ b = b⊕ a

Axiom 2: Associativity of ⊕: (a⊕ b)⊕ c = a⊕ (b⊕ c)

Axiom 3: Associativity of ⊗: (a⊗ b)⊗ c = a⊗ (b⊗ c)

Representing automata and languages with dioid algebra 9

Axiom 4: Distributivity of ⊗ over ⊕:

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b)

Axiom 5: Null element in ⊕: a⊕ ε=a, ∀a ∈ D and any ε ∈ D

Axiom 6: Absorbing by null element in ⊗: a⊗ ε = ε

Axiom 7: Identity element in ⊗: a⊗ e = a

Axiom 8: Idempotency in ⊕: a⊕ a = a.

A dioid is said commutative if ⊗ is commutative. In dioid algebra the

inverse of ⊕ is not allowed, however, the inverse of ⊗ can be defined.

2.3 Dioids and Formal Languages

The specification of D and its related operators ⊕ and ⊗ define the frame-

work of the dioid algebra for a given application. To apply dioid algebra

to deal with formal languages, we start defining that D = P(Σ∗), where

P(Σ∗) is the set of all languages that can be defined with symbols of the

alphabet Σ. Thus, an element of P(Σ∗) is a language, and the operations

⊕ and ⊗ can be defined as follows:

Definition 9 Given a dioid (D,⊕,⊗) with D = P(Σ∗), the operators ⊕

and ⊗, are defined as the operators of union and concatenation of languages,

respectively. Given L1 ∈ D and L2 ∈ D then

L1 ⊗ L2 = {s1s2|s1 ∈ L1 ∧ s2 ∈ L2}

L1 ⊕ L2 = {s|s ∈ L1 ∨ s ∈ L2}.

(12)

10 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

All the axioms of the Definition 8 are also valid when D = P (Σ∗). The

null element ‘ε’ denotes the empty language ∅ while the identity element

‘e’ denotes the language Σ0 = {ε}.

As a consequence of the Definition 9 the concatenation of a given lan-

guage L with ‘e’, is L⊗ e = e⊗L = L, and the concatenation of a language

L with ε is L ⊗ ε = ε ⊗ L = ε. Similar results are defined in the context of

formal languages[1,2,7].

The ⊕ operator also allows the use of regular expressions. This is done

by simply replacing the + by ⊕ to indicate the choice between two or more

paths.

Example 2 The language L1 = αβ∗ added with the language L2 = α gives

L3 = L1 ⊕ L2 = αβ∗ ⊕ α = αβ∗ + α = α(β∗ + e)

representing the union of L1 and L2.

3 Incidence Matrix

For every automaton A we can associate an incidence matrix defined as

follows:

Definition 10 For an automaton A = (Σ,Q, δ, q0, Qm) with |Q| = N , its

incidence matrix A is defined as

A = [aij] , aij =

σ if ∃σ from state i to state j;

ε elsewhere,

(13)

Representing automata and languages with dioid algebra 11

where σ ∈ Σ∗, σ = σ1 + σ2+...+σn is the regular expression that labels the

arc connecting the node i to node j of the automaton A. The initial state

is defined by the row vector θ1×N (A), θ(A) = [e ε · · · ε], that is, the first

element is ‘e’ and the other are ε. The marked states are defined by the

column vector φN×1(A),

φ(A) =

e if the row i is marked;

ε elsewhere.

(14)

Thus, the row i represents the actual state of the automaton and the

column j, the next state (row), if ai,j 6= ε. If there is more than one event

defining the change from state i to j then aij will be a regular expression.

The vector θ only presents the first element different of ε, defining that i = 1

is always the initial state and, the vector φ presented to right of A, indicates

that a row is marked if φi (A) = e [φi (A) is the element of the i-th row of

the vector φ (A)].

Remark: Since only the first element of θ (A) is different from ε this implies

that the first row of A always represent the initial state. The final states

are represented graphically by adjoining the elements of the vector φ (A)

as an extra column placed to the right side of A.

Example 3 For the automaton shown in Fig. 2 its incidence matrix A is

given by

A =

ε α+ λ+ β β

η ε ε

ε β α+ λ

ε

ε

e

12 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

1
2

3

η

ββ

α,λ

α,λ,β

Fig. 2 Non deterministic finite-state automaton.

with row 3 representing a marked state. The elements of the vector φ (A)

are shown in the right side of A; the ‘e’ indicates a marked state (row).

3.0.1 Automata Languages The incidence matrix A of the automaton A

can be used to define the languages L (A) = L (A) and Lm (A) = Lm (A).

To determine these languages it is required to introduce the following defi-

nition:

Definition 11 The matrix An = A⊗A⊗...⊗A (n times) is defined as the

path matrix. Each element anij , represents one or more paths of length n

from state i to state j. The initial state vector and final state vector of An

are the same of A.

If there is not a path between state i and state j then anij = ε.

Example 4 For the automaton A shown in Fig. 3 the incidence matrix is

given

A =

ε α ε

β ε µ

ε β α

ε

ε

e

Representing automata and languages with dioid algebra 13

The path matrix A2 for this automaton is

A2 = A⊗A =

αβ ε αµ

ε µβ + βα µα

ββ αβ αα+ βµ

ε

ε

e

and the path matrix A3 is

A3=

ε αβα+αµβ αµα

µββ+βαβ αµβ µαα

αββ ββα+ααβ+βµβ αβµ+ααα+βµα

ε

ε

e

.

In these matrices, each element (i, j) represents a string of length 2 and 3,

respectively. These sequences are defined by the extended transition function

of the automaton A, that represent the changes from state i to state j. In A2,

we see that from initial state there exists the string αβ. The strings a2
13 = αµ

and a3
13 = αµα (row 1 , column 3) are recognized by this automaton because

these strings determine the changing from the initial state to a marked state

3 (φ3(A) = e).

1 2 3

α

β

µ

α

β

Fig. 3 Simple deterministic finite-state automaton used to illustrate the con-

struction of the path matrix.

Based on the definition provided for An we can formalize L (A) and

Lm (A).

14 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

1 2

α

β

κ

Fig. 4 Simple example of deterministic finite-state automaton.

Definition 12 Given an incidence matrix A, its language is defined by

L (A)=
⊕

i

(

θ(A)⊗Ai
)

=
⊕

i

n
⊕

j=1

(

θ1(A)⊗ ai1j
)

, (15)

where ai1j is the element of row 1, column j of the path matrix Ai.

Its worth noting that L (A) = L (A).

Definition 13 Given an incidence matrixA, its marked language is defined

by

Lm (A) =
⊕

i

(

θ(A)⊗Ai⊗φ(A)
)

=
⊕

i

⊕n
j=1

(

θ1(A)⊗ ai1j⊗φj(A)
)

,

(16)

where ai1j is the element of the row 1, marked column j of the path matrix

Ai.

This definition is similar to Definition 12. However, in this case, we only

consider the strings that start at the initial state and end in a marked

column.

Example 5 Consider the automaton shown in Fig. 4 for which

A =

ε α

β κ

e

ε

.

To determine its language, we compute

Representing automata and languages with dioid algebra 15

A2=

αβ ακ

κβ βα+ κκ

e

ε

,

A3=

ακβ αβα+ ακκ

βαβ + κκβ κβα+ βακ+ κκκ

e

ε

, ...

whose elements of the first row are strings of length 2, 3, ..., of the language

of A. It can be seen that

L (A) = L (A) = {ε, α, αβ, ακ, ακβ, αβα, ακκ, ...}.

Observe that the empty string ε ∈ L (A), and that the strings of length i, are

found in row 1 ofAi. The marked language is Lm (A) = {ε, αβ, ακβ, ...} and

is determined by the strings of the row 1, column 1 of Ai, since φ1(A) = e.

4 Transition Function Formulation

Employing the Definition 12 we can determine the set of all strings of length

|s| = i by

L (A)i = θ(A)⊗Ai =
n
⊕

j=1

(

θ1(A)⊗ ai1j
)

(17)

and the set of all strings of length |s| = i that makes the state to change

from row 1 to row k by

L (A)
k
i = θ(A)⊗Ai ⊗ π = θ1(A)⊗ ai1k. (18)

Through these equations it is possible to derive an expression for the

transition function of any automaton (without self-loops). As a first step

for this derivation we need to state the following definition:

16 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

Definition 14 Given Σ = {σ1, ..., σn} and consider that the symbol σi

determines the transition from a state q to a state q′. Now lets define σ−1
i

as the inverse symbol that determines from which state the state q′ has been

reached.

With this definition, we understand the following: if in an automaton

exists σ departing from state q to state q′, then σ−1 can be viewed like

an arc that departs from state q′ to state q. Thus, this definition can be

extended to deal with strings in the following way:

Definition 15 Given Σ = {σ1, ..., σn} and Σ∗ representing the set of all

possible strings s formed by the symbols of Σ. Consider a string si that

determines the transition from the state q to a state q′. Now lets define s−1
i

as the inverse string that determines from which state the state q′ has been

reached.

Remark Similarly to σ−1, if in an automaton exists the string s that changes

the state of the automaton from state q to state q′, following the path

qq1q2...qnq
′, then s−1 can be viewed like an string that departs from

state q′ to state q, following the inverse path q′qnqn−1...q1q.

By using these two definitions one can derive a representation of the

transition function of an automaton (without self-loops).

With equation (18) it is possible to determine the set of all strings that

starting from the initial state have length |s| = i and lead the automa-

ton to state k. Working with that equation one can find all the strings of

Representing automata and languages with dioid algebra 17

length |s| = i that lead the automaton from state k to state h. This can be

expressed by

Lh (A)
k
i = ξ ⊗Ai ⊗ π = ξh ⊗ ai1k, (19)

where ξ is a row vector 1×n, where only its h-th element is equal to e while

all the others elements are equal to ε.

Given equation (19) the strings can be determined if: i) the incidence

matrixA of the automaton is known and ii) the initial and final states where

the automaton initiates and ends its processing, respectively, are known.

Lets consider, initially, that Lh (A)
k
i contains only one string s.

s = ξ ⊗Ai ⊗ π. (20)

Working with equation (20), we find that

s = ξ ⊗Ai ⊗ π, (21)

ξT ⊗ s = Ai ⊗ π, (22)

(

Ai
)−1

⊗ ξT ⊗ s = π, (23)

π =
(

Ai
)−1

⊗ ξT ⊗ s, (24)

where
(

Ai
)−1

is the inverse path matrix (all its elements are inverse strings),

such that

(

Ai
)−1

⊗Ai = I.

The column vector π has only one element different from ε; πk = e is this

element and the subscript k represents the state reached when the string s

is processed.

18 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

Now, let us consider the row vector

τ |τ j = j, j = 1, 2, ..., n.

Vector τ can be used to determine what is the reached state k as given by

k = π ⊗ τ =
[

(

Ai
)−1

⊗ ξT ⊗ s
]

⊗ τ . (25)

Equation (25) is the indeed the transition function for an automaton

that does have self-loops in its structure; by using this expression, given the

string s one can compute the reached state from any state. The example

presented in the following will illustrate the use of this equation.

Example 6 Consider the following incidence matrix

A =

ε β

κ ε

that represents the automaton of the Fig. 5. Given s = κ and the state

1 2

β

κ

Fig. 5 Simple determinist finite-state automaton.

q = 2, the reached state is

k =

ε κ−1

β−1 ε

⊗

ε

e

⊗ κ

⊗

[

1 2

]

Representing automata and languages with dioid algebra 19

k =

κ−1

ε

⊗ κ

⊗

[

1 2

]

k =

e

ε

⊗

[

1 2

]

= 1.

Now consider that s = βκβκβ and the state q = 1. The reached state is

k =

ε (κβκβκ)
−1

(βκβκβ)
−1

ε

⊗

e

ε

⊗ βκβκβ

⊗

[

1 2

]

k =

(βκβκβ)
−1

ε

⊗ βκβκβ

⊗

[

1 2

]

k =

e

ε

⊗

[

1 2

]

= 1.

Whenever a string s is not feasible to occur from state q, the utilization

of the equation (25) does not yield valid result. To solve this problem, we

must extend the operator ⊗ in the following manner:

Definition 16 For D = P(Σ∗) and given two languages L and L′ where

L′ is an inverse language, the operator ⊗ is defined as

L⊗ L′ =

ss′ if s ∈ L ∧ s′ ∈ L−1 ∧ s′ = s−1

ε elsewhere.

(26)

According to this definition, when the string s is not feasible to occur in

state q the result of the operation is ε. Then, equation (25) remains valid

but now yields the correct result.

20 Eduard Montgomery Meira Costa, Antonio Marcus Nogueira Lima

Example 7 Considering again Example 6 with s = βκβκβ and q = 2. In

this case

k =

ε (κβκβκ)
−1

(βκβκβ)
−1

ε

⊗

ε

e

⊗ βκβκβ

⊗

[

1 2

]

k =

(κβκβκ)
−1

ε

⊗ βκβκβ

⊗

[

1 2

]

k =

ε

ε

⊗

[

1 2

]

= ε,

showing that the automaton does not accept the string s = βκβκβ from state

q = 2.

5 Conclusions

This paper presents a generic formulation to equation of the transition func-

tion of the finite automata utilizing the incidence matrices and dioid algebra

applied to languages. For this formalization we define the inversion of sym-

bols and strings, which are allowed in formalizing of the dioid algebra, as

good an extension in the definition of the operator ⊗ applied to languages.

The described formalism allows find the reached state q′ in an automaton

A from a given state q and a string s. The equation of the transition func-

tion is utilized to automata that do not present self-loops in their structure.

The computing of the inverse incidence matrix is done by using the same

algebraic procedures to computing any inverse matrix. With the examples

shown, we see that the formalized equation solve the procedure of reached

Representing automata and languages with dioid algebra 21

state computing in an automaton without the recurrence to the table usu-

ally defined to the automata transition function.

References

1. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages

and Computation (Addison-Wesley, USA, 1979)

2. J.E. Hopcroft and J.D. Ullman, Formal Languages and Their Relation to Au-

tomata (Addison-Wesley Publishing Company, 1969)

3. S. Gaubert, Théorie des Systèmes Linéaires dans les Dioïdes (Thèse de Doc-

torat, École Nationale Supérieure des Mines de Paris, 1992)

4. J.A. Beachy, Abstract Algebra II (Waveland Press, Inc., 1996)

5. J. Berstel and C. Reutenauer, Rational Series and their Languages (Springer,

1988)

6. I. Klimann, Langages, Séries et Contrôle de Trajectoires (Thèse de Doctorat,

l’Université Denis Diderot - Paris 7, 1999)

7. W.M. Wonham, SED Notes (Course notes, 1999)

